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Intelligent Wearable Systems: Opportunities and Challenges
in Health and Sports

LUYAO YANG, OSAMA AMIN, and BASEM SHIHADA, King Abdullah University of Science and
Technology, KSA

Wearable devices or wearables, designed to be attached to the human body, can gather personalized real-time
data and continuously monitor an individual’s health status and physiological disposition in a non-invasive
manner. Intelligent wearables integrate advanced machine learning (ML) algorithms to process complex data
patterns and provide accurate insights. As a result, intelligent wearables have emerged as a groundbreaking
innovation in the fields of sports and health, introducing a new paradigm in kinematic analysis and patient
data evaluation. For example, virtual coaches offer feedback on athletes’ performance, while virtual physicians
assist in customizing medication for patients. This article provides an overview of various types of intelligent
wearables and their applications in health and sports, categorizes ML algorithms, and introduces the wireless
body area sensor network (WBASN) used for communication in wearable sensors. Additionally, we discuss
potential challenges and development directions that could shape the future of intelligent wearables and
propose effective solutions for their continued enhancement. This article offers valuable insights into the
exciting potential of intelligent wearables to transform healthcare and sports.
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1 INTRODUCTION
We are experiencing rapid growth on the Internet of Everything (IoE) era, connecting not only
devices and sensors but also people, processes, and data. Wearable devices play an integral role in
the IoE ecosystem by enabling new forms of communication between people and machines [1].
Wearable devices are small, body-worn devices equipped with sensors. These sensors can detect
and analyze physiological vitals and signals such as heart rate and motion. As people seek greater
productivity, quality of life, and comfort, commercial non-invasive wearable devices are becoming
widely available. For example, smartwatches monitor sleep and exercise, while smart glasses display
notifications and weather forecasts. Fitness trackers count steps and calories burned, and smart
clothing incorporates sensors that track health metrics. Most wearable devices are non-invasive,
using sensors that are safer, more accessible, and more convenient. For clarity, this article assumes
wearables are non-invasive.
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Fig. 1. The survey structure

The advent of numerous wearables has enabled us to gather a greater volume of high-quality
multi-modal data. However, traditional data analysis methods are subject to limited adaptability,
limited feature extraction, and limited efficiency. Limited data adaptability means the results tend to
become less precise if the data or environment changes [2]. Limited feature extraction means that
traditional methods are unable to effectively identify meaningful patterns in high-dimensional data
when feature extraction is restricted [3]. Limited efficiency means when dealing with large amounts
of data. Traditional methods tend to be time-consuming and expensive [4]. Given these constraints,
there is a significant demand for generalized, accurate, and timely data analysis. With the continuous
development of artificial intelligence (AI) technology in recent years, especially the method of data
analysis based on machine learning (ML), it has the potential to break through the limitations of
traditional methods and provide a valuable direction for data analysis of wearables. In the healthcare
industry, ML can aid doctors in accurately detecting diseases and devising personalized treatment
plans for patients by analyzing vital signals obtained from sensors. For instance, by analyzing
data from wearable heart rate monitors and oxygen level sensors, ML models can detect early
signs of heart disease or any other cardiac issues. In a similar vein, within the realm of sports
science, ML techniques can analyze data gathered from physiological sensors used by athletes.
This enables informed evaluations of athletes’ performance, proactive injury prevention, and the
enhancement of athletic capabilities. For example, analyzing data from motion sensors and muscle
activity trackers can help determine athletes’ form and technique during workouts or competitions.
Coaches can then provide customized guidance to improve performance and reduce injury risks.
As a result, AI and ML have significant promise for enabling new insights from wearable data. By
overcoming the limitations of traditional methods, ML unlocks the potential of wearable data to
enable wider benefits, advancing AI for personalized monitoring and diagnosis.
Numerous literature reviews exist within the realm of wearable device sensors. These reviews

offer extensive and thorough introductions to sensor technology, communication technology, and
their applications across various domains, providing invaluable insights for researchers in the field.
For instance, Seneviratne et al. undertook an extensive survey and classification of over 100

commercial wearables, delving into aspects such as communication technology, power consumption,
battery technology, safety, and manufacturing [5]. In a similar vein, Ometov et al. conducted a
survey on commercial equipment related to wearables and explored their applications in medical,
sports, and entertainment sectors [6]. Niknejad et al. executed a thorough survey on the application
of wearable devices from 2010 to 2019, providing an analysis of the current state of affairs and
highlighting challenges within the sector [7]. Majumder et al. offered an in-depth exploration of
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the relevant sensor systems from six aspects of the medical system, further detailing the methods
of communication and transmission within medical system applications [8]. Dian et al. categorized
the applications of wearable devices into four sections: health, sports, tracking, and security. They
concluded their study by posing corresponding challenges for sensor technology [9].

