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Abstract

In this paper, we analyze the performance degradation of a multi-hop decode-and-forward full-

duplex relaying system (MH-DF-FDR) caused by the residual self-interference (RSI) and hardware

distortions (HWD) imposed by the FDR operation and imperfect hardware, respectively. In addition, we

study the benefits of employing improper Gaussian signaling (IGS) in the MH-FDR system. Different

from the traditional symmetric signaling scheme, i.e., proper Gaussian signaling (PGS), IGS has non-

zero pseudo-variance that can limit the impact of RSI and HWD on the MH-FDR system. To evaluate the

system performance gain using IGS, first we express the end-to-end achievable rate of the MH system

as the minimum rate supported by all participating links. Then, we optimize the pseudo-variance of all

participating transmitters including source and relays to compensate the interference impact and improve

the end-to-end achievable rate. We propose two network optimization schemes based on the system

characteristics i.e. joint optimization framework and distributed optimization scenario. Interestingly,

IGS-based scheme outperforms its counterpart PGS-based scheme, especially at higher interference-to-

noise ratio. Our findings reveal that using IGS in single-user detection systems that suffer from both

RSI and HWD can effectively mitigate the degradation in the achievable rate performance.
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I. INTRODUCTION

The ever-increasing demand of ubiquitous high data rates, with low latency, extended coverage,

high energy efficiency and significantly higher bandwidth per subscriber, are the major driving

forces for the upcoming wireless communications. Several studies have been carried out to in-

vestigate extreme node densification and collaborative radio technologies to improve the spectral

efficiency and meet the exponentially growing wireless data traffic demands [1], [2]. Multi-

hop relaying technology has gained much interest as it can extend the coverage and improve

the energy efficiency [3], [4]. However, the spectral efficiency decreases with the increase of

number of relays/hops, where the frequency (or time) is shared between the nodes to deliver the

data to the destination [5]. FDR is a promising cooperative technology that can compensate the

spectral efficiency loss by allowing each node to transmit and receive simultaneously [6]. FDR

can be used in different network topologies and applications to improve the quality-of-service

such as unmanned autonomous vehicles and self-driving robots [7].

Although FDR systems allow better resource exploitation than half-duplex relaying systems by

simultaneously transmitting and receiving on the same channel, they suffer from some challenges

that can limit their operation. Self-interference (SI) is one of the main deterrents in employing

such systems. The SI signal is relatively larger than the desired signal of interest, which increases

the dynamic range span of the low-noise amplifier (LNA) and the analog-to-digital converter

(ADC) at the receiver side. As a result, both the undesired interference and the hardware noise

levels increase, which can greatly suppress or even destroy the information bearing signal [8].

The SI of FDR systems can be canceled through multiple analog and digital stages to ease the

detection of the desired signal [9], [10]. However, the perfect knowledge of the pilot signal is

not sufficient to cancel the SI completely due to the channel estimation errors and the limited

dynamic range of the filters, amplifiers and ADC. Therefore, the FDR performance is limited by

the RSI after different cancellation stages. Furthermore, MH-FDR performance can be further

degraded due to the aggregate effect of RSI from different relaying stages.

HWD is another deteriorating factor that affects communication systems performance generally

and MH-FDR systems particularly. HWD is caused by different circuit impairments such as

the phase noise, non-linear distortion, and in-phase and quadrature imbalance (IQI) [11]. The

performance of MH-FDR can be severely affected by the HWD due to the accumulated effect

of impaired transceivers at the relaying nodes.
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A. Related Work:

Various studies have been carried out to address the deteriorating impact of RSI or/and HWD

in full-duplex communication systems. For example, the effects of hardware impairments were

investigated for different full-duplex communication systems in [12]–[19] and particularly for re-

lay systems in [14]–[19]. Of all these contributions, [12] proposes a digital cancellation scheme to

supplement RF/analog cancellation techniques for self-interference mitigation in single-channel

FD wireless communication. On the other hand, [19] focuses on a low complexity hardware

impairments aware transceiver scheme to mitigate distortions in the transmitter and the receiver.

Similarly, [15], [16], [18] emphasis on the system performance analysis under IQI at relay and

destination with ideal transmitter considering a half-duplex amplify-and-forward (AF) relay and

orthogonal frequency-division multiplexing (OFDM) modulation, and IQI at all nodes in OFDM

dual-hop opportunistic AF relaying. Similarly, other contributions [20]–[24] presented power

control mechanisms to improve system throughput or outage performance in the presence of

RSI and inter-relay interference assuming ideal transceivers.

However, very few studies focus on both RSI and HWD in a full-duplex operation mode.

For example, [14] carries out the performance analysis of dual-hop proactive DF relaying

networks with best relay selection under hardware impairment and co-channel interference.

Similarly, [17] analyzes the outage probability of dual-hop DF FDR for an OFDM system

in the presence of IQI and loop-back SI. Besides carrying out the performance analysis, few

works proposed some compensation schemes to improve the system performance. For example,

[13] proposes a novel widely linear digital cancellation processing to mutually mitigate SI and

practical hardware imperfections in direct-conversion FD transceiver. In [25] and [26], authors

proposed compensation schemes for various HWIs and RSI at the AF-relay, considering dual-

hop HWI-FD-AF-relay system with ideal source and destination. This motivates us to propose a

mitigation signaling design to concurrently combat RSI and transceiver distortions at the source

and destination besides multiple HWI-FD-relays. Furthermore, we have focused on the DF

relaying strategy in-place of AF relaying scheme, to support the communication in an interference

limited environment, in order to meet next generation traffic demands.

Analyzing the impact of hardware imperfections and RSI on the system performance and

evaluating different compensation schemes require an accurate statistical model of these im-

perfections. RSI and HWD are modelled by widely linear transformations as discussed in [13]
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and [27], respectively. Thus, according to statistical signal processing studies, widely linear

precoders/transformations can efficiently map symmetric information-bearing signals to asym-

metric signals at each transmitter [28], [29]. Therefore, this work models both RSI and HWD as

asymmetric signals. Furthermore, the proposed research can employ IGS for signal transmission

to jointly mitigate the deterrent effect of both RSI and HWD. IGS scheme has already been proven

to evidently improve system performance in various system configurations such as multiple-input

multiple output systems [30], [31], cognitive radio systems [32], [33], full-duplex relaying [27],

[34], [35], and alternating relaying [36]. The IGS transmission scheme is expected to outperform

PGS in the presence of RSI and HWD in a MH-DF-HWD-FDR system. The aim is to quantify

the gain obtained by optimal IGS over PGS and to evaluate if the gain is significant enough

to adopt IGS optimization framework as the optimal IGS solution can sometimes reduce to

PGS. In order to maximize the end-to-end rate, the IGS transmit signaling characteristics of

the source and relay have already been optimized in the conference version of this paper for

dual-hop DF-FDR system [37].

