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Abstract—This work considers the deployment of unmanned
aerial vehicles (UAVs) over a pre-defined area to serve a number
of ground users. Due to the heterogeneous nature of the network,
the UAVs may cause severe interference to the transmissions of
each other. Hence, a judicious design of the user-UAV association
and UAV locations is desired. A potential game is defined where
the players are the UAVs. The potential function is the total
sum-rate of the users. The agents’ utility in the potential game
is their marginal contribution to the global welfare or their so-
called wonderful life utility. A game-theoretic learning algorithm,
binary log-linear learning (BLLL), is then applied to the problem.
Given the potential game structure, a consequence of our utility
design, the stochastically stable states using BLLL are guaranteed
to be the potential maximizers. Hence, we optimally solve the joint
user-UAV association and 3D-location problem. Next, we exploit
the submodular features of the sum rate function for a given
configuration of UAVs to design an efficient greedy algorithm.
Despite the simplicity of the greedy algorithm, it comes with a
performance guarantee of 1 — 1/e of the optimal solution. To
further reduce the number of iterations, we propose another
heuristic greedy algorithm that provides very good results. Our
simulations show that, in practice, the proposed greedy approaches
achieve significant performance in a few iterations.

Index Terms—UAV-enabled networks, users-UAVs association,
UAV 3D placement, potential game, binary log-linear learning,
greedy algorithm.

I. INTRODUCTION

According to a recent report of the federal aviation authority
(FAA) [1], the number of drones in the USA has reached 2
millions in 2019 and is estimated to attain 2.5 millions by 2025.
Indeed, in the near future, thousands of drones are expected
to navigate autonomously over cities to deliver a plethora of
services such as traffic reporting, package delivery, and public
surveillance [2], [3]. The main virtue of such technology is
the high mobility of drones, their versatile nature, their rapid
deployment, and the wide range of services they can provide.

One of the earliest applications of drone-related services is in
the telecommunications industry [4], [5]. Equipped with smart
transceivers, drones can be deployed as flying base stations that
extend coverage in crowded places and remote areas. They can
also be deployed as aerial relays that collect or disseminate data
in an Internet of things environment. Also, thanks to their fast
deployment, drones can be used in a post-disaster scenario to
replace damaged ground base stations.

Although the application of drones in the telecommunications
industry is very appealing, their efficient deployment still faces

several technical challenges that range from trajectory planning
to channel modeling [6] and 3D placement [7]-[14]. In this
paper, we are interested in the optimal deployment of drones
coupled with the optimal drone-users association. This problem
is widely investigated in the literature but, to the best of authors’
knowledge, none of the existing works provides an optimal
solution to the studied problem, specifically when interference
is considered. Furthermore, only a few works measure the
efficiency of their proposed approach against the optimal one. In
this paper, we undertake this task by answering the following
questions: What is the optimal deployment of UAVs and the
optimal drone-users association to maximize the downlink sum-
rate, in the presence of interference and with bandwidth and
quality of service constraints? What is the cost of such an
optimal solution? Are there any alternative approaches that
reach an efficient solution to the problem in a fewer number
of iterations? And how efficient is this solution?

A. Related Work

The optimal 3D placement of UAVs received considerable
attention in the last few years. One of the earliest works to study
the placement of the drones in the 3D space for communications
purposes is the work by Mozaffari er al. in [15]. In that paper,
the authors provide closed-form expressions for an optimal
height that maximizes the drones’ coverage area. The work
mainly focuses on the cases of single and two drones. For
the two drones scenario, the authors show that the presence
of interference increases the complexity of the system leading
to a challenging optimization problem. This problem has been
extended in [16] to a multiple drones scenario. In [16], the
authors consider interference coming from the nearest neighbor
only. This approximation results in a tractable coverage opti-
mization problem that is solved using circle packing theory.
In general, when interference is not considered, the objective
function becomes convex with respect to the 3D placement.
To solve this problem, the authors in [17] adopt a gradient
descent based algorithm to efficiently place the UAV in order
to minimize the transmit power required to cover indoor users.
The problem of the 3D placement of the UAVs is also tackled
in [18] and solved by decoupling the horizontal and the vertical
placements. The objective in [18] is to maximize the number of
covered users.



Moreover, the overall UAV-enabled network performance is
tightly related to the number of served users. In the classical
network association, users are either served by the closest
base station (Voronoi association), or they are assigned to the
base station with the best signal-to-interference-and-noise-ratio
(weighted Voronoi association). In either case, the distance-
only based association may result in highly congested base
stations and unbalanced resource allocation across the network.
Hence, many works can be found in the literature that study
the association rule along with the 3D placement of the UAVs.
However, the joint 3D optimization and users’ association is
challenging. One commonly used approach is to decompose the
studied optimization into subproblems where each subproblem
is addressed separately. The results of each subproblem are
used as inputs for the next one, and the process is repeated
until convergence is reached. While such an approach can
provide satisfactory results, it is not guaranteed to reach the
global optimum. When using a decomposition process, the
algorithm will often halt at a suboptimal solution with no
guaranteed bounds on the suboptimality gap. Moreover, most of
the proposed iterative approaches have no provable convergence
properties.

For example, by using k-means and particle swarm optimiza-
tion sequentially, the joint users’ association and 3D location
was addressed in [19] in order to maximize the logarithmic rate
of the users under delay and backhaul constraints. A similar de-
composition approach is proposed in [20] where devices are first
connected to UAVs using matching theory, and then the UAVs
are placed optimally in the 2D space by leveraging tools from
control theory. In [21], cell partitioning is proposed to cluster
the users, and then, the non-convex 3D placement optimization
problem is solved using sequential quadratic programming. In
line with the previous works, the approach proposed in [22]
relies on combining distributed algorithms in order to address
the users’ association, the 2D placement, and the altitude
adjustment subproblems separately. In [23], some other practical
requirements such as power control and channel access are
considered. In order to achieve a minimum consumed energy,
the authors adopt an iterative mechanism based on a coordinate
descent algorithm. The authors solve each resource allocation
subproblem separately, which leads to a sub-optimal yet efficient
solution. The same concept is used in [24] where the primary
problem that aims at minimizing the total transmit power
is decoupled into two subproblems: 2D locations along with
users’ association, and joint optimization of altitudes and power
control. Another iterative process is proposed in [25], where
the authors propose a decomposition approach to first position
the UAVs, then assign the channels to the users. First, the 2D
positions are obtained using a mixed integer second order cone
optimization. Second, the channels’ assignment is performed
by minimizing interference. Similarly, in [26], the optimization
problem is decoupled into two subproblems: An optimal altitude
placement, and joint 2D and users association subproblem. A
sequential approach is also suggested in [27] where the number

of UAVs is optimized in the context of mobile edge computing
with the aim of minimizing the consumed energy. The authors
propose a two-layer optimization mechanism in order to first
find the required number of UAVs and their optimal locations,
and second, determine if the edge computing tasks should be
offloaded to the UAVs or performed locally at the devices.