Table 1. Comparative analysis of surveys

Study Sensor&
Device Network Applications ML Challenges Oppor-

tunities
PESTEL
Analysis

Our Survey 18 sensors,
19 devices

Communication,
IoB, WBASN

Health: 25,
Sports: 10

categories,
principles,
scenarios,
models (26)

17 15 5 external
factors

Seng et al. 2023
[10] 4 devices Communication Health:10,

Sports: 5
scenarios,
models (10) 6 3 -

Kumar et al.
2023 [11] 5 devices Communication Health: 7

categories,
scenarios,
models (4)

2 4 -

Subhan et al.
2023 [12] 18 devices - Health: 11 scenarios 17 - -

Veeman et al.
2022 [13]

4 sensors,
8 devices Communication Health: 12 scenarios - 5 -

Nahavandi et al.
2022 [14] 6 devices - Health: 11

categories,
principles,
scenarios,
models (11)

7 4 -

Sabry et al. 2022
[15] 10 sensors - Health: 12 categories,

models (16) 8 3 -

Chidambaram
et al. 2022 [16] 3 devices - Sports: 5 scenarios,

models (11) 6 3 -

Junaid et al.
2022 [17] 15 sensors - Healths: 5 categories,

models (12) 6 - -

Site et al. 2021
[18] 10 sensors - Health: 6

categories,
principles,
scenarios,
models (17)

- 5 -

Perez et al. 2021
[19] 8 sensors Communication Health:3,

Sports: 3
scenarios,
models (6) - - -

Phatak et al.
2021 [20] 9 sensors AIBSNF Health: 4,

Sports: 5
scenarios,
models (12) 4 3 -

Chawla et al.
2020 [21] 12 devices Communication Health: 10 categories,

scenarios - - -

Nithya et al.
2021 [22] 5 sensors - Sports: 5 scenarios 3 1 -

Rana et al. 2020
[23]

1 sensor,
8 devices - Sports: 3 scenarios,

models (12) 6 5 -

The numbers in the table reflect the quantity of respective criteria for each survey.

While these studies indeed furnish researchers with a detailed and comprehensive understanding
of the intelligent wearables domain, they tend to overlook the application of ML in sensors. Recently,
the integration of ML and wearables in the healthcare and sports sectors has garnered significant
attention, leading to many review articles aimed at offering readers a more profound understanding
of ML applications within the wearable technology domain. We used three keywords: "Machine
learning/Artificial intelligence", "Health/sports", and "Wearables" to retrieve related reviews. We
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evaluate each article in multiple dimensions. These comparisons are recorded in Table 1, which
presents a detailed comparative analysis of surveys pertinent to intelligent wearables.
Unlike these surveys, our study amalgamates all categories from the reviewed literature while

providing an up-to-date review. Our survey provides a comprehensive overview of intelligent
wearables across seven key areas: sensors, communication, applications, algorithms, challenges,
opportunities, and the political, economic, social, technological, environmental, and legal (PESTEL)
framework. The objective of this survey is to synthesize existing literature on intelligent wearables
in health and sports, provide an up-to-date review of the field, and offer readers valuable insights
into this interdisciplinary area. The key contributions of our survey include:

• Our article provides a uniquely comprehensive overview of intelligent wearable systems
and their application in health and sports fields. We conduct an up-to-date literature review
investigating all smart wearable system aspects with a detailed classification and discussion
of each aspect.

• We provide the most extensive collection of ML models and methods currently applied in
wearables, with a focus on algorithmic advances. This highlights the diverse possibilities of
ML to improve health and sport fields and expand relative applications.

• We offer novel interdisciplinary perspective on opportunities and challenges when imple-
menting intelligent wearables. This provides valuable insights for researchers, developers
and stakeholders in health and sports fields.

• We employ the PESTEL framework analysis to examine external non-technological factors
(political, economic, social, technological, environmental, and legal), which can influence the
development and adoption of intelligent wearables in health and sport fields.

The structure of the article is summarized in Figure 1. Section 2 categorizes and describes various
wearable sensors and their principles. Section 3 explains network communications and related
technologies in depth. Section 4 introduces applications of intelligent wearables in medicine and
kinematics. Section 5 introduces ML algorithms for wearable data from an algorithmic perspective.
Sections 6 and 7 discuss opportunities and challenges related to intelligent wearables, respectively.
Finally, Section 8 uses the PESTEL framework to analyze external factors that may impact the
intelligent wearables industry.

2 WEARABLE SENSORS
Throughout this section, our aim is to provide an overview of the various types of sensors com-
monly employed in the medical and sports domains. The sensors discussed in this section can be
broadly categorized into five main groups: motion sensors, bioelectric sensors, biometric sensors,
environmental sensors, and optical and chemical sensors. Additionally, we will delve into the
definition of flexible sensors and wearable devices. It is crucial to emphasize that our primary focus
lies on classifying and describing sensor types, rather than examining commercial wearable devices.

Before introducing each sensor in detail, we have indicated the potential locations on the human
body where various types of sensors may be utilized in different research studies in Figure 4.
Additionally, a more elaborate depiction of the placement of diverse sensors across the human body
can be found in Table 2.

2.1 Motion sensors
Motion sensors, also known as inertial sensors, are capable of converting inertial forces into electrical
signals that can be used to measure object motion, such as acceleration, inclination, and vibration.
The accelerometer (ACC) and gyroscope (GYRO) are the primary inertial sensors responsible for
measuring inertial acceleration and angular rate separately. In addition, most daily human activities
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Fig. 2. Diagram of the placement of different wearable sensors on the human body

need to measure acceleration, angular velocity, or more dimensional information. Therefore, the
more popular one is an inertial measurement unit (IMU), multiple ACCs, and GYRO assembly.
Some IMUs have additional magnetometers (MAG) to measure the magnetic field surrounding the
system. In this case, the system is a magneto-inertial measurement unit (MIMU).
A single ACC or GYRO could help us monitor and detect motion. Regarding the use of a

single ACC, it has been demonstrated that it has the capability to gauge the intensity and motion
classification of activities, including fall detection, gait monitoring, and measurement of physical
activity. In light of their compact size, ACCs are often integrated into various devices, such as
smartphones and smartwatches. In situations where the measurement or maintenance of orientation
and angular rate is the primary concern, gyroscopes are typically employed. For example, gyroscopes
could be implemented to detect ankle sprains, and monitor falls.