B. Paper Contribution:

In this paper, we study the utilization of asymmetric signaling scheme instead of the symmetric

signaling scheme to combat both the RSI and HWD in MH-DF-FDR systems. Symmetric

signaling or PGS is the traditional signaling scheme that assumes independent signal components

with equal power, which is described by its variance. On the other hand, asymmetric signaling or

IGS relaxes the PGS characteristics and can have dependent signal component with/without equal

power. Therefore, an IGS needs an additional statistical quantity to be accurately characterized,

which is called the pseudo-variance [38]. We should note that IGS can be practically implemented

using widely linear precoders, which efficiently maps symmetric information-bearing signals to

asymmetric signals at each transmitter [28], [29]. The main contributions of this paper are

summarized as follows:

• Employment of multiple DF-FDRs to establish a communication link between two distant

nodes in the absence of a direct link assuming imperfect hardware transceivers.

• Studying the causes of the MH-FDR system performance degradation, i.e. RSI and HWD,

based on a realistic asymmetric statistical model relative to [29] which studies the multi-user

interference in a two-user SISO interference channel model.
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• Investigating the end-to-end achievable rate performance of the adopted MH-DF-HWD-FDR

system with asymmetric signals and interference sources.

• Developing a rigorous joint optimization framework to design the transmission parameters

in order to maximize the overall data-rate and effectively mitigate the degradation effects of

the undesired interfering signals. Joint optimization of the transmit parameters of all partici-

pating relays and source transmitter has been carried out based on an different optimization

framework relative to [29] and [37]. For instance, [29] employed Gaussian Randomization

Procedure for transmit optimization and [37] proposed a two-loop optimization frame-

work employing generalized Dinkelbach algorithm and successive convex programming,

respectively. On the other hand, the present scheme merely relies on successive convex

programming reducing the computational complexity and processing time.

• Developing a distributed optimization framework that suits practical implementation of the

proposed transmission scheme offering reduced round-trip delays, computational complexity

and communication overhead.

C. Organization and Notation:

The rest of the paper is organized in the following fashion. Section II studies the statis-

tical model for the MH-DF-FDR system under asymmetric self-interference and transceiver

distortions. Section III focuses on the information-theoretic achievable rate in the presence of

improper Gaussian interference and signal. Section IV focuses on designing the transmission

parameters based on the RSI and HWD characteristics. It deals with the joint as well as distributed

optimization framework to fine-tune the statistical IGS parameters to achieve optimum system

performance. Section V numerically analyzes the system performance with/without IGS assuming

different system parameters.

Notations: In this paper, scalars are denoted by lower-case italic letters, while vectors and

matrices are denoted by boldfaced lower-and upper-case letters, respectively. For a complex

scalar x, its conjugate and absolute value are represented by x∗ and |x|, respectively. Moreover,

<{x} and ={x} represent the real and imaginary components of a complex scalar, respectively.

The expected value operator and the floor operator to round the rational number to the greatest

lower integer are given by E [.] and b.c, respectively. On the other hand, for a given vector

x, its complex-conjugate, transpose and conjugate-transpose are represented by x∗, xT and xH ,

respectively. In addition, diag{x} operator represents a diagonal matrix whose diagonal entries



6

Fig. 1. FDR system under HWD and RSI.

are the elements of vector x and ∇x illustrates the gradient of a vector x. The right circular

shift operator of a vector x for n shifts is defined as 〈x〉(Rs,n), e.g., 〈[a b c d]T 〉(Rs,1) = [d a b c]T .

Moreover, to append m zeros at the end of a vector x we use the following notation, 〈x〉(Az,m),

e.g., 〈[a b c]T 〉(Az,2) = [a b c 0 0]T .

II. SYSTEM DESCRIPTION

Consider a MH relaying system, where a source (R0) intends to communicate with a des-

tination (Rk+1) as shown in Fig. 1. Both the high shadowing and the severe path loss effect

are responsible for the absence of the direct link between R0 and Rk+1. As such, multiple full

duplex relays (R1−Rk) operate as intermediate nodes to facilitate the end-to-end communication

by expanding the coverage area with a full transmission rate. The limited power budget of the

participating relays renders negligible inter-relay interference. All relays operate in a DF relaying

strategy and the SI at the relays can only be canceled partially, thus resulting in RSI as depicted

in Fig. 1. Furthermore, various HWDs at the transmitter and receiver RF branches can drastically

degrade the overall system performance. Before describing the HWD model and FDR system

model, we define the adopted statistical signal model in the following subsection.

A. Statistical Signal Model

To characterize the difference between symmetric and asymmetric signals, we consider a

complex Gaussian random variable x and introduce the following definitions:

Definition 1. [38] The variance and the pseudo-variance of x are defined, respectively, as

σ2
x = E[|x|2] and σ̃2

x = E[x2] .
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Definition 2. [38] A complex random variable is called proper if its pseudo-variance is equal

to zero, otherwise it is called improper .

Definition 3. Circularity coefficient Cx of a random variable x is defined as the ratio of the

absolute pseudo-variance of x and its variance, i.e., Cx=|σ̃2
x|/σ2

x, where 0 ≤ Cx ≤ 1 [39].

The circularity coefficient measures the degree of impropriety or symmetry of x, where

Cx = 0 indicates proper or symmetric signal and Cx = 1 indicates maximally improper or

asymmetric signal.

Definition 4. The complex Gaussian random variable x is fully described as: x ∼ CN (mx, σ
2
x, σ̃

2
x),

where mx is the statistical average of x, i.e., mx = E[x].