Due to the complexity of the studied problem, none of the
previously cited papers provides an approach that exactly solves
the target optimization. Indeed, the studied problem is not only
non-convex and challenging to solve but it is also NP-hard.
Therefore, a polynomial-time algorithm that exactly solves the
optimization problem does not exist [28]. This implies that the
optimal solution will necessarily lead to an exponential-time
search.

It is important to note that under the terrestrial communi-
cations setup, similar resource allocation problems have been
investigated, and approaches to reach the exact optimum exist.
For example, in [29], the authors propose an algorithm based
on a Gibbs sampler to optimize the joint channel selection and
users’ association in WLAN networks. A more general work is
presented in [30] where the authors develop a framework based
on Markov Random Fields and Gibbs measures to exactly solve
the resource allocation problem in OFDMA networks. Unlike
the previously cited works, we tackle the 3D placement problem
which is inherent to air-to-ground communications and present a
distributed learning mechanism that requires little knowledge of
the search space. The learning algorithm, binary log-linear learn-
ing (BLLL), is a game-theoretic algorithm that was introduced
in [31] and since then has found wide applicability in wireless
communications [32]—[34]. The idea is simple: by designing the
agents’ utilities, we formulate our problem as a potential game
among the UAVs. Then only one agent, a UAV, is active at a
time. The active agent compares the utilities of two actions:
its current action and another feasible one. A Gibbs sampler
then chooses the actual action based on probabilities calculated
from the potential utilities of the two actions. The work in [31]
confirms that such a simple learning rule is guaranteed to linger
at the potential maximizers in potential games.

Since the considered problem is NP-hard, the convergence
of BLLL can be exponentially slow. Hence, we also provide
a greedy algorithm with a performance guarantee of achieving
at least 1 — 1/e of the optimal solution. Our greedy approach
leverages the submodular properties of the studied problem in
order to guarantee an efficient performance. We also refer to
the papers [35]-[38], that reformulate the resource allocation
optimization problem as a submodular maximization problem
to provide a lower bound approximation on the proposed solu-
tions. These papers either ignore 3D positioning (in [38]), or
interference in the objective function (for the rate maximization
in [35], [37]) or consider a very specific objective function
with innate monotonicity and submodularity properties (for the
caching problem in [36]). The comparison of our work with
different works in the literature is summarized in Table L.



Reference Objective Optimized variable Adopted Approach Performance Presence of interference
[16] Maximum coverage 3D placement Circle packing theory Sub-optimal Interfering UAVs
+ UAVs lifetime
[17] Minimize total 3D placement Particle swarm optimization Sub-optimal Single UAV
transmit power
[18] Maximize coverage 3D placement Circle placement problem Sub-optimal Single UAV
[19] Maximize sum-rate 3D placement + Decomposing problem Sub-optimal Interfering UAVs
User association +
bandwidth allocation
[20] Maximize coverage 2D placement+association decomposing problem : Sub-optimal Interfering UAVs
Matching+k-means
[21] Maximize uplink 3D placement+ mobility sequential quadratic Sub-optimal Interfering UAVs
energy efficiency +association+ power programming
[22] Maximize sum-rate 3D placement+ Decomposing problem: Sub-optimal Interfering UAVs
association+ Matching+k-means Interfering UAVs
+Best response
[24] Maximize total 3D placement+ Decomposing problem: Sub-optimal Interfering UAVs
transmit power Association k-means+matching+
alternating iterative method
[23] Minimize energy 3D placement+ Association Iterative coordinate Sub-optimal No interference
power+channel access descent optimization between UAVs
[25] Maximize sum-rate 3D placement+ Decomposing problem: Sub-optimal Interfering UAVs
association Mixed integer program+
assignment algorithm
[26] Average throughput 3D placement+ Altitude optimization+ Sub-optimal Interfering UAVs
association concave—convex procedure
[27] Minimize the system Number of UAVs+ Two-layer optimization: Sub-optimal No interference
energy 3D location+ differential evolution algorithm
task scheduling +greedy algorithm
[29] Maximize sum-rate Channel+ client selection Decomposing problem: Sub-optimal Interfering BS
+ channel access+ Convex Optimization+
client scheduling Gibbs sampler
[30] Maximize sum-rate Association+ Power Gibbs sampler Optimal Interfering BS
control+ Scheduling
[34] Maximize coverage 2D positions+ Gibbs sampler Optimal Interfering sensors
range-+direction
[35] Maximize sum-rate Association Submodular maximization 1 —1/e bound No interference
between BS
[37] Maximize sum-rate Beam allocation Submodular maximization 1 —1/e bound Interferings BSs
[36] Maximize cache hit ratio 3D placement+caching Submodular maximization 1/2 bound No interference
between UAVs
[38] Maximize sum-rate Association Greedy algorithm 1/2 bound Interfering UAVs
[39] Maximize coverage 3D placement+ Swarm algorithm Sub-optimal Interfering UAVs
Association
Our approach Maximize sum rate 3D placement+ Association | Game-Theoretic+ Submodular Optimal+ Interfering UAVs
maximization 1 —1/e bound

TABLE I: Summary of literature review

B. Contribution

Based on the previous subsection, we conclude that most of
the existing works tackle the problem of 3D placement and
resource allocation in multi-UAV enabled networks using a
decomposition approach that breaks the primary problem into
several subproblems, and address each subproblem separately.
Although these approaches can provide efficient solutions, it
is not guaranteed that they will reach the global optimum. To
the best of our knowledge, none provide the exact solution
for the studied optimization problem, specifically under the
presence of interference between the UAVs. This is especially
true since the formulated optimization problem is NP-hard. On
the other hand, few works leverage the submodular framework
in order to guarantee an efficient performance of the proposed
approach. These papers mainly address the resource allocation

problem under the terrestrial communications setup. Hence, our
contributions can be summarized as follows:

e We design the UAVs utilities according to marginal con-
tribution utility. We then use BLLL to reach equilibrium.
BLLL guarantees convergence to the global optimum.
This approach, however time-consuming, is used as a
benchmark to assess the performance of other existing
approaches.

o We formulate the UAV localization and association prob-
lem as a submodular maximization problem subject to a
matroid constraint. This formulation enables us to make
use of a greedy approach with a performance guarantee of
1 —1/e of the maximum. We believe this is the first work
that adapts the submodularity framework to the joint 3D
positioning and association problem under interference in
a multi-UAV enabled network.