Compared with a single inertia sensor, IMU or MIMU is more popular because it integrates the
characteristics of ACC, GYRO, and MAG to obtain multi-dimensional information. They are used in
various applications of human activities, such as disease classification, gait detection, rehabilitation
monitoring, athlete performance evaluation, training optimization, and so on.

2.2 Bioeletric sensors
There are a wide variety of physiological signals in the human body, including signals of the brain,
heart, muscles, electrodermal activity, and so on. Bioelectric sensors are designed to detect and
measure these electrical signals generated by the human body and associated with the previously
mentioned activities. The electrical signals captured by the sensors can be used to monitor and
analyze different functions in human body. In the subsequent parts, we will explain these sensors
and their potential application scenarios.

2.2.1 Acoustic sensors. The acoustic sensor, also known as themicrophone, is the sensor that detects
sound waves and converts them into electrical signals. It is designed to capture and measure acoustic
vibrations in the surrounding environment. Wearables like smartwatches, smart headphones, and
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Fig. 3. Wearable sensors used in health and sports

smart gloves usually have built-in acoustic sensors. These integrated sensors enable voice commands,
call handling, and audio recording [24, 25].

2.2.2 Electrocardiography (ECG) Sensors. ECG sensors typically consist of electrodes that can
record the electrical heart signals and produce a visual representation of the heart’s rhythm and
activity. The detection of heart electrical signals by ECG sensors makes it a powerful tool for
diagnosing and treating cardiovascular diseases such as heart failure, arrhythmia, atrial fibrillation,
and so on. Since heart abnormalities are usually asymptomatic and sudden, the ECG sensor needs
to be wearable and long-term real-time monitoring, prompting the emergence of some smartshirts
and wristbands integrated with the ECG sensor.

2.2.3 Electroencephalography (EEG) sensors. The human brain produces different brain signals all
the time, and the response of EEG signals to emotional state fluctuations is sensitive and real-time.
EEG wearable sensors usually decode the brain’s neural activity through head-mounted brain-
computer interface sensors. Still, this head-mounted device is usually cumbersome and not suitable
for long-term daily use. Some studies use portable ear-mounted sensors to receive EEG signals
[26]. The analysis of EEG signals can help us in the early diagnosis of neurological diseases such as
seizures, and stroke. And it also suggests mentally related emotions and diseases. In addition to
this, studies have shown that interpreting EEG signals can assist disease rehabilitation through
attention control [27, 28], which provides us with insights into the contribution of EEG sensors to
limb rehabilitation.

2.2.4 Electrooculography (EOG) sensors. EOG sensors measure the electrical potentials generated
by the movement of the eyeball. Electrodes placed around the eyes detect the changes in electrical
signals as the eye moves, allowing for the determination of gaze direction [29]. EOG sensors are
often used in wearable eye tracking devices.

2.2.5 Electromyography (EMG) sensors. An EMG sensor is a device that measures the electrical
activity of muscles. It works by detecting and amplifying the myoelectric signals produced by the
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Table 2. Summary of placement of wearable physiological sensors

Type Location
ACC Wristband, waistband, smartwatches
CGM Upper arm, earlobe, or placed on a flat area of the skin with good blood flow,

such as the back of the hand and forehead
ECG Smartshirt, wristband, chestband
EDA Finger, palm, smart gloves, wristband, smartwatches
sEMG Placed on any part of the upper and lower extremities with muscles integrated

into bandages, wristbands, smartshirt
EEG Head-mounted, ear-mounted
EOG Placed around the eyes
GYRO Wristband, waistband

IMU/MIMU Wrist, waist, chest, ankle wristband, waistband, smartwatches
MAG Wristband, waistband
PPG Wrist, wristband, smartwatches
RESP Mouth, chest, abdomen.

Pressure sensor Smart shoes, smart socks, smart gloves
TEMP Place on the skin surface using adhesive patches or bands
Lactate Legband

Hydration Wristband, finger, upper arm, chest
Microphone Smartwatch, smartglasses, headphone

contraction and relaxation of muscle fibers when the muscles are activated by the nervous system.
According to the invasiveness of EMG, it is divided into surface EMG (sEMG) and intramuscular
EMG (iEMG). sEMG is usually placed on the skin surface overlying the muscle of interest, typically
in a configuration that allows for measurement of the muscles’ activity in multiple directions. So
it can be placed in multiple places in the body. sEMG positioned around the ankle could detect
falls and help the exoskeleton perform better rehabilitation training for patients through accurate
estimation of ankle joint torque [30]. sEMG can be deployed at any muscle location in the upper
and lower extremities and has various applications [31, 32].

sEMG has many applications in disease prevention, diagnosis, monitoring, and rehabilitation in
the medical field. [33] have conducted remote monitoring of muscle diseases through EMG, and
Gutierrez et al. [34] provide rehabilitation treatment programs for cervical spinal cord injuries
through the muscle signals fed back by sEMG. In the sports domain, it can also be used to monitor
athletes’ muscle fatigue and evaluate athletes’ performance [35].

2.2.6 EDA (Electrodermal Activity) sensors. The EDA sensors, also known as a galvanic skin
response (GSR) sensors, usually implemented in the palm or finger, measures the electrical potential
difference resulting from changes in sweat gland activity. This indicator reflects the strength of our
emotional states and emotional arousal. The close relationship between EDA and human emotions
makes it a powerful tool for emotion identification and classification. Due to its property, it’s usually
used for anxiety monitoring and stress detection [36, 37].