B. Distortion Model

In this subsection, we start by describing the mathematical model of the aggregated HWD in

radio frequency transceivers for a single link system. Then, we extend the model to capture the

generalized scenario of MH-FDR system. A transmit signal x undergoes transceiver distortions

as well as fading channel before being received at the destination as

y =
√
ph (x+ ηtx) + ηrx + z, (1)

where p is the transmitted power, h is the fading channel, and z is the additive white Gaussian

noise (AWGN) with variance σ2
z . Moreover, ηtx and ηrx are the additive impairment distortions at

the transmitter and the receiver, respectively. Various theoretical investigations and measurement

results indicate that the Gaussian model accurately describes the aggregate of all residual RF

impairments when compensation algorithms are applied to mitigate hardware impairments (

[14], [19], [40]–[49] and references therein). This can also be motivated analytically by the

central limit theorem. In addition, ηtx and ηrx are generalized as asymmetric signals pertaining

to the transformation caused by some hardware impairments such as HWD with wide linear

transformation characteristics [28], [29]. Thus, the aggregate HWDs at the transmitter and the

receiver are random variables with ηtx ∼ CN (0, κtx, κ̃tx) where |κ̃tx| ≤ κtx ≤ σ2
x and ηrx ∼

CN (0, p|h|2κrx, ph2κ̃rx), where |κ̃rx| ≤ κrx ≤ σ2
x. Clearly, the proposed model reduces to

the well-known system model y =
√
phx + z in the absence of transceiver distortions i.e.

ηtx = ηrx = 0.
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Lemma 1. The equivalent generalized aggregate model of the HWD is given by

y =
√
ph (x+ η) + z, (2)

with η = ηtx + ηrx is distributed as CN (0, κ, κ̃). Moreover, κ = κtx + κrx and κ̃ = κ̃tx + κ̃rx

capture the aggregate HWD at both the transmitter and the receiver along with impact of fading

channels.

Proof. We assumed a general asymmetric model for the additive distortion with ηtx ∼ CN (0, κtx, κ̃tx)

and ηrx ∼ CN (0, p|h|2κrx, ph2κ̃rx). Different from the existing literature that assumes symmetric

HWD, we assume the general asymmetric scenario where having symmetric distortion at both

in-phase and quadrature components is not the only possible scenario. Moreover, the symmetric

distortion can be transformed into asymmetric one after passing through widely linear transfor-

mation [28]. For a given fading channel, the variance and pseudo variance of the aggregated

impairments in (1) are expressed, respectively, as follows

E
[
|√phηtx + ηrx|2

]
= p|h|2 (κtx + κrx) , (3)

E
[
(
√
phηtx + ηrx)

2
]

= ph2 (κ̃tx + κ̃rx) . (4)

Moreover, the variance and pseudo-variance of the aggregated asymmetric distortions in (2) are

p|h|2κ and ph2κ̃, respectively. Thus, the signal model in (1) can be equivalently modeled as in

(2) when κ = κtx + κrx and κ̃ = κ̃tx + κ̃rx.

It is important to note that in case of ideal hardware i.e. η = 0 is imposed by κ = 0 and

κ̃ = 0. Where, κ = 0 is dictated by the negligible transmitter and receiver distortion variances,

κtx = 0 and κrx = 0, respectively. Moreover, κ̃ = 0 follows from Definition 3.

C. FDR under HWD System Model

In the proposed MH-FDR with the DF relaying strategy under HWD, the mth node Rm

transmits an IGS signal xm ∼ CN (0, σ2
m, σ̃

2
m) to the nth node Rn in one hop. Pertaining to the

FDR operation, the received signal at the relay node Rn suffers from RSI hnn in addition to the

aggregate effect of transceiver distortions for both m-n link, ηnm, and n-n link, ηnn. The signal

is transmitted from R0 to Rk+1 in a sequential order. Therefore, the generalized received signal

at the nth receiver can be expressed as

yn =
√
pmhnm (xm + ηnm) +

√
pnhnn (xn + ηnn) + zn, (5)
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where n = 1, 2, . . . , k + 1 denotes the receiver nodes and m = n − 1 represents the sequential

transmission nodes, thus m = 0, 1, . . . , k. In addition, pm is the transmit power of the mth

node taken from a limited power budget, hnm is the flat-fading channel of the m-n link1

and zn ∼ CN (0, σ2
z , 0) is independent identically distributed AWGN at the nth receiver node.

The receiver at the relay node decodes the transmitted signal using single user decoder, then

encodes it from IGS code-book as xn ∼ CN (0, σ2
n, σ̃

2
n) for further transmission. The same

transmitted signal causes self-interference in the FDR transmission mode through the hnn link.

Measurement-driven experimental studies [9], [50], [51] have shown that, after undergoing all

possible isolation/cancellation techniques and assuming the perfect cancellation of slowly-varying

line-of-sight path, the residual interference can be well characterized as a flat-fading channel [17],

[35], [52]–[55] and the RSI channel hnn can be modeled as a proper complex Gaussian random

variable with zero mean and πnn variance ( [56]–[60], and references therein).2 It is worthy

noting that the self-interference link does not exist at the destination node Rk+1 as there is no

further transmission and self-interference. Moreover, the transceiver HWD of the m-n link, i.e.,

ηnm, is assumed to demonstrate the following statistical characteristics: ηnm ∼ CN (0, κnm, κ̃nm).

III. ACHIEVABLE RATES

The overall end-to-end achievable rate of the MH-DF-FDR system, RT , is given as

RT = min
n
{Rnm} ; m = n− 1, (6)

where Rnm is the achievable rate of the Rm-Rn link in bits/sec. In our work, we deal with the

RSI and HWD as interference terms, thus Rnm considering the IGS transmission scheme and

asymmetric HWD terms can be obtained as [29]

Rnm =
B

2
log2

σ4
yn −

∣∣σ̃2
yn

∣∣2
σ4
In
−
∣∣σ̃2

In

∣∣2 , (7)

where B is the bandwidth of the channel. Moreover, σ2
yn and σ̃2

yn are the variance and the pseudo-

variance of the received signal at the nth node, respectively. Additionally, σ2
In

and σ̃2
In

are the

1It is important to mention that the narrow band assumption has been adopted for the simplified setup. However, the same

contribution can be straight-forwardly extended to the multipath channel scenario such as OFDM for each sub-channel / sub-band

after incorporating the effective inter-carrier interference. The extension to OFDM does not affect the optimization framework

as the various transmission streams do not share the common resource budget.
2Note that these assumptions do not compromise the insights of the analysis that follows. The same conclusions can be

reached if more complex models are used.
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variance and the pseudo-variance of the self-interference signal plus noise at the receiver end.