Fig. 1: The figure shows the setup of our problem. UAVs have designated bandwidths B;
divided into subchannels b; that they can assign to different users. Users assigned to UAVs
are indicated by circles of the same color as the UAV.

o We further provide a heuristic greedy algorithm with low
information and implementation requirements. Our simu-
lations show that this algorithm achieves efficient results
in only a few iterations despite its simplicity.

C. Organization of the Paper

The rest of the paper is organized as follows. In the next
Section, we describe the adopted system model. Then, we for-
mulate our optimization problem in Section III. In Section. IV,
we formulate our problem as a potential game among the UAVs,
and implement BLLL in order to find the optimal 3D placement
and users’ association that maximize the sum-rate function.
Next, we study the submodularity of the objective function
and the matroid structure of the constraints in Section V. Two
greedy approaches are studied in Section VI. The proposed
algorithms are compared in Section VII. Finally, simulation
results are provided in Section VIII and we conclude the paper
in Section IX.

D. Notation

We adopt the following notation: The Cartesian products of
two sets A and B is denoted A x B. |A| denotes the cardinality
of set A. Vectors and matrices are denoted using boldface letters
X, whereas scalars are denoted by z.

II. SYSTEM MODEL

We assume a drones-enabled network where a set 7 of UAVs
are deployed over a target area to serve a set Z of ground users.
The system model is depicted in Fig. 1. In order to capture
the channel variations between the user and the UAV, we adopt
the commonly used air-to-ground channel model where the path
loss is averaged over line-of-sight (LoS) and non-line-of-sight
(NLoS) links and the probability of LoS is given by [40]:
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where d;; is the 2D plane distance from the projected position
of UAV j to user i, 7;; is the distance between the UAV and
the user, € and /3 are environment-dependent parameters.

Consequently, the path loss between UAV j and user ¢ can
be formulated as:

(Crospiy TrijdipHHCNLos (—pirijdiy) ~ g
(2)
where f is the carrier frequency, c is the speed of light, and «
is the path loss exponent. (1,5 and (Nrog are the parameters
for LoS and NLoS losses, respectively.
Accordingly, the  signal-to-interference-and-noise-ratio
(SINR) received at user ¢ from UAV j can be written as:
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where P; is the transmit power of UAV j and, o2 is the variance
of the additive white Gaussian noise at user 7’s receiver, and
subscript £ denotes the ¢th interfering UAV.

We consider the downlink communication channel. We are
interested in the spectral efficiency 7;; between user ¢ and UAV
7, given by:

Nij = loga (1 + 7ij)- “

Due to backhaul limitations, we assume that each UAV j has
a limited number of users IN; to connect with. Furthermore,
each UAV has a limited amount of bandwidth B; divided into
equal subchannels b; so that B; = N;b;. Allocating equal
subchannels enforces some fairness among the UAV’s served
users since otherwise all bandwidth should go to the user with
the highest spectral efficiency. Therefore, each ground user
associated with UAV j receives a throughput R;; that can be
formulated as:
Rij = bjnij. )
We note that the UAVs are deployed in dense and/or un-
covered areas, that is the number of users is, most of the time,
higher than the allowed UAV quota N;. However, if V; exceeds
the number of effectively associated users, V. ]eﬁ each UAV can
improve the bandwidth allocated to its served users by equally
dividing its total bandwidth into bigger subchannels such that
b = B; /NS between its associated users so that bST > b;
and all the UAV bandwidth is allocated.

III. PROBLEM FORMULATION

We are interested in the downlink sum-rate of the ground
users. Our objective is to optimally deploy the UAVs in the 3D
space and associate the users in order to maximize the sum-rate
function. Let q = (g;;) be the binary UAVs-users association
matrix and (x,y,h) the UAVs 3D positions. Let Z be the set



of users and J the set of UAVs. Our optimization problem is
formulated as follows:

maximize Z Zqinij (6a)

q, (x,y,h) jeK ieU

subject to ZQU <N; VjeJ, (6b)
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771] nmln
min < T < pmax vj c j, (6d)
Yt <y Syt Vi e, (6¢)
hmin S hj S pmax V] c j, (6f)
g <1 Viel, (62)

J

ai; €{0,1} V(i,j)eIxJ. (6h)

Constraint (6b) ensures that the number of associated users for
each UAV j does not exceed its maximum quota of users Nj.
Constraint (6¢) guarantees a certain quality of service for each
associated user by ensuring that its spectral efficiency is no less
than a predefined threshold ™. Constraints (6d), (6e) and (6f)
ensure that the 3D coordinates of all the UAVs are bounded to
a target cubic space. Finally, constraints (6g) and (6h) restrict
the ground user to be associated with, at most, one UAV.

The problem under analysis is mathematically challenging
as it involves a non-convex objective function and a non-
convex constraint (constraint (6¢)). It also includes integer and
continuous variables which make it a mixed integer non-linear
program (MINLP). Moreover, the association problem can be
formulated as a knapsack problem, which is known to be NP-
hard.

In the following, we solve this optimization problem using
a game-theoretic approach. The optimal solution of the studied
problem is therefore obtained using BLLL, a learning algorithm
that provides guarantees on reaching the maximizers of the
objective function when the underlying game is a potential
game.

IV. SUM-RATE MAXIMIZATION

We discretize the 3D space and represent it in the form of
a 3D grid. We formulate the interactions between the UAVs as
a potential game where the downlink sum-rate is the potential
function. Then, BLLL is implemented by the UAVs in order
to find the optimal 3D placement and users’ association that
maximize the sum-rate function.

A. Game Formulation

1) Background: In game theory, a potential game is a game
where any unilateral change in a player’s utility results in an
equal change in a global welfare function called the potential
function. Therefore, whenever a player performs an action that
improves its utility, it also improves the potential function. More
formally, the definition of a potential game is given below.

Definition 1 (Player actions). We will use a; to denote the
action of player j. Player j’s actions belong to a finite strategy
set Aj. Let A =[], A; be the resulting strategy profile of all
players. It will be useful to decompose a given action a € A
into two components, (a;,a_;) where a_; denotes the actions
of players other than j.

Definition 2 (Potential game). [41] G is a potential game if
there exists a potential function F' : A — R such that for each
player j, ¥(aj,a—;) and (a},a_;) € A

F(aj,a_;)—F(a},a_j)=Uj(aj,a_;)~Uj(aj,a_;), (7)

where U is the utility of player j. Note that U; depends on a,
the action taken by all agents.