2.2.7 Respiratory (RESP) sensors. Typically, the detection of breathing entails the use of invasive
equipment such as breathing masks and mouthpieces, which are often inconvenient for users and
cannot provide stable detection over extended periods of time. As a result, numerous non-invasive
respiratory sensors have been developed that offer mature and reliable alternatives.
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The respiratory inductance plethysmography belt is a well-established RESP sensor for estimating
respiration volume by measuring the chest and abdomen movement. It is placed on the user’s
abdomen or chest and generally contains a conductor that, while being worn by the user, forms a
closed-loop circuit. When the user breathes, the inductance also changes, and the breath is detected
and measured by monitoring the changed inductance. In addition, there have been other studies that
used some research RESP sensors that could have non-invasive measurements of respiration. For
example, Kristiansen et al. have used low-cost strain gauge breathing belts to monitor and analyze
breathing by converting the mechanical strain (such as the change in belt circumference) generated
by tension during the user’s breathing process into electrical signals [38]. Filosa et al. analyzed
the Fiber Bragg Grating signal to help monitor the breathing process through the corresponding
elongating or shortening of the FBG during the expansion or contraction of the chest during the
breathing process [39].

2.3 Biometric sensors
Biometric sensors are designed to capture distinct biological or behavioral traits that are unique
to each individual. These sensors are utilized to verify identity or monitor specific biometric
parameters. For instance, biometric parameters can be derived from human body indicators such
as sweat, urine, saliva, and other physiological factors [40–42].

2.3.1 Hydration sensors. Adequate hydration is essential for good health as it supports all body
systems. Insufficient hydration can lead to various negative health effects, including headaches,
tiredness, and increased thirst. Monitoring hydration levels and assessing water loss is beneficial in
multiple situations, such as exercise training or monitoring the status of hospice patients. These
methods allow individuals and healthcare professionals to track hydration levels, identify early signs
of dehydration, and take appropriate measures to prevent or address it. Common hydration sensors
include impedance-based sensors, which estimate hydration by measuring the electrical resistance
of body tissues; optical-based sensors, which estimate hydration by analyzing the interaction
of light with the skin; and sweat-based sensors, which measure sweat electrolyte concentration.
Common hydration sensors utilize optical sensing, which involves analyzing the interaction of
light with the skin, and electrical sensing, such as capacitance, conductance, and bioimpedance, to
measure and estimate hydration levels [43].

2.3.2 Lactate sensors. Lactate is a byproduct of anaerobic metabolism and is commonly used as
an indicator of physical exertion and metabolic stress. Monitoring lactate often requires invasive
methods, such as drawing blood, to measure lactate levels. However, advancements in technology
have led to the development of non-invasive lactate sensors that can detect lactate through sweat
[44]. Non-invasive lactate sensors make use of methods to collect sweat and employ a range of
techniques, including enzymatic reactions, biosensors, and spectroscopy, to assess lactate levels in
sweat samples.

2.4 Environmental sensors
Compared with bioelectric sensors, environmental sensors are designed to measure the signals of
an object or environment, and it does not directly measure biological signals. The response to a
physical stimulus or environmental change, such as temperature and pressure, can be converted to
an electrical signal by electronic sensors. TEMP and pressure sensors are the common environmental
sensors that are used in research.
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2.4.1 Temperature (TEMP) sensor. A TEMP sensor measures temperature and converts it to an
electrical signal. In the applications of intelligent wearables, TEMP sensors can be used in conjunc-
tion with bioelectric sensors to monitor temperature changes in the body during various biological
processes or to maintain a constant temperature during experiments or medical procedures. TEMP
sensors are essential in our daily life, which have much value in different applications, including
medical, industrial, and environmental monitoring. It is often embedded in wearable devices such
as smartwatches and smart rings to help people continuously monitor their daily body temperature.

2.4.2 Pressure sensor. Pressure sensors are electronic devices that measure pressure and convert it
into electrical signals. It is usually used to measure pressure in the hands and feet to aid in detecting
the user’s motion analysis. For example, the pressure sensor embedded in the smart insole provides
valuable information by analyzing the pressure generated during gait activities. Some are embedded
into wearable gloves that grip strength and muscle activity. It has enormous value potential for
applications such as gait monitoring, fall detection, and athlete’s motion analysis.

2.5 Optical and chemical sensors
Optical sensors use light to detect physiological signals. PPG is a typical optical sensor that uses
light to measure changes in blood volume in the microvascular tissue beneath the skin. Then the
changes in the light signals provide significant insights about the heart rate, blood pressure, and
blood oxygen. For non-invasive continuous glucose monitoring (CGM), some optical CGM sensors
use different optical techniques to measure glucose levels. Besides optical-based CGM sensors,
chemical-based CGM sensors are also mainstream in this field. For convenience, we categorized
PPG and CGM sensors under the ’optical and chemical sensors’ category.

2.5.1 Photoplethysmography (PPG) sensors. The PPG sensor is mainly placed on the wrist and
integrated into the wristband to detect heart rate, pulse rate, blood oxygen saturation (SpO2), and
blood pressure in a non-invasive way. Some are directly attached to the wrists [45], and soles of
the feet [46]. Although it is more convenient and comfortable to use than the ECG sensor, the PPG
sensor produces strong noise produced by motion artifacts, leading to inaccurate measurement
accuracy.

Although PPG has precision limitations, we can still mine hidden valuable information to help us
detect andmonitor diseases. Such as automatic detection of seizures [47], blood pressure monitoring,
sleep apnea, and hypopnea monitoring [48]. One study developed a flexible wearable electronic
system to monitor athletes’ training performance [49].