Therefore, the achievable rate of the link between mth transmit node and nth receiver node, Rnm

reduces to

Rnm

(
σ̃2
m, σ̃

2
n

)
=
B

2
log2

αnm − |pmh2nm (σ̃2
m + κ̃nm) + pnh

2
nn (σ̃2

n + κ̃nn)|2

βnm − |pmh2nmκ̃nm + pnh2nn (σ̃2
n + κ̃nn)|2

, (8)

where βnm and αnm are defined, respectively as,

βnm =
(
pm|hnm|2κnm+pn|hnn|2

(
σ2
n+κnn

)
+σ2

z

)2
, (9)

αnm =
(
pm|hnm|2

(
σ2
m+κnm

)
+pn|hnn|2

(
σ2
n+κnn

)
+σ2

z

)2
. (10)

According to (8), Rnm is a function of the pseudo-variance σ̃2
m of the transmitted signal

and the pseudo-variance σ̃2
n of the self-interfering signal, which provides additional degrees of

freedom to mitigate the asymmetric interference caused by the HWD as well as RSI. However,

the achievable rate of the last hop between node Rk and Rk+1 is only a function of σ̃2
k due to

the absence of the self-interfering link.

IV. HWD- AND RSI-AWARE SIGNALING DESIGN

In this section, we design the transmit signals for all transmitting nodes, to maximize RT

under HWD and RSI for the adopted MH-DF-FDR system. The main goal of the system design

is to optimize the statistical asymmetric characteristics of the transmitted signals to maximize

RT in (6) as follows

P1 : maximize min
n
{Rnm (σ̃2

m, σ̃
2
n)}

subject to 0 ≤ |σ̃2
m| ≤ σ2

m, ∀m,
(11)

where the constraint is adopted, to confirm the bounds on circularity coefficient, for the pseudo-

variances of all transmitting signals from nodes R0 to Rk. Throughout the rest of this work, we

solve P1 by proposing two optimization frameworks with different implementation, complexity

and performance. Firstly, we propose an efficient joint optimization scheme which requires a

centralized processing framework. Later, we present a distributed framework which optimizes

the transmission parameters for a cluster of nodes.
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A. Joint Optimization

In the joint optimization setup, we assume having a central node that gathers the channel state

information (CSI), HWD and RSI levels from all the participating nodes to jointly optimize their

signal parameters in order to maximize the overall end-to-end achievable rate. After processing

the gathered information, the central node distributes the optimal transmission parameters for

data transmission.

To solve P1, we write all optimization parameters (transmit pseudo-variances) in a vector form.

The total number of the optimization parameters depend on the number of participating relays and

the corresponding communication hops. Considering k intermediate relays between the source

and the destination results in k+1 hops and hence k+1 transmitting nodes. Therefore, we need

to optimize k + 1 complex pseudo-variance variables or 2(k + 1) real transmit pseudo-variance

variables. Thus, we define a real vector s that captures the real and imaginary variables as

s =
[
<{σ̃2

0} ={σ̃2
0} <{σ̃2

1} ={σ̃2
1} . . . <{σ̃2

k} ={σ̃2
k}
]T
. (12)

Then, we express the link rate between nodes Rm − Rn in (8) as a function of the vector s

carrying optimization variables:

Rnm (s) =
B

2
log2

αnm −
∣∣sTunm + vnm

∣∣2
βnm − |sTwnm + vnm|2

, (13)

where unm and wnm are defined, respectively, as follows,

unm = 〈〈
[
pmh

2
nm jpmh

2
nm pnh

2
nn jpnh

2
nn

]T 〉(Az,2k−2)〉(Rs,2m), (14)

wnm = 〈〈
[
pnh

2
nn jpnh

2
nn

]T 〉(Az,2k)〉(Rs,2n). (15)

Moreover, the complex scalar vnm is defined as a function of transmit power, CSI and HWD as,

vnm = pmh
2
nmκ̃nm + pnh

2
nnκ̃nn. (16)

Let us denote the numerator and denominator of the fraction in (13) as Nnm(s) and Dnm(s)

respectively. Thus, Nnm(s) can be written in a simplified form as

Nnm(s) = αnm − sTUnms− sTcnm − |vnm|2, (17)

where Unm is the outer product of unm, i.e., Unm = unmu
H
nm and cnm = v∗nmunm + vnmu

∗
nm.

The positive semi-definite characteristics of Unm render the concavity characteristic of Nnm in s.

Similarly, Dnm(s) can be rewritten as

Dnm(s) = βnm − sTWnms− sTdnm − |vnm|2, (18)
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with dnm = v∗nmwnm + vnmw
∗
nm and Wnm = wnmw

H
nm, which implies the concavity of Dnm in

s thanks to the positive semi-definite properties of Wnm. Therefore, using the aforementioned

representations, optimization problem P1 can be equivalently written as

P2 : maximize min
n

{
B

2
log2

Nnm (s)

Dnm (s)

}
subject to 0 ≤ sTPms ≤ σ2

m, ∀m, (19)

where Pm = diag
{
〈〈[1 1]T 〉(Az,2k)〉(Rs,2m)

}
.

The max-min fractional problem in P2 can be efficiently solved by exploiting the properties

of the logarithmic function. In addition, we can transform the secondary minimization problem

into the following maximization problem

P3 : maximize −max
n

{
−B

2
log2Nnm (s) +

B

2
log2Dnm(s)

}
subject to 0 ≤ sTPms ≤ σ2

m ,∀m. (20)

Evidently, log2Nnm (s) and log2Dnm (s) are concave functions owing to the the positive-concave

nature of Nnm (s) and Dnm (s), respectively. Therefore, the subtractive form of the objective

function in P3 is universally known as DC-programming (difference of concave) and cannot be

handled straightforwardly. Thus, we employ sequential convex programming (SCP) to efficiently

transform P3 into a iterative convex problems which can be optimally solved in each iteration

[61]. In this approach, we use the affine Taylor series approximation of the function log2Dnm (s)

to yield a convex objective function. The first-order Taylor series expansion of the function g(x)

at point x(k) is given by

ĝ(x, x(k)) = g(x(k)) +∇g(x(k))T
(
x− x(k)

)
. (21)

Thus, by employing the same expansion for the concave function log2Dnm (s) gives an affine

approximation at s(i) as

^

Dnm

(
s, s(i)

)
=

B

2 ln 2

(
lnDnm

(
s(i)
)

+
∇TDnm

(
s(i)
)

Dnm (s(i))

(
s− s(i)

))
, (22)

where ∇Dnm

(
s(i)
)