2) UAVs potential game: Let us consider the 3D grid,
where X = {a™in g™t 4 §p om0 4 26x, ... 2™}, Y =
{ymin7 ymin_’_(;y’ ymin+25y’ . 7ymax} and H = {hmin7 hmin+
Sh, k™ + 26k, ..., h™3*} represent the x-,y- and z-axis, re-
spectively and with dz, dy, dh > 0 representing their respective
step granularity. Let @ = {0,1} be an indicator. G¢ =
{J,A,{U;};jes} is the game where the UAVs are the players,
A= XxY xHxQ is the set of their actions, and U; : A — R
the utility function such as, given the 3D deployment of all
UAVs and association for all the users, the outcome of UAV j
is given by its marginal contribution:

Uj(x,y,h,q) = Z ZQij’Rij’ - Z ZQij’Rij’(_j)v

J'€T €T J'eIT\{j} €T ®
. P"/Li"’ Ti-/,dqv-/ .
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perceived rate at user ¢ when interference from UAV j is not

considered. Here, the marginal contribution of UAV j is given by
the difference of the sum-rate when UAV j is part of the network
configuration and when it is not. When UAV j is removed, the
rates of its associated users are not considered in the sum-rate.

Proposition 1 (UAVs potential game). The game G¢ =
{T, A {U;}jeg} is a potential game where the potential
function is the sum-rate function.

Proof. This result is straightforward and stems from the design
of the utility function. O

B. Binary Log-Linear Learning (BLLL)

Binary log-linear learning is a game-theoretic algorithm that
belongs to the class of log-linear learning (LLL) mechanisms.
Contrary to LLL, BLLL mechanisms do not assume complete
knowledge of all the agent’s action set and their associated
utilities. Instead, when BLLL is implemented, an active agent
compares its current action against a single trial action from
a constrained action set [31]. Furthermore, only one player is
active in any given time instance and all other players repeat
their previous actions. Since our problem is formulated as a
potential game, the BLLL fits our framework. The actions of



the agents are the choice of locations and the associations with
the users. Due to geographical constraints, the agents, the UAVs,
can only consider trial actions within the neighborhood of their
current locations and a subset of users that are nearby. Here
is how the BLLL runs in our setup: Only one agent from
the players’ set is activated at any time instant. The activated
agent chooses a trial action from its current feasible actions,
uniformly at random. The player then plays this action a; with
the probability:

oUi(@)/T
plaj) = U, @) /T 1 U; @)/

€))

where a = (aj,a_;) a’ = (a},a_;) are the collective actions
when agent j plays a; and a;-, respectively. 7' > 0 is a
tuning parameter called the temperature of the algorithm. The
temperature determines how likely a player is to select a
suboptimal action. As the temperature goes to 0, players are
likely to select only optimal actions, a so-called exploitation
phase in the learning mechanisms. High values of T' lead to
more exploration of different actions, and a higher probability of
choosing a suboptimal action. A judicious choice of T leads to
a balanced exploitation and exploration and is a desired feature
of the learning mechanism.

Corollary 1. [31] If all players adhere to BLLL, then the only
stochastically stable states are the maximizers of the potential
function.

Using BLLL, the active player, j, selects -at random- a feasi-
ble strategy a; (i.e., a neighboring 3D location and a subset of
users to associate with without exceeding its maximum quota).
Then, the player computes its utility regarding the selected
strategy a;. It then calculates the related Gibbs probability
p(a;) as described in equation (9). Finally, the strategy a
is adopted with probability p(a;). Clearly, the probability of
adopting an action increases when the utility with respect to
this action increases versus the existing action. Hence, the better
the strategy, the higher the probability to adopt it. However, it
is far from intuitive how such an updating rule can converge
to a global optimum or how it may even converge. The proof
of convergence of such a process is based on the theory of
resistance trees and can be found in details in [31].

Algorithm 1 summarizes the BLLL mechanism employed
by the UAVs. When a UAV wakes up, according to its timer
(line 6), it selects at random a neighboring location in the
3D grid -with respect to its current position- and a random
association with the users -up to its quota limit. The UAV then
computes the new utility regarding this joint 3D position and
association, and then decides whether to adopt this new action
with a probability calculated using equation (9). In order to meet
constraint (6¢), users who are not satisfied with their spectral
efficiency are disconnected from the UAV and their rates are
not included in the utility of that UAV. This process is iterated
while slowly decreasing the temperature 7' (line (4)).

Algorithm 1 BLLL for joint 3D position and users association
selection

1: Initialization:
(x,y,h) random matrix for 3D locations of UAVs
qi; =0, Uj(a’) =0V(i,j) e T x J.
for T — 0 do
for j € J do
if rand(1) > 0.5 then
Active UAV j calculates the following:
Select a location at random from (z; =+
6z, Y, hy), (x5, y; £ 0y, hy).(x5,y5, hyj £+ 6h)
9: Select at random a number of unconnected users,
s.t. the number of selected users < N; and nmi“ satisfied.
10: Compute Uj(a) as in equation (8)
11 Use Uj(a), and U;(a’) to sample new location
and association using the probability in equation (9)
12: if action o’ is selected then
13: UAV j updates current location, associations,
and U;(a’) < Uj(a).

AN A

We note that our proposed approach is versatile and suitable
for many applications and scenarios. For example, in work [27],
the authors considered a two-layer optimization method for
jointly optimizing the deployment of UAVs and user task
scheduling, with the aim of minimizing system energy con-
sumption. The BLLL approach can be extended to deal with this
situation. In this case, the action of the UAV involves the choice
of location and whether or not to participate. The combined
action (location + participation) yields a certain utility. Once the
game is defined with these combined actions, our results follow
and hold. In fact, the BLLL approach will yield the optimal
value for many objectives provided we are able to correctly
define the agents’ actions and associated utilities. A similar
modification also is possible to the greedy and adapted greedy
algorithms that we propose in the next section.

We also note that BLLL helps serve as a benchmark to
assess the optimal performance that can be attained in the
network. However, in order to reach the global optimum, BLLL
requires an exponential time for convergence. To circumvent
this problem, we propose a greedy approach that is guaranteed
to converge to at least 1 — 1/e of the optimum. Our greedy
algorithm relies on the submodular property of the objective
function that we discuss in the next section.