2.5.2 Continuous Glucose Monitoring (CGM) sensors. Non-invasive measurement of blood glucose
has been an active field. Traditional blood glucose measurement methods usually require pricking
a finger with a lancet to obtain a blood sample, which is then analyzed by a blood glucose monitor.
This way increases the risk of infection for patients and is extremely inconvenient for patients to
use. Many studies have proposed sensors for the non-invasive monitoring of blood glucose, and
even though they have not been clinically approved, they still offer great potential for continuous
glucose monitoring of blood glucose levels (BGL) [50].
Currently, several mainstream CGM sensors have appeared, including sensors based on optics,

microwave, and electrochemistry [51]. Some of them have appeared in the market. For example, C8
MediSensors is an available CGM sensor that uses near-infrared light to measure BGL. GlucoWISE
uses radio waves to measure BGL. The released Freestyle LibrePro is based on electrochemistry,
which analyzes the electrical signal generated by the electrochemical induction of glucose in the
interstitial fluid.
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8
Table 3. Sensors in wearable devices

Devices Sensors References
Smartwatch
Smart wristband

ACC, ECG, IMU, PPG, GYRO, MAG, TEMP, Pressure, Micro-
phone [55–57]

Smart ring ECG [58, 59]
Smart shirt ECG, EMG, PPG, RESP, TEMP [53, 60–62]
Smart belt ACC, IMU, RESP, Pressure [38, 63–65]
Smart glove ACC, Camera, IMU, GYRO, Pressure, Microphone [24, 66]
Vision impairment devices
Smart glasses ACC, IMU, EOG, GYRO, MAG, Camera, Microphone [29, 67–69]

Smart insole ACC , GYRO, MAG, TEMP, Pressure [70–73]
Smart socks ACC , GYRO, MAG, TEMP, Pressure [54, 74, 75]
Smart earphone ACC, EEG, GYRO, IMU, MAG, Microphone [25, 76]
Smart patch CGM, ECG, EMG, PPG, TEMP, Biometric sensor [40, 77, 78]
Smart mouthguard Biometric sensor [42, 79, 80]
Rehabilitation devices IMU [81, 82]
Fall detection devices Camera, IMU, ACC, EMG, GYRO, MAG, Pressure [83, 84]
Tracking system Camera, IMU [85, 86]
Sleep monitoring devices ACC, EOG, ECG, EEG, EDA, EMG, PPG, RESP, IMU, Pressure [64, 87–90]
Mood monitoring devices ACC, ECG, EDA, PPG, TEMP, Microphone [91–93]
Nutrition monitoring devices CGM, Biometric sensor [41, 50]
The table includes sensors introduced in the article; other sensors not discussed individually are not listed.

The clinical use of non-invasive BGL testing has been limited despite its accuracy and stability.
However, with the aid of ML, it is possible to extract valuable information from the data and
enhance the precision of non-invasive BGL measurement, thereby facilitating effective monitoring
of BGL levels [52].

2.6 Flexible sensors
Flexible sensors are a type of sensor designed to be stretchable and conform to the shape of the
object or the surface they are applied. In our classification standards, we do not consider flexible
sensors as a distinct category. Because the term "flexible sensors" predominantly refers to the
physical form and adaptability of the sensors, rather than their functional characteristics or the
type of data they capture. Therefore, flexible sensors can be designed as EEG, ECG, TEMP, pressure,
or other sensors.
Flexible sensors are usually embedded in fabrics, such as smart gloves, smart T-shirts, smart

socks and so on. For instance, the clothing fabric incorporates flexible ECG sensors capable of
consistently tracking irregularities in heart rhythm [53]. Socks fibers with embedded flexible
pressure sensors can continuously monitor foot pressure distribution, allowing early identification
of high-pressure points that can lead to ulcers, especially in individuals with diabetics [54]. In
summary, the integration of flexible sensors into fabrics is revolutionizing the field of wearables.

2.7 Wearable devices
Each sensor has advantages and limitations, and the information obtained using only one sensor is
not comprehensive. On the one hand, a multi-sensor system could provide redundancy and improve
the reliability of our data. As an example, it is possible to utilize both PPG sensors and ECG sensors
to detect heart rate. By combining the data obtained from these sensors, it is possible to enhance
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the accuracy and reliability of the Heart rate measurement. On the other hand, different sensors
can complement each other. For instance, ACC, ECG, and TEMP sensors could be integrated as
a system to classify sleep stages [94]. Similarly, ECG and PPG sensors could be amalgamated to
enable automatic seizure detection [47]. Wearable devices are the embodiment of multi-sensor
systems. Equipped with a diverse array of sensors, these devices harness the combined benefits of
various sensor technologies, enabling them to fulfill a wide range of functionalities and capabilities.

There are a variety of wearables in our real-world life. For example, smartwatches could offer
broad functionality about the heart rate, and step taken using the sensors such as ECG and motion
sensors [55–57]. Smart glasses provides us the voice command response using acoustic sensors, and
can take pictures and record through cameras [29, 67–69]. Moreover, wearable systems exist to track
nutritional intake, assess sleep quality, and provide smart tracking among other functionalities. A
selection of prominent wearable devices is itemized in Table 3.

3 COMMUNICATION
Beyond the scope of traditional wired sensor transmission, this section predominantly centers on
the wireless communication methodologies utilized by wearable devices. Sensor data collection,
transmission, and analysis are inseparable from wireless communication technology applications.
In this section, our initial focus will be on delineating the fundamental scenarios for the application
of wireless communication technology in wearable devices. Following this, we will explore how
these scenarios are amalgamated within various network frameworks.