= −(Wnm +WT
nm)s(i)−dnm is the gradient of Dnm(s) evaluated at s(i). It

is important to note that no trust region is required as
^

Dnm(s, s(i)) ≤ Dnm(s(i)) [61]. Thus, P3
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can be convexified using the aforementioned procedure giving the following problem that needs

to be solved successively while updating s(i),

P4 : maximize −max
n

{
−B

2
log2Nnm (s) +

^

Dnm(s, s(i))

}
subject to 0 ≤ sTPms ≤ σ2

m ,∀m. (23)

Given, the convex objective function and convexity preservation by the point-wise maximization,

the primary maximization problem can be equivalently written as follows [62]

P5 : minimize max
n

{
−B

2
log2Nnm (s) +

^

Dnm(s, s(i))

}
subject to 0 ≤ sTPms ≤ σ2

m , ∀m. (24)

Algorithm 1 Sequential Convex Programming
1: Initialize i← 0, ε←∞ and Set tolerance δ

2: Choose feasible starting point s(i)

3: while ε ≥ δ do

4: Evaluate
^

Dnm(s, s(i)) ∀m\{k}

5: Solve P6 and obtain s using s(i)

6: s(i+1) ← s

7: Update ε← |si+1 − si|

8: i← i+ 1

9: end while

10: s∗ ← si+1

11: RT = min
n
{Rnm (s∗)}

The formulated problem P5 yields an optimal solution for a given s(i) as it is the minimization

of a convex function pertaining to the convexity preservation by point-wise maximization. One

way to solve P5 is by introducing an auxiliary variable τ in order to capture the point-wise

maximization problem as follows
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P6 : minimize τ

subject to − B

2
log2Nnm (s) +

^

Dnm(s, s(i)) ≤ τ, ∀m\{k}

− B

2
log2Nnm (s) +

B

2
log2Dnm(s) ≤ τ, m = k

0 ≤ sTPms ≤ σ2
m, , ∀m. (25)

Therefore, the solution of the proposed optimization problem reduces to solving P6 iteratively

using the SCP as discussed in the following subsection.

1) Centralized Joint Algorithm: To solve P1 or equivalently P2, we use the SCP that deals

with a convexified version of the difference of convex/concave problem P3 in each iteration

developing Algorithm 1. The proposed algorithm starts with a feasible starting point s(i) to find

the affine approximation of 1
2
log2Dnm (s) for all transmitters, i.e., Rm and m < k. The last

node does not suffer from self-interference, which renders constant 1
2
log2Dnm (s) at m = k.

Then, the affine approximation
^

Dnm(s, s(i)) is used to optimally solve a quadratic-constraint

linear-programming (QCLP) problem defined in P6 using any available convex optimization

solvers such as CVX-MATLAB employing interior-point method. Next, the solution of the QCLP

problem is used to update s obtaining s(i+1), which is the starting point for next iteration. The

algorithm solves successive convex QCLPs and updates the solution values in each iteration until

the desired stopping condition is met. The stopping convergence criterion is when the absolute

difference between two successive solutions is less than a predefined threshold δ.

The obtained solution vector s contains the real and imaginary components of the transmit

pseudo-variances for all transmitting nodes. Thus, the maximized end-to-end achievable rate RT

can be computed using (6) and (13). Despite of the efficacy of the joint-optimization, it requires

a centralized network realization, where all nodes share their information with a central node

prior to the transmission. Then, the signal design is carried out at the central node in order to

update the relaying nodes with the optimized signal parameters.

B. Distributed Optimization

The implementation of the joint optimization requires a centralized network realization. How-

ever, the centralized realization may not be suitable in different scenarios such as:
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• Communication Overhead: A network involving large number of relays to establish a com-

munication link between two nodes, the pilot CSI information from all intermediate nodes is

sent to a central node on the same communication links in an accumulative fashion. Then

the central node, with high performance capabilities, performs transmit optimization and

distributes the optimized parameter values back to each node. This leads to communication

overhead and it increases with increasing number of relays which requires a powerful central

node to accommodate the data processing and computation complexity burden. However,

the communication overhead decreases in a distributed mechanism as the entire network is

divided into smaller clusters with fewer number of relays and each cluster locally performs

the transmit optimization independent of other clusters.

• Time Delays: Intuitively, we employ relay to establish a communication link between any

two distant nodes in the absence of a direct link . This same communication link is utilized to

transmit CSI from each node to the central node using intermediate nodes. Evidently, more

time slots are required to transmit the pilot CSI from a large number of nodes to a central

node which not only results in large delays but may also cause error propagation. Then the

central node processes the received information, performs joint optimization and distributes

the optimized parameter values back to each node through the intermediate nodes. Moreover,

the processing/computational delay at the central node also increases with the increasing

nodes. Joint optimization of the transmit parameters of all involved nodes increases the

dimension of the optimization problem and hence adds to computational delays relative to

the distributed algorithm within one cluster with fewer number of nodes. For large networks,

this round trip time and computational delay may exceed channel coherence time. This will

render sub-optimal transmission in the new channel state as the parameters were optimized

for the previous CSI.

Therefore, to address the practical limitations of the centralized realization, reduce the com-

munication/processing overhead on one central node and avoid the excessive time delays, the

distributed optimization framework is proposed.

1) Distributed Algorithm: In the distributed framework, we aim to group the neighboring

nodes into clusters of equal sizes, having N nodes and N−1 hops, in order to equally distribute

the computational load among all clusters. Each cluster acts as a whole system and locally runs

the joint-optimization algorithm to maximize the end-to-end achievable rate within that cluster.

However, the scenarios arise when the total number of nodes is not an integer multiple of the
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desired cluster size and thus they cannot be equally grouped into the clusters of same sizes.

Consider a system with k-relays between the source and the destination. We propose to divide

this system into C equal sized clusters, where each cluster has N nodes. C is found to be

expressed as

C =

⌊
k + 1

N − 1

⌋
. (26)

which leads to Ns unassigned nodes where Ns is smaller than N . In the following, we propose

two grouping configurations to deal with the Ns nodes:

• Group the Ns nodes to form an additional small-cluster, thus the system will have a total

of C + 1 clusters. As such, Ns nodes are found from:

Ns = k −
⌊
k + 1

N − 1

⌋
(N − 1) + 2. (27)

• Group the remaining Ns nodes with a pre-defined cluster. Thus, the number of nodes in the

new re-defined cluster becomes Nb and is found to be

Nb = N +Ns − 1. (28)

The performance of the distributed realization approach can be improved by smartly choosing

the cluster size and their placement in the network. A heuristic approach is to formulate this odd

sized cluster either at the transmitter side involving source node or at the receiver end involving

destination node. However, it is important to note that the cluster formulation yields sub-optimal

solution owing to the neglected RSI at the end nodes. Therefore, the big odd cluster is expected

to outperform the small odd cluster and even the regular cluster pertaining to the inclusion of

RSI at all intermediate nodes. Thus, a preferred approach is to place the small cluster at the

strongest channel location so that its compromised transmission parameters are not detrimental

for the overall end-to-end achievable rate or formulate the big odd cluster at the weakest channel

location as it will contain the bottleneck link dictating end-to-end achievable rate. This concept

has been supported and validated using the simulation results as discussed in Section V.