V. SUBMODULARITY OF THE OBJECTIVE FUNCTION

In this Section, we proceed to analyze the submodularity
of our objective function and the matroid structure of the
constraints similar to the approach in [42]. This analysis will
facilitate the greedy algorithm which we employ to solve our
problem. First, we introduce the mathematical definitions of
submodularity and matroids. Then, we reformulate the problem
as a set function maximization problem under a partition matroid



constraint. This lays the foundation for the greedy algorithm we
use to solve our problem in the next Section.

We note here that submodular function maximization arises
in several optimization problems. For example, the knapsack
problem, the coverage problem, and the traveling salesman
problem can be formulated as submodular set function maxi-
mization problems. While submodular minimization problems
can generally be solved efficiently, submodular maximization
problems are often NP-hard to solve. The main virtue of such
a mathematical framework, however, is that one can construct
simple greedy algorithms with provably good results to solve
the problem. The performance of the greedy approach depends
on the monotonicity of the objective function and the nature
of the constraints. In particular, when the objective function is
submodular and monotone, the greedy algorithm is guaranteed
to achieve at least 1 — 1/e of the optimal value [43]. In the
following, we show that our optimization problem is endowed
with the submodular structure as adding more users to any
UAV follows a law of diminishing returns subject to a matroid
constraint. Hence, we adopt the submodularity framework to
the joint positioning and association problem, and propose a
greedy algorithm to achieve desirable performance. In reality,
our algorithms perform better than the 1 — 1/e bound as
evidenced by comparison to the optimal bound achieved using
BLLL.

A. Basic Definitions

Assume a ground set V. Let 2" be the collection of all subsets
of V. In discrete optimization, we say that a set function f :
2V — R is submodular if it satisfies the following property.

Definition 1 (Submodularity [44]). f is said to be submodular
iffor ACBCVand a€V\ B:

f(AU{a}) = f(A) = f(BU{a}) - f(B)

An intuitive interpretation of submodularity suggests that the
marginal gain of adding an element a to a small set A is greater
than or equal to adding the same element to the larger set B.

Furthermore, a set function is said to be monotone if its value
increases when more elements are added to any given set. More
formally,

(10)

Definition 3 (Monotonicity). A set function f : 2V — R is
monotone if VAC BCV:

f(A) < f(B). (11)

We will shortly show that one of our constraints can be
described as a matroid. A matroid is an algebraic structure that
generalizes the concept of independent vectors in linear algebra.
In particular,

Definition 4 (Matroid). A matroid M = (V, L) consists of a
non-empty finite set ground V and a non-empty collection L of
subsets of V' that satisfy the following properties:

1) el

2) IfI € Land J C 1, then J € L.
3) I,J € L and |I| > |J|, then there exists e € I\J such
that JU{e} € L

The first two conditions describe the “hereditary property”.
This property suggests that each subset of a set in the collection
L inherits the independence property. The third condition is
usually called the “augmentation property”. It implies that each
element of the collection can be augmented to a larger set while
maintaining the independence property.

When the ground set V is partitioned into disjoint subsets
Vi, Va, ..., Vi, where t is a strictly positive integer, a particular
class of matroids, called partition matroid emerges:

Definition 5 (Partition matroid). A partition matroid M =
(V,L) is a matroid such that V is partitioned into t disjoint
partition sets Vi, Va,...,. Vi and L = {X CV : | XNV <
ki, Vi=1,2,...t}, where 0 < k; < |V;| are some given integer
parameters.

Now that we have introduced the proposed mathematical
framework, let us reformulate the studied problem as a set
function maximization problem.

B. Problem Reformulation

To begin, let K be the set of all possible configurations of
the UAVs!. If there are |J| = J UAVs and |£| = L locations,
there are K = L2/~ possible configurations where K = |K|.
We also add a null UAV for each user to allow for the possibility
that some users will be unassigned.

We define our ground set V = {(i,j,k) : 1 € Z,j € J,k €
K}. V contains all the tuples formed by users, UAVs, and
network configurations. We then partition the ground set V' into
K disjoint subsets, V¢, Vi, ..., Vi, where V,¢ = {(4,4,k),i €
Z,j € J,} where VkC is the set of all possible associations
under a given configuration k£ and the superscript indicates that
the partition is according to the configuration index. Hence, the
constraint that only one configuration is possible can be written
as finding set A € I where:

_{AQV:|AﬂVkC|§ekf0rsomekelC, (12)

ACV:|[ANVE =0V nek\{k}

where ey, is some number denoting the intersection of the two
sets>. This constraint merely implies that, in the end, only one
configuration is selected.

Remark. It is noted that we could also set up a constraint for
the UAV quota and another for the users’ quota. However, we
will show that this is not needed. We simply delegate the UAV
quota, the users’ quota and the minimum spectral efficiency
conditions, conditions (6¢), (6g) and (6h) in the optimization
problem, to the set function evaluation. We also note that

'A network configuration designates a given network realization where the
3D locations of UAVs are fixed at some positions of the 3D grid.

2e;, can be seen as the total number of associated users for a given
configuration.



considering the set function evaluation over configurations
helps us fix the interference experienced by users for a given
configuration. As we show in the proof, this helps recover
monotonicity and submodularity of the set function evaluated
over a given configuration.

Proposition 2. Ms = (V, 1) is a partition matroid.

Proof. We consider feasible sets A C B C V. To maintain
feasibility, A and B must belong to the same configuration.
The proof follows immediately using the approach in [45]. [

In light of the above definitions, our optimization problem
can now be written as:

maximize f(A) (13a)
Ac2V
subject to A € I¢ (13b)
The above problem can be equivalently written as:

A 14

maximize maximize fH(A) (14)

where,

fHA)= > R (15)

vijk €A

and f*(.) refers to the function evaluation over a given configu-
ration. Since we must enforce that A € I, we can only consider
sets taking elements that belong to the same configuration, and
Rfj is the rate of user ¢ when it is associated with UAV j and
configuration k£ is adopted. We now use the superscript k£ to
emphasize that the rate of user ¢ with UAV j is calculated for
a particular configuration k, so that we can set the interference
for a particular configuration at a constant value.

Proposition 3. f*(.) is monotone and submodular.

Proof. We prove monotonicity first. Without loss of generality
(WLOG), consider two subsets A C B C ch, i.e., belonging
to the same configuration set k. Let A contain a number of
UAVs with a given association for the users. Let B contain
A in addition to another UAV with its associated users, then
fF(A) < f*(B) is always true.

We proceed to prove submodularity. Consider any subset A C
B CVE and a € V€ \ B. WLOG, let A be the set containing
possible associations for users with UAV j at configuration &
such that |A| = N;—1, let B = AU{b}, where b is some feasible
element to be added to the set of users associated with UAV j.
It is clear that |[B| = Nj;, hence B is at UAV,’s quota limit.