3.1 Communication Scenarios
Bluetooth, cellular networks (3G, 4G LTE, 5G), Wi-Fi, NFC, Zigbee, and LoRaWAN are among
the wireless technologies enabling wearables to communicate with other devices or the internet.
Bluetooth facilitates short-range communication with other devices, while cellular networks provide
broader connectivity options for wearables with SIM cards, allowing direct communication with
the cloud or edge servers. Wi-Fi offers high-speed connectivity to local networks and the internet,
NFC enables contactless communication, Zigbee is suitable for low-power sensor networks, and
LoRaWAN extends the range for applications like asset tracking. These wireless technologies
provide flexibility, mobility, and seamless communication for wearables.
Wearable technology encompasses a wide range of devices that can communicate in various

scenarios. In the context of wearable communication, several distinct scenarios can be identified.
Firstly, device-to-gateway communication involves wearables establishing a connection with a
gateway node, enabling access to external networks or services. This scenario often employs short-
range wireless technologies such as Bluetooth, Zigbee, Wi-Fi, or NFC to facilitate communication
[8]. Secondly, device-to-device communication allows wearables to directly interact with each other,
enabling collaborative functionalities or data exchange. Bluetooth, Zigbee, and NFC are commonly
employed for device-to-device communication due to their low-power consumption and short-
range capabilities [6]. Wearables may communicate with external sensors or peripherals to gather
additional data for enhanced functionality. Moreover, wearables can establish communication
links with mobile applications running on smartphones, facilitating data exchange, control, and
synchronization. Bluetooth, Wi-Fi, and NFC are commonly utilized for device-to-mobile application
communication. Additionally, wearables can access and communicate with cloud services, enabling
data storage, analysis, and processing. This is achieved through communication methods such
as cellular networks, Wi-Fi, Ethernet, MQTT, or CoAP [5, 13]. Lastly, communication with edge
computing infrastructure allows wearables to offload data processing and analytics tasks to nearby
edge devices. Bluetooth, Zigbee, Wi-Fi, MQTT, and CoAP are often employed for device-to-edge
communication [13]. The selection of the communication technologies in each scenario depends
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Fig. 4. WBASN communication architecture

on factors such as communication range, data throughput, power consumption, and compatibility
with the other wearables.

3.2 Internet of bodies
Building on these communication scenarios, we now delve into specialized network frameworks
that embody the integration of these technologies with wearable devices on human body. Innovative
advancements in sensors and networks have led to the emergence of new paradigms that redefine
our interaction with the world. Internet of Bodies (IoB), fosters a broad, interconnected web of
human data collection and exchange [95, 96].
Radio frequency communication such as Bluetooth, Wi-Fi, and Zigbee are the prevalent communica-
tion technologies in IoB. But it is susceptible to interference, which could potentially jeopardize the
security of human body data, making it vulnerable to eavesdropping. Researchers are increasingly
shifting their focus to low power body channel communication, where the human body serves as
a medium for the safe transmission of electrical signals. This emerging field of study presents a
promising alternative to traditional communication methods for IoB modules [97–99].

3.3 Wireless body area sensor network
IoB extends the IoT paradigm to the human body, it’s appropriate to delve into more specific
elements within this framework. A critical component within the IoB construct is the Wireless
Body Area Sensor Network (WBASN). A WBASN is a collection of multiple wearable sensor nodes,
a coordination node that communicates with each other through wireless channels. A WBASN
collected and integrated multi-sensor data and then transmitted the data to the cloud for further
analysis, enabling various applications in the medical and sports fields [100, 101]. By gathering,
transmitting, and analyzing sensor data through WBASN, it is possible to offer remote feedback
and assistance to elderly or disabled individuals. Providing remote, online nursing consultations to
patients can enhance their quality of life by ensuring timely and personalized healthcare support
[102]. Similarly, remote assessments of athletes’ performance can be conducted by analyzing their
training data, enabling tailored feedback and guidance for optimal outcomes through the WBASN.
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Considering the significance of WBASN, our primary emphasis is placed on the architecture and
the communication technologies utilized within WBASN, as illustrated in Figure 2. In this discourse,
we primarily focus on the three-tier architecture of WBASN, a structure that has been extensively
investigated in many scholarly works [103–105]. The three-tier structure includes the intra-BASN,
inter-BASN, and beyond-BASN. In addition, we explore two computing frameworks in the ar-
chitecture, and we also introduce the intricate processes that occur under various circumstances,
including sports and healthcare.

3.3.1 Tier1: intra-BASN. In Tier 1, different body-worn sensors, such as motion sensors and
physiological sensors, are aggregated into a central control unit, which could be attached to the
human body or located in close proximity to the body to ensure efficient communication with the
wearable sensors. The CCU acts as the central hub in Tier 1, connecting wearable sensors with
external systems and ensuring seamless data transfer and management for remote monitoring. In
this tier of communication, the communication range for sensors is limited to several meters within
and surrounding the human body for efficient communication. Consequently, low-power, short-
range communication technologies, such as Bluetooth, ZigBee, ANT, and Near Field Communication
(NFC), are typically employed to facilitate efficient data transmission [103].

3.3.2 Tier2: inter-BASN. Tier 2 includes two types of communication, one is the communication
between different body area networks, and the other is the communication between the Central
Control Unit (CCU) and the access points or base stations [104]. In specific instances, the CCU stores
the collected data and categorizes the traffic into three distinct levels: normal traffic, emergency
traffic, and on-demand traffic. This classification is based on the degree of urgency associated with
the data. Subsequently, the CCU transmits the information directly to multiple APs or BSs, ensuring
efficient communication and data management [105]. The communication technologies employed
may encompass cellular networks, wireless local area networks (WLAN), and Bluetooth.
Sometimes CCU is not necessarily required in Tier 2. One study showed that in some systems

with fewer sensors, the sensors could process the data locally and communicate directly with a
short-range gateway via Bluetooth or ZigBee without the CCU [8].