For comprehensive illustration, consider the distributed network scheme presented in Fig. 2.

We aim to divide this system having k = 4 relays into N = 3 sized clusters, which is clearly

not possible. Therefore, one approach is to group the remaining Ns = 2 nodes in another cluster

which can either be placed in the middle or at the destination as shown in Fig. 2(left). Another

possibility is to place this at the transmitting end. As discussed, we prefer to formulate this

cluster at the max (|h10| , |h32| , |h54|). So that the compromised transmission parameters due to
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Fig. 2. C + 1 clusters with one Ns cluster and its two possible placements (Left) . C clusters with one Nb cluster and its two

possible placements (Right).

neglected RSI do not dominate the system performance, which is dictated by the minimum rate

link. Another approach is to group the remaining Ns = 2 nodes with another cluster formulating

a Nb = 4 sized-cluster which can either be placed at the start or at the end as shown in Fig.

2(right). Again, the preferred approach is to place this big cluster around transmitter if the

min (|h10| , |h21|) ≤ min (|h43| , |h54|), else place it at the end to accommodate destination node.

Thus, the bigger cluster will host the bottleneck link and the conforming transmission parameters,

owing to the inclusion of RSI at larger number of intermediate nodes, will dictate the overall

system throughput.

It is important to highlight that the above mentioned approach requires a rough idea of the

strong and/or weak channel gains throughout the span of the system to practically locate the

odd cluster. The small cluster and big cluster scenarios are separately dealt in Algorithm 2 and

3 respectively. As mentioned earlier, the small cluster size leads to inefficient solution therefore

we place this small cluster at a location which offers relatively higher channel gain. This is

advantageous as the cluster with better channel conditions doesn’t dictate the overall system

achievable rate. Similarly, we place big cluster at a weaker channel location for more accurate

solution parameters as it will dictate the overall system rate. The following two algorithms are

enumerated to practically implement the distributed networking approach.

In Algorithm 2, we begin by choosing a cluster size N and divide the entire system into C
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Algorithm 2 Distributed Algorithm with C + 1 clusters
1: Choose Cluster size N

2: Compute Smaller cluster size Ns using (27).

3: Formulate the small cluster at the strongest channel location.

4: Initialize Cluster counter j ← 1

5: while j ≤ C + 1 do

6: if Before Ns then

7: Solve P2 for m = (j − 1)(N − 1), . . . , (j)(N − 1)− 1.

8: end if

9: if At Ns then

10: Solve P2 for m = (j − 1)(N − 1), . . . , (j)(N − 1)− (N −Ns)− 1.

11: end if

12: if Beyond Ns then

13: Solve P2 for m = (j − 1)(N − 1)− (N −Ns), . . . , (j − 1)(N − 1) +Ns − 2.

14: end if

15: Distribute the locally optimized transmit parameters within cluster.

16: j ← j + 1

17: end while

number of clusters each having N nodes. The remaining nodes are grouped into a small cluster of

size Ns and are chosen to have relatively high channel gain. Then, Algorithm 2 groups the clusters

into three main groups with a total of C+1 clusters. The first group consists of all clusters before

the Ns cluster. The second group comprises only the Ns cluster. Finally, the last group comprises

of all the clusters after the Ns cluster. The physical intuition behind the three mentioned groups

in the algorithm is to provide the appropriate indexing of the involved transmitting nodes in each

cluster for their transmit parameter optimization. The transmit parameters are locally designed

in an individual cluster by solving optimization problem P2 for the corresponding range of

m-transmitters. It is worth mentioning that the problem P2 is solved by iteratively solving the

problem P6 using Algorithm 1. The optimized variables are then distributed to each node within

the cluster and the process continues.

Algorithm 3 realizes the C cluster scenario, where the Ns cluster is merged with a regular
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Algorithm 3 Distributed Algorithm with C clusters
1: Choose Cluster size N

2: Compute bigger cluster size Nb using (28).

3: Formulate the big cluster at the weakest channel location.

4: Initialize Cluster counter j ← 1

5: while j ≤ C do

6: if Before Nb then

7: Solve P2 for m = (j − 1)(N − 1), . . . , (j)(N − 1)− 1.

8: end if

9: if At Nb then

10: Solve P2 for m = (j − 1)(N − 1), . . . , (j − 1)(N − 1) +Nb − 2.

11: end if

12: if Beyond Nb then

13: Solve P2 for m = (j − 1)(N − 1) +Nb −N, . . . , (j − 1)(N − 1) +Nb − 2.

14: end if

15: Distribute the locally optimized transmit parameters within cluster.

16: j ← j + 1

17: end while

cluster to formulate Nb sized cluster. Similar to Algorithm 2, Algorithm 3 deals with three groups

of clusters by scanning the C participating clusters. In the absence of CSI, the remaining cluster

can be randomly placed anywhere in the network. Although the division into clusters reduces

the round trip delays, communication overhead, and computational complexity, but it does so at

the expense of deviated solution parameters. The distributed solution ignores the drastic effects

of RSI at the destination node in each cluster. Thus, the solution of the distributed setup is

expected to deviate from the joint optimization one depending on the cluster size. The bigger

the cluster size, the closer the distributed optimization solution to the joint optimization one,

as it accommodates RSI of the intermediate nodes and vice versa. Moreover, the distributed

optimization focuses on the minimum rate performance of local cluster without considering

other links, which may causing deviation from the joint optimization solution. This portrays a

trade off between the distributed computational load and the optimal performance.
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TABLE I

COMPLEXITY ANALYSIS OF THE PROPOSED ALGORITHMS

Complexity Analysis

Joint Algorithm Distributed Algorithm

O
(
αISCP

1 k3
) Regular N -sized Cluster Small Ns-sized Cluster Big Nb-sized Cluster

O
(
αISCP

2 N3
)

O
(
αISCP

2a Ns
3
)

O
(
αISCP

2b Nb
3
)

C. Complexity Analysis

The computational complexity analysis of the proposed algorithms has been carried out in this

subsection. The proposed joint and distributed transmit optimization algorithms depict a trade-off

between performance and the computational complexity assuming negligible round-trip delays

and the high end computational capabilities of the central node. The computational complexity

of these strategies can be expressed as follows:

• Joint Approach: O
(
ISCP
1 (N2

1k + αmax (N3
1 , N

2
1M1, F1))

)
• Distributed Approach: O

(
ISCP
2 (N2

2 (Γ− 2) + αmax (N3
2 , N

2
2M2, F2))

)
where ISCP

x is the number of SCP iterations before convergence (x = 1 for joint algorithm,

x = 2 for distributed algorithm with regular clusters of size N , x = 2a for distributed algorithm

with small cluster of size Ns and x = 2b for distributed algorithm with big cluster of size Nb).