_ . k . . .
WLOG, let {b} = arg min R, ie. {b} is also the element with

the minimum contribution to the value f¥(B). Now, consider
the addition of another feasible element, a to sets A and B:

fFAU{a}) = f5(A) = f*({a}), (16)

while

0< f*(a}) if no > 1a,
Fad) = oY < fidad), if 10>,
a7
where in the above, and with a slight abuse of notation, we
use 7, to denote the spectral efficiency of element b. Hence, in
both cases (1, > 1, and 1, >mn), we have f5{a})— f*{b}) <
f*{a}), while f*(AU {a}) — f*(A) = f*({a}) as shown in
equation (16). Accordingly,

B U {a})~f4B) < fF(AU{a}) - fH(A),

therefore, f* is submodular.

FiBU{a)-fHB) ={

(18)

O

C. K Instances of the Greedy Algorithm

Using the fact that f%(.) is monotone and submodular, we
can now use a simple greedy algorithm to find the locations and
associations for the UAVs and users. We use a greedy algorithm
to evaluate the maximum for f*(.) for a given configuration, and
then exhaustively find the maximum value for the set function
over all configurations. The overall guaranteed performance is
1 — 1/e-optimal. This is facilitated by the following lemma:

Lemma 1. Let (P) be the problem of maximizing a monotone
and submodular set function, i.e. f*(.). Consider the greedy
algorithm which starts with an empty set Ay, and at each
iteration 1, it adds an element e that maximizes fk(Ai_l U

{e}) = fF(Aioq), ie,
A=A, 1U {argn{%x A ULel) = A (A, (19)

The greedy algorithm provides 1 — 1/e-approximation to the
optimal solution of (P) [43].

While the above greedy algorithm ensures a good network
performance, it requires listing all the possible configurations,
which is time and memory consuming. However, we do not in
fact need to list all the possible configurations. One approach
to reduce the search space is to select the locations that are
critical and are most likely to provide the best performance;
in particular, the barycenters of the users’ concentrations. For
this purpose, we first run k-means as described in Algorithm 2.
Each UAV is moved in the 2D plane to the barycenter of a
cluster of users. The users within the same cluster are selected
based on their SINR. Specifically, users are grouped with the
UAV that maximizes their SINR. Hence, k-means selects the
best 2D locations based on an SINR criterion. Then, a list of
3D configurations is formed by the 2D locations and the various
possible heights of the setup. This process will drastically reduce
the number of possible configurations without jeopardizing
performance as we show in the numerical simulations. The
k-means combined with the greedy algorithm is described in
Algorithm 3.



Algorithm 2 K-means

1: Initialization:
2:  UAVs uniformly distributed in the 2D space,
3 Oj = [Z), V_] ceJ
4: Choose N, the maximum number of iterations.
5: forn=1:N do
6 for j € J do
7 for i € 7 do
8 if 7 = argmax;n;; then
9 Cj = Cj U {Z}
i€l i
Gl
11: Yj = o

10: Tj =

VI. GREEDY APPROACHES

In this section, we describe the greedy algorithm that ef-
ficiently solves the underlying optimization with 1 — 1/e-
approximation. Then, we provide a faster heuristic that achieves
very good results in practice.

A. Greedy Algorithm

Algorithm 3 Greedy algorithm

1: Initialization:

2:  Run Algorithm 2 to reduce the number of 2D points.

3: List in K all the possible configurations of UAVs that are
formed by the 2D points and the studied heights.

4: S = 0, initilization of the maximal sum-rate

NjCurrent = 0,Vj € J, initialization of number of associ-

ated users to each UAV.

6: kPest = L, initilization of the best configuration

7 q;=0vVieljeJ, kek

8

9

b

. L =T, the set of not associated users
. for k a potential configuration do
10: for n=1:1xJ do

11: find (4, 7) s.t. (i,5) = argmax; ;) (RE;)

12: if user >, g5 = 0 is not associated, }=, gf; < N;
and 7;; > n™" then
13: a; =1
. Current _ prCurrent
14. N] urren — NJ urren + 1
; k pk
15: it > ;) a4 Ri; i Skthen
16: S = E(i,j) 4;; Ri;
17: kbest =k
18: qbcst — qk

As stated in Lemma 1, the greedy algorithm will start by
selecting the maximum rate for each configuration. Indeed, as
described in Algorithm 3, for each configuration, the greedy
algorithm connects the user-UAV pair associated with the max-
imum rate among all possible users-UAV pairs of the selected
configuration (line (11)). The associated user is then removed

from the list of considered users and the quota of its serving
UAV is decremented (lines (13),(14)). Then, the second best rate
is considered, and the associated user-UAV pair are connected.
This process is repeated until all users are either associated
or cannot be provided with satisfying rates (i.e. constraint (6¢c)
cannot be satisfied for unassociated users), or all UAVs reach
their maximum quota. At each configuration, the algorithm
compares with the previous configurations (line (15)). If the
selected configuration provides a better sum-rate, then the best
configuration is updated (line (17)). The process is repeated until
all configurations are tested.

B. Adapted Version of the Greedy

Algorithm 4 Adapted greedy algorithm

1: Initialization:

2: Sort the UAVs in a decreasing order according to their

maximum quota, let j be the set of ordered UAVs

N7 =0,Vi €l,jeJ

L = T, the set of not associated users

: for j € j do
Sort the non-associated users according to their decreas-

ing rates order (rates provided by UAV j)

7: Try all available 3D locations for the UAV and save
the one that maximizes the sum-rate of the N; best non-
associated users. (Only interference from already placed
UAVs is considered)

Update the location of UAV j
Associate UAV j with the IV; best non-associated users,
from L, for which the quality of service is satisfied

10: Update £ by removing associated users

AN A

We are now interested in developing a fast algorithm that does
not come with a guaranteed performance but provides very good
results in practice. We refer to this algorithm as the adapted
version of the greedy or simply adapted greedy.

In Algorithm 4, we first sort the UAVs in decreasing order
according to their maximum quota (line (6)). The first UAV
selects -among all the possible locations of the 3D grid- the
location that provides the best sum-rate for the best IV; users’
rates (line (7)). The N; users with the best rates are therefore
associated with the UAV (line (9)), and their association is never
reconsidered in the next steps of the algorithm (line (10)). Then,
the process is repeated for the remaining UAVs and users. The
process ends when the UAV with the minimum quota has been
associated with its users.