3.3.3 Tier3: beyound-BASN. Tier 3 involves the transmission of data from the local devices to the
cloud or edge devices for computation, often through the internet, metropolitan area networks
(MANs), or other wide area networks (WANs). As shown in Figure 2, this level could perform two
computing frameworks, including cloud computing or edge computing. Under the cloud computing
case, collected data can be stored, processed, and analyzed remotely in the model of the cloud,
enabling remote monitoring and data sharing among professionals. The second framework, known
as edge-cloud collaborative computing, combines the benefits of both edge and cloud computing to
optimize data processing and resource utilization. Data could be transformed and processed both
in edge nodes and cloud distributedly.

We now discuss the applications of these two frameworks in two scenarios. In the remote health
scenario, using cloud computing, the data is stored in the clinical database in the cloud for medical
staff to directly access patient data information or provide emergency medical rescue response. The
further combination with the cloud service platform can enable more efficient data management,
privacy protection, and data analysis and processing by large models in the cloud [106]. Using edge-
cloud collaborative computing, researchers could utilize edge nodes to share part of the computing
resources for model inference, which fasts the computing process and save much communication
cost. The predictions or estimations were subsequently uploaded to the cloud for storage [107–109].
Medical staff can request patient data according to traffic levels and analyze the data in the cloud
to help diagnose and treat patients. Finally, real-time notification is provided to patients. Similarly,
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athletes can upload real-time training data to the cloud for data storage and analysis in sports
training scenarios. Both coaches and athletes can provide feedback for improvement based on data
and analytics using cloud computing or edge computing.

4 INTELLIGENTWEARABLES: PRACTICAL APPLICATIONS
Intelligent wearables have significantly contributed to the growth of ubiquitous computing, a
concept where computing capabilities are seamlessly integrated into everyday objects and environ-
ments. As for a single wearable sensor, ML could be a powerful tool to analyze the data generated by
the sensor. In a multi-sensor system, ML plays a pivotal role in improving communication between
sensors and fusing information from different sources to make better predictions or decisions.
Overall, the advancement of ML has ushered in a wave of innovative health and sports-related

products. For instance, Empatica’s Embrace2, a Food and Drug Administration (FDA) approved
smartwatch, utilizes advanced ML algorithms to monitor seizures. It is capable of detecting convul-
sive seizures and then alerting caregivers. Another product, Current Health, is a platform for remote
patient monitoring that employs wearables to keep track of a patient’s vital signs in real-time. These
wearables leverage AI to scrutinize the data and pinpoint potential health threats. In the sports
realm, the WHOOP Strap is a wristband that uses AI to keep tabs on athletes’ training, recovery,
and sleep. Furthermore, the OPTIMEYE S5 lauched by CATAPULT, are employed by numerous
professional sports teams globally. They track more than 1,000 data points every second and utilize
AI to examine athlete performance and the risk of injury. During the 2022 World Cup in Qatar, a
technology called Sports Action Optimization Technology, can work with an IMU in the soccer ball
to determine when the ball was kicked and tracked the positions of the last defender and opposing
striker. The advent of these products signifies to researchers that the fusion of AI and wearables
holds immense potential in the realm of sports and medicine.
To have a more comprehensive and deeper understanding, we conducted a comprehensive

search of peer-reviewed literature indexed in the ELSEVIER library, ACM digital library, and
IEEE Explore Digital Library using the keywords "wearable device," "machine learning," "health,"
"sports," or various sensor devices such as "EEG," "ECG" and "IMU," or various ML methods such as
"unsupervised," "self-supervised" from 2017 to 2023. Through screening article content and repeat
articles, we selected 180 high-quality articles. We have compiled two comprehensive concept maps
for both health and sports domains derived from the gathered articles. These maps are presented
separately in Figure 5 and Figure 6. The specific categories and the related articles within these
maps will be elaborated upon in the ensuing sections.

4.1 Health
As the global population ages and the rapid development of digital technologies, the demand for
digital medical care is increasing. Wearables are generating large amounts of information-rich
data every day. ML has become a promising data analysis assistant for doctors, helping them
efficiently and rapidly diagnose diseases and helping patients recover from diseases. ML also
supports clinical decision-making by identifying patterns and anomalies from large amounts of
data. In this section, we now mainly illustrate ML applications for wearables from the following
four aspects: detection, monitoring, rehabilitation, and personalized medicine. The concept map of
the AI-based applications in health is shown in Figure 5, where after each application, relevant
references are listed.

4.1.1 Detection. In the medical domain, the diagnosis of disease, especially early diagnosis, is of
significant importance to both doctors and patients and saves many medical resources. Since we
have multiple sensors that can obtain different physiological signals from the human body, it has
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Fig. 5. Health applications using intelligent wearables

huge potential to detect diseases such as cardiovascular diseases, blood circulation diseases, mental
disorders, etc. We will discuss possible sensors and potential applications from the perspective of
various diseases.