ISCP
x iterations are the increasing function of the cluster size as it adds more dimensions to

the optimization problem. In addition, the total number of optimization variables in joint and

distributed optimization algorithms are given as N1 = 2k + 2 and N2 = 2Γ − 2, respectively.

Where k is the total number of relays and Γ is the number of nodes in a given distributed cluster.

As for α, it is assumed to be between 10 and 100 for the interior point method [62]. Moreover

M1 and M2 are the number of inequalities representing constraints of joint and distributed

optimization problems, respectively, defined as M1 = 2(k+ 1) and M2 = 2(Γ− 1), respectively.

Furthermore, F1 = N1(1 + M1) + N2
1M1 and F2 = N2(1 + M2) + N2

2M2 are the costs of

evaluating the first and second derivatives of the objective and constraint functions in joint

and distributed algorithm, respectively. The computational complexities of joint and distributed

algorithm are further simplified in Appendix A and Appendix B, respectively. The simplified

complexity analysis is presented in Table I for joint-algorithm with k relays and distributed-

algorithm with Γ = N sized regular cluster, Γ = Ns sized small cluster, and Γ = Nb sized big
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cluster.

Evidently, the trend 1 ≤ Ns ≤ N ≤ Nb ≤ k follows from (27) and (28), depicts the least

complexity for the Ns-cluster distributed algorithm relative to the N -cluster distributed algo-

rithm. Moreover, Nb-cluster distributed algorithm depicts the most complexity of all distributed

algorithms. However, the relation Γ = (k+C+1)/C demonstrates that Γ << k. Thus, validating

that the computational complexity of the distributed algorithm in a cluster of size Γ is far less

than that of the joint optimization algorithm involving k relays.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we quantify the gain reaped by employing IGS transmission scheme in place

of PGS scheme for the adopted MH-DF-FDR system suffering from RSI and HWD. Besides

studying the degradation effect caused by these interferences, we also investigate the impact of

multiple relays and the cluster size in distributed optimization approach on the overall system

performance. Moreover, we compare the performance of the two proposed algorithm for the

distributed approach with Nb and Ns cluster sizes and their respective placement in the system

network.

As for the simulation parameters, we assume unity transmit power from all transmitters for

simplicity, noise variance σ2
z = 1 and HWD level κnm = 1 along with the impropriety level

|κ̃nm| = 0.9 at all participating nodes.

Moreover, hnm is modeled as a slowly-varying Rayleigh flat-fading channel of the m-n link

with hnm ∼ CN (0, πnm, 0) 3. Furthermore, we assume 25dB SNR for m-n link and the RSI of

10dB unless otherwise specified.

A. Effect of RSI and HWD

At first we study the performance degradation caused by the RSI and HWD in Fig. 3 and

Fig. 4 respectively. In the first simulation example, we study the advantage of employing IGS

in suppressing the RSI effect on the average achievable end-to-end rate for a dual-hop FDR

system as shown in Fig. 3. Average rate is observed at various RSI gains πrr ranging from

0dB to 25dB for three different HWD levels. We assume equal HWD levels at source, relay

3 It is important to highlight that the presented technical contribution holds true for any form of fading including Rayleigh,

Ricean or Nakagami. It is because of the fact that the derived framework does not depend on the statistical characteristics of

the given channel model.
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Fig. 3. Average rate vs. RSI πrr for PGS and IGS schemes assuming different distortion levels.

and destination as presented by κsr = κrr = κrd for simplicity. Evidently, the increasing self-

interference severely degrades the achievable rate performance. In addition, increasing HWD

κnm from 0.1 to 1 also deteriorates the system performance. Interestingly, the proposed IGS

scheme is capable of providing significant performance enhancement at lower-residual HWD

levels, assuming effective joint compensation of HWD and SI, for the entire range of RSI levels

as shown in Fig. 3. Similar results have been demonstrated in [35] to emphasize the significance

of employing IGS transmission in an attempt to alleviate the RSI adverse effect in FDR system

considering ideal transceivers. It is important to highlight that the PGS scheme undergoes

saturation at higher RSI levels irrespective of the HWD level. Thus it can be safely concluded

that the RSI dominates in degrading the rate performance for PGS. On the other hand, IGS

scheme efficiently mitigates the RSI impact and reduces the rate degradation. The best relative

improvement is achieved at high RSI and low HWD levels.

Secondly, we study the degradation effect of HWD on the average achievable rate for various

impropriety levels and the relative performance gains obtained by the proposed joint IGS scheme

and a sub-optimal less-complex distributed IGS approach over the conventional PGS scheme in
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Fig. 4. We assume a MH system incorporating 3 relays between the source and destination with

favorable channel gains of hnm=30dB at each participating link. Clearly, the rate performance

drastically deteriorates with increasing HWD variance, from 0 indicating the ideal hardware to 1

indicating the maximal impairment level 4 even at very good channels gain. Moreover, the joint

IGS optimally mitigates the distortion impact relative to the PGS scheme especially for higher

impropriety levels. In addition, the distributed approach with cluster size N = 2 locally optimizes

the transmission parameters reducing complexity and undesired communication overhead and

delays. Distributed approach performs sub-optimal to joint IGS however it is still way better

than the traditional PGS. Interestingly, the distributed approach performs close to optimal joint

IGS for lower impropriety levels.