VII. BLLL vs. GREEDY: A FAIR COMPARISON

In this section, we compare the previously proposed ap-
proaches in terms of convergence rate, computational complex-
ity, memory requirement, and exchanged information.



A. Convergence Time

The BLLL approach allows us to adopt an action with a
certain probability. This probability is dependent on the utility
of the action and the temperature parameter. The higher the
utility, the higher the probability to select the action. Initially,
the temperature is set to a high value in order to allow a wide
exploration of the search space. As the number of iterations
increases, the temperature is cooled down -reduced- in order
to eliminate unsuccessful strategies. Clearly, the convergence
rate of the BLLL depends on two main parameters: the initial
temperature and the cooling scheme of the temperature. It has
been shown in [46] that the logarithmic scheme is one of the
most efficient temperature decays. This scheme suggests that at
each iteration ¢, the temperature is given by T'(t) = 109?710%)’
where Ty is the initial temperature. Although such a cooling
approach allows a very slow decrease of the temperature, it
ensures the convergence to the global optimum when enough
iterations are provided. It is also important to note that when
the initial temperature is too low, the search space will be
reduced, and the algorithm can get trapped in a local optimum.
One guideline is to tune the initial temperature based on the
first realizations of the utility function, or to set the initial
temperature to a high value.

It is important to note that there are many parameters to fine-
tune the performance of BLLL. For example, the performance
of BLLL is sensitive to the initial temperature and the choice of
the cooling scheme as highlighted in [46]. Furthermore, BLLL
can take exponentially long to converge unless we modify it
using, for example, the approach in [47]. All these details
are important but are not the focus of our work since BLLL
is proposed here mainly as an optimal benchmark to assess
the performance of both the greedy and the adapted greedy
algorithms.

The greedy algorithm also requires a large number of iter-
ations, especially if the search space is not reduced. This is
because it has to go through all the possible configurations of
the network. However, when we remove configurations that are
unlikely to be efficient, the convergence time is significantly re-
duced. In general, the greedy algorithm loops over O(K x I x J)
iterations, where K is the number of possible configurations. At
every single iteration, the algorithm looks for the unconnected
user-UAV pair with the maximum rate, which requires at most
O(I x J) iterations. Therefore, the run-time complexity of the
greedy algorithm can be written as O(K x (I x J)?).

On the other hand, the adapted greedy first sorts the UAVs
in decreasing order according to their maximum quota which
requires O(J?) iterations. At each iteration j, O(I?) iterations
are needed to sort the users according to their rates. Moreover,
the algorithm needs an additional number of iterations, which
are equal to the number of available 3D locations, to find the
best 3D position that maximizes the sum-rate of the considered
UAV. Hence, assuming G is the number of 3D positions in the
3D grid. The number of iterations needed for the adapted greedy

Network Size BLLL Greedy Adapted Greedy
5 UAVs and 45 users 125 s 105.6 s 1.28 s
4 UAVs and 25 users 50.38 s 6.48 s 0.63 s
3 UAVs and 15 users 26.11 s 0.66 s 0.5s
Theoretical Performance Optimal | 1 —1/e —
Averaged Performance in % 100% 78% 84%
over the 3 scenarios

TABLE II: Performance of proposed approaches in seconds.

Parameter Value Parameter Value
Area 1000 x 1000 Oz 10m
Oy 10m Op 10m
hlnlll loom hlnax 200m
R -3 dB I 45
J 5 P; 10 dBm
a 9.61 JE] 0.16
c 3.10°m/s CLos 1 dB
(NLoS 20dB N, 4

TABLE III: Simulation settings.

to converge is: O(J?) + O(J x (I? + G)). Assuming that the
number of users is larger than the number of UAVs, the time
complexity convergence can be written as O(I?).

In Table II, the convergence time of three scenarios of users
and UAVs is depicted. The UAVs are assumed to associate with
at most 4 users for all the proposed scenarios. As it can be
seen from the table, BLLL takes the longest time to converge,
followed by the greedy algorithm and then the adapted greedy
approach. Although BLLL takes the longest time to converge,
it always achieves the best performance. Also, even though the
adapted greedy algorithm is a heuristic, it still achieves very
good performance for the studied scenarios. We highlight here
a case where it achieves even better performance (in terms of
sum-rate) than the greedy algorithm. This is generally not the
case as highlighted in Fig. 5 in the simulation results in Section
VIII. Finally, and as expected, the performance of the greedy is
better than the lower bound 1 — 1/e.

B. Computational Complexity and Memory Requirement

From a computational perspective, the UAVs perform simple
algebraic operations when they adhere to the BLLL. Essentially,
the active UAYV, as well as the other UAVs, need to observe the
impact of the action on the throughput of their users. Then, each
UAV has to compute and broadcast its aggregated throughput
(i.e., local sum-rate of its served users) to the active UAV. Also,
the UAVs have only to memorize the utility of their previous
action, leading to very low memory requirements.

Similarly, the greedy algorithm does not require computa-
tional complexity as it only computes the rates of the users
at various UAVs locations. However, it requires high memory
storage capacity as it compares rates at different heights.

On the other hand, the adapted greedy approach requires
more computational efforts as every UAV has to solve a local
optimization problem. In particular, the first UAV has to select,
among all the possible locations in the 3D gird, the one
that maximizes its local sum-rate. Similarly, the second UAV
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Fig. 2: (a) Initial configuration (b) Potential locations of UAVs using k-means.

chooses from the remaining locations the one that maximizes
its aggregated throughput. This process is repeated for all the
UAVs, one by one, to select from the remaining locations the
one that improves their local sum-rates. At the same time, the
algorithm does not require significant memory storage.

C. Exchanged Information

Based on its formulation in equation (8), the UAVs’ utility
relies on global and complete information of the network when
BLLL is adopted. Indeed, in order to fit into the potential game
framework, the utility is designed as the marginal contribution
of the player (i.e., UAV). This implies that each UAV has to
compute the sum-rate of all associated users when this UAV
is part of the game and when it is not. Clearly, significant
knowledge is required. Not only does the UAV need to know
the throughput of its served users at its selected 3D location,
but also knowledge is needed of the throughput of users that
are connected to all other UAVs. This will entail a consid-
erable amount of exchanged information in the network. The
convergence of the BLLL to the global optimum comes at
the expense of complete network knowledge. In the simulation
results section, we consider a version of the BLLL which uses
only local neighborhood information versus global information.

Our results show that the performance of this version of BLLL
deteriorates compared to the BLLL with a global knowledge of
the network.