B. Number of Participating Relays

Next, we investigate the effect of increasing relays on the end-to-end achievable rate in the

4Maximal impairment level is attained when the additive distortion power becomes equal to the transmitted signal power in

the absence of any other mitigation strategy
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Fig. 5. Average achievable rate versus number of participating relays.

absence of a direct link between a given source and destination. We assume a limited power

budget for all participating transmitters including source and relays. Thus, increasing the number

of relays decreases the power transmitted by one transmitter yielding negligible inter-relay

interference. Furthermore, we have adopted a Rayleigh fading and distance path-loss model

for practical realization. This implies increasing channel strength between any two nodes with

increasing relays. We assume increasing number of relays ranging from 1 to 5 with increasing

channel strengths from 8dB SNR to 35dB SNR and decreasing transmit power from 3W to 1W

per transmitter. We further assume three levels of RSI i.e., 5dB, 10dB and 15dB as shown in

Fig. 5. Intuitively, the absence of inter-relay interference and better link strength with increasing

number of relays guarantees an increase in the achievable rate. However, the presence of HWD

and limited power budget limits this performance gain. Moreover, increasing RSI drastically

degrades the average rate performance especially for PGS and higher number of participating

relays. Conclusively, joint IGS scheme efficiently mitigates the interference effects as compared

to the existing PGS with any given number of relays and RSI levels.
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C. Impact of Cluster size and Placement in Distributed Algorithms:

Another simulation example in Fig. 6 illustrates the system achievable rate attained by various

forms of distributive algorithms keeping the joint-IGS scheme as a benchmark. A MH system

accommodating 4-relays between the source and destination is optimized using four different

forms of N = 3 distributive framework employing algorithm 2 and 3. IGS distributed algorithm

with Nb cluster divides the 5-link network into a cluster of size N = 3 and groups the remaining

nodes in a bigger cluster of size Nb = 4. Further division is based on the placement of this Nb

cluster, it is evident from Fig. 6 that the odd cluster placement at weak channel location (IGS

Dist Nb) outperforms the random placement in the absence of CSI. Similarly, IGS distributed

algorithm with Ns cluster divides the 5-link network into 2 clusters of size N = 3 and the

remaining link is isolated. Again the placement of the segregated link at the strongest channel

location (IGS Dist Ns) performs better than the random placement at any other location. It is

worth noting that the Nb cluster formation outperforms the Ns cluster formation irrespective of

the cluster placement. Therefore, Nb distributed algorithm is the preferred choice when feasible.

Evidently, all the proposed IGS schemes provide significant rate compensation/improvement at
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different interference levels as compared to its counterpart PGS scheme.

Finally, the impact of cluster size is analyzed on the end-to-end achievable rate for two different

HWD levels in Fig. 7. 3-relay FDR system under HWD and RSI is locally optimized using 3-

different cluster sizes N = 2 or 1-hop, N = 3 or 2-hop, and N = 5 or 4-hop in addition to the

joint optimization scheme. It is apparent from Fig. 7 that the bigger the cluster size, the closer

rate performance of the distributed to the joint optimization one. This proves the previously

discussed intuition in Section IV-B. However, there is a trade-off between the cluster size and

the system complexity, round-trip delays and communication overhead. Therefore, the cluster

size can be decided according to a given system configuration.

Numerical and simulation results clearly advocate the benefits of deploying various forms of

the IGS scheme over the PGS scheme to improve the system performance in terms of end-to-

end achievable rate for various levels of RSI and HWD in the MH-FDR system. Moreover,

the distributed approach performs closer to the joint optimization approach for big cluster sizes

and lesser number of clusters as shown in Fig. 6 and Fig. 7, respectively. It is owing to the

accommodation of the RSI effects at all intermediate nodes.
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The theoretical limits attained by IGS transmission for the achievable rate of a MH-DF-FDR

system suffering from HWDs establish the performance limits that can be achieved through

the modern communication standards. The existing techniques can achieve the performance

demonstrated by the PGS scheme. However, this work motivates the future research to propose

appropriate adaptive coding and modulation which can achieve the IGS performance.

VI. CONCLUSION

In this paper, we analyzed the effectiveness of using IGS scheme in MH-DF-FDR systems

under HWD and RSI. To this end, we expressed the achievable rate for the underlying system

and tuned the IGS pseudo-variance to maximize the end-to-end achievable rate. We presented,

analyzed and illustrated two realization schemes named as joint and distributed optimization

schemes. Distributed-IGS is further categorized as per the cluster size as well as its relative

position in the system network. Distinct forms of IGS-scheme can be adopted for suitable system

configurations. For a small system configuration with fewer hops joint-IGS is the preferred

choice. However, for a larger-hops system, the joint-IGS renders sub-optimal results pertaining

to the inevitable processing and round-trip delays back and forth from the central-node at the

cost of increased system complexity and communication overhead. Therefore, distributed-IGS is

the preferred approach for large system configurations. Furthermore, distributed-IGS with bigger

odd-cluster along with the optimal cluster placement is the preferred choice as per the acquired

simulation results. In a nutshell, all forms of IGS are proven to be the promising candidates for

next generation networks that can significantly improve the overall achievable rate under various

HWD and RSI levels, which have asymmetric signatures on the useful signal.
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APPENDIX A

COMPUTATIONAL COMPLEXITY OF THE JOINT ALGORITHM

Using the definitions in Section IV-C, the computational complexity of the joint algorithm

can be simplified as follows:

O
(
ISCP
1

(
N2

1k + αmax
(
N3

1 , N
2
1M1, F1

)))
(29)
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Considering N2
1k ≤ αmax (N3

1 , N
2
1M1, F1), we can simplify the complexity expression as

O
(
αISCP

1 max
(
N3

1 , N
2
1M1, F1

))
(30)

Using N3
1 = N2

1M1 = 8k3 + 24k2 + 24k + 8 and F1 = 8k3 + 28k2 + 34k + 14, depicts

F1 = max (N3
1 , N

2
1M1, F1). Thus, the complexity reduces to O

(
αISCP

1 F1

)
. Considering the

dominant term in F1 renders the desired complexity of order O
(
αISCP

1 k3
)
.

APPENDIX B

COMPUTATIONAL COMPLEXITY OF THE DISTRIBUTED ALGORITHM

Similarly, the computational complexity of the distributed algorithm with cluster size Γ can

be simplified to O
(
αISCP

2 max (N3
2 , N

2
2M2, F2)

)
. Following the similar steps as in Appendix A

with F2 = max (N3
2 , N

2
2M2, F2) and using F2 = 8Γ3 − 20Γ2 + 18Γ − 6, yields the following

complexity of order

O
(
αISCP

2 F2

)
= O

(
αISCP

2 Γ3
)

(31)
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