Compared to BLLL, the greedy algorithm implementation
is centralized. This also suggests a high information exchange
between users, UAVs, and the centralized entity. Instead, the
adapted version of the greedy involves much less information
exchange. At each iteration of the algorithm, the UAV needs
only to observe the throughput of its served users. No informa-
tion is required from the previously deployed UAVs.

VIII. SIMULATION RESULTS

To assess the performance of the studied algorithms, we
consider the following scenario. We assume 45 users, uniformly
distributed in an area of 1000 x 1000m?. 5 UAVs are considered
to provide connectivity to the ground users. The UAVs positions
are initially set to a random position as shown in Fig 2(a). All
the drones are assumed to transmit with the same power P = 10
dBm. In order to account for the path loss, we assume (s = 1
dB, (nLos = 20 dB, a = 9.61, § = 0.16, f. = 2 GHz, and
c = 3% 108m/s. The simulation settings are summarized in
TABLE III.

Fig. 2(a) plots the initial 3D locations of UAVs for the studied
scenario. In Fig. 2(b), we show the selected 3D positions after
the reduction of the search space using k-means.

In Fig. 3, we plot the 3D movement of the UAVs under the
studied algorithms setup. We see from Fig. 3(a), that the UAVs
move sequentially in the 3D space before reaching their final 3D
locations. Each UAV finds its best location in order to cover the
maximum number of users allowed by its quota. The heights
and 2D coordinates of UAVs are adjusted in order to reduce
interference and ensure the best network sum-rate. In Fig. 3(b),
we notice that each UAV has only to move once in order to reach
its final location. This is because the greedy algorithm will not
allow the UAVs to move unless a better location is found. In
the studied scenario, the best locations for UAVs were found in
the second iteration. The adapted version of the greedy, plotted
in Fig. 3(c), allows one UAV movement at a time. The UAVs
are moved one by one to the 3D location that maximizes their
aggregate sum-rate.

In Fig. 4, we plot the bandwidth allocation when the total
maximum quota exceeds the number of users. It can be seen
from Fig. 4(b) that the bandwidth allocated to each one of
the users associated with UAV1 is higher than the bandwidth
allocated by other UAVs to their served users. Indeed, once
UAV1 has selected its associated users and noticed that it still
has an additional free bandwidth, it equally divides its total
amount of bandwidth among its users in order to improve the
global sum-rate. The same conclusions can be made for other
UAVs using a similar mechanism in Fig. 4(a) and (c).

Fig. 5 plots the network sum-rate vs. the number of iterations.
As can be seen from Fig. 5, although BLLL requires the highest
number of iterations to converge, it still provides the best
performance. On the other side, less performance is achieved
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results provided by all approaches are better than the minimum
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1800 To assess the proposed approaches, we compare our results to
1600 an iterative approach similar to the one proposed in [19]. First,
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1400 . .
- and then we address the 3D locations problem as a continuous
S 1200 optimization using the interior-point algorithm. As can be seen
s
@ 1000 from Fig. 5, the convergence times of our greedy algorithms are
@ . .
R comparable with the sequential approach of [19]. However, we
i A BLLL . .
@ o Greedy obtain a better sum-rate using the greedy approaches.
600 e e As mentioned in subsection VII-C, the convergence of BLLL
r'y
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200k The formulation of equation (8) assumes that each UAV knows
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Fig. 5: Sum-rate convergence of BLLL, greedy, adapted greedy, and BLLL-local algorithms,
and a suboptimal approach that solves the problem sequentially. Here, & = 82.5 dBm for
BLLL-local algorithm.

when the greedy algorithm is adopted. However, only a few
iterations are needed to reach an efficient value of the network
sum-rate. Even fewer iterations are needed for the adapted
version of the greedy algorithm in order to ensure convergence.
The adapted greedy, however, achieves the lowest performance
compared to the greedy and BLLL approaches. We note that the

required. This version is referred to as BLLL-local. BLLL-local
requires the rates of users that are associated with neighboring
UAVs only. The utility of UAVs for this version can be written
as follows:

Uj(Xay,h,q,Nj)ZZ ZQij'Rij'_ Z ZQij’Rij’(_j)7
J'EN; i€ J'eN;\{j}ieT
(20)

where Nj is the set of UAVs neighbors to UAV j. N; is given
by:

Mz{l S $ Ji € Z where PjLij (Tij, d-;j) >0 and PlLil(Tily du) >9}7
210
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A setup of 5 UAVs and 45 users in 450m x450m is considered.

with 6 a received power threshold. In other words, UAV [ is
neighbor to UAV j if there exists a common user that receives a
power higher than 6 from both UAVs. The neighborhood relation
is symmetrical (i.e., if UAV [ is neighbor to UAV j, UAV j is
also neighbor to UAV [). When 6 = 0, all UAVs are neighbors.
In that case, we restore the original BLLL setup. In particular,
the UAV utilities described by equation (8) assume that all UAVs
are neighbors. In Fig. 5, we plot the performance of BLLL-local
against the number of iterations. Here 6 is equal to 82.5 dBm.
In that studied case, each UAV has, on average, 3 neighboring
UAVs. We see from the figure that BLLL-local performance
is significantly degraded as compared to BLLL with complete
knowledge of the network. Full information is crucial to the
performance of BLLL. This is because interference at distant
users (i.e., users associated with non-neighboring UAVs) is
not considered. Each UAV adjusts its 3D location to improve
the rates of its associated users and users associated with its
neighbors, ignoring any possible deterioration at faraway users.

Finally, we study the impact of the grid on the performance
of our algorithms. The use of BLLL requires a finite set of
strategies as mentioned in [31]. This is why we discretize the
3D space to a 3D grid to allow users to choose their actions
from a discrete and finite strategy set. The step granularity of
the grid determines the number of possible actions. In particular,
the finer the grid, the more accurate the results. However, a
small granularity step results in a higher number of actions,
which leads to a relatively large time of convergence. The same
applies to greedy approaches as more time is needed to find out
the best 3D locations. In Fig. 6 below, we show the effect of
the grid on the convergence of the studied approaches. As it
can be seen from the figure, when the granularity step is small,
slightly higher sum-rates are achieved. It is also clear from the
figure that the BLLL converges earlier when a large 3D grid
step (low resolution setup) is considered.

IX. CONCLUSION

In this paper, we addressed the problem of joint 3D placement
and users association in UAVs-enabled networks. We proposed
three algorithms. The first is guaranteed to reach the global
optimum of the sum-rate function at the expense of exponential
convergence time. The second exploits the submodularity of the
studied problem and has a performance guarantee of 1 — 1/e.
The third is a heuristic which requires only few iterations. While
having no guaranteed performance, this heuristic achieves very
good results in simulations.
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