Cardiovascular disease (CVD) detection and monitoring has been an active and promising field
since it leads to 17.9 million deaths annually, according to the World Health Organization [110].
As we mentioned in Section 3, ECG and PPG sensors provide a way for people to monitor their
cardiovascular health and explore heart activity. ECG sensors measure the heart’s electrical activity,
while PPG sensors measure the changes in blood, providing continuous monitoring of heart rate
and blood oxygen saturation. Many studies tried to apply ML to these two sensor data to diagnose
and monitor CVDs, such as atrial fibrillation, arrhythmia, heartbeat abnormality, heart failure, and
aortic stiffness.

Another area where wearables and ML are often used to help detection is neurological diseases.
This category includes neurodegenerative diseases such as Alzheimer’s disease (ADs) and Parkin-
son’s disease (PDs) and some neurological disorders such as stroke and seizures. Due to the close
relationship to the human brain, most of the researchers used EEG wearables as a tool to help to
analyze these diseases. Rashed et al. utilized a deep convolutional network to analyze the EEG data,
enabling the detection of both seizures and their characteristic frequencies simultaneously [111].
In addition, limb and movement disorders also allow motion sensors to be used, such as postural
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instability of patients with PDs. Sigcha et al. used single waist-worn triaxial ACC to capture the
motion signals, which then be used to detect falls of PDs and help to monitor the patients [112].

Detecting emotions is also an important and challenging aspect of understanding human behavior
and well-being. Mental states, including happiness, anger, sadness, stress, and depression, are
fundamentally associated with human cognitive decision-making and sub-health. Especially in
current society, stress and depression are the main topic in current society, which is one of the
deterministic factors of an individual’s health. Mental states are closely related to the heart and
brain, and our skin will also have a certain reaction under tension. So some studies used data
obtained from EEG, ECG, or EDA sensors to identify and classify human mental states. Dai et al.
utilized multimodal sensor data, including EEG, TEMP, and pressure signals to recognize daily
emotion [92]. Garg et al. used a chest-worn device to collect multiple sensor data ECG, EDA, EMG,
TEMP, and RESP to train an ML model which helps to detect stress [113].

Detection for health should be in everyday life. From the daily healthcare perspective, the future
of human beings is dedicated to living in an ambient assisted living (AAL) environment that saves
medical resources and improves life quality with the help of IoE, especially for some elderly and
disabled who need the most daily care, such as fall detection, vision impairment. Correspondingly,
many studies have exploited ML on sensors to help build an AAL environment. These AAL-based
studies encompass the following aspects:
First is cough detection. The cough may be an early sign of many respiratory conditions. By

using cough as the biomarker, people may have efficient treatment for respiratory conditions.
Doddabasappla et al. developed an intelligent method to detect the cough based on ACCs [114].
Another important behavior detection is fall detection. Studies show that between 40% and 60% of
falls among the elderly are unwitnessed. And these falls can be severe enough to cause trauma or
even death [115]. Consequently, fall detection has emerged as a prominent area of contemporary
research. Using motion sensors to detect falls has made been a promising field researched by
numerous investigations. Undoubtedly, the detection of CVDs, as previously discussed, has also
made a substantial contribution to the development and implementation of AAL environments.

4.1.2 Monitoring. Monitoring is also of much importance and has wide applications in health,
especially for remote health. Learned from Section 2, we know that WBASN provides the soil for
the development of remote health. Patients could monitor their health in various scenarios in daily
life, such as walking, sleeping, and driving. Wearable sensors transmit real-time generated data to
cloud or edge servers, then use ML for data analysis. Finally, the feedback will send back to users
for health assessment. Doctors could use ML to analyze the data generated by wearable sensors to
help diagnose and treat diseases in real time.
For chronic diseases, long-term monitoring is essential for effectively managing diseases, such

as CVDs, diabetes, and pulmonary diseases. As it allows healthcare providers to make informed
decisions and adjustments by observing the disease process, ultimately leading to a personal
management plan for each patient based on their chronic conditions. In order to achieve this,
remote health monitoring, facilitated by wearables, enables the continuous assessment of an
individual’s physiological parameters and well-being from a distance. As for CVDs, we could have
wearable textiles, ear-mounted devices, and head-mounted devices to get real-time ECG data. And
then use ML algorithms, such as CNN, which has demonstrated powerful capabilities in ECG signal
analysis to help to analyze the data. Utilizing ML, remote health monitoring systems can not only
rapidly comprehend and interpret ECG signals but also promptly identify abnormalities that may
elude human detection [116, 117].
The well-known chronic diseases hypertension and diabetes both require ongoing monitoring

to reduce the risk of some CVDs, and other health problems. The traditional measurement of
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blood pressure is a sphygmomanometer consisting of an inflatable cuff that is wrapped around the
upper arm. The whole process requires to be done by doctors and also be limited by the non-stable
accuracy due to different clinical settings. Therefore, it cannot achieve continuous monitoring
for patients. So do the traditional diabetes measurements. Commercial blood glucose meters are
invasive, requiring a small amount of blood to be obtained by pricking a finger. Wearables are the
potential to offer continuous measurements of blood pressure and blood glucose levels. Researchers
could use ML to reduce noise and extract valuable information from wearable data. As for higher
accuracy, Ahmed and his colleagues combined the CGM wearables and ML methods to evidence
the feasibility of continuous monitoring of BGL [52]. In addition, many pieces of research focus
on precision improvement. There are numerous precision optimization systems of blood pressure
using wearables data proposed [118–129]. Furthermore, for exploring more directions, there are
also studies use the wearables data to monitor diabetes [130], the postprandial hyperglycemia [131],
and blood pressure classification of ill patients [132].

For the routinemonitoring requirements of the general population, the assessment of fundamental
physiological parameters, including heart rate, respiratory rate, sleep quality, and gait analysis,
holds considerable importance. The observation of these indicators may serve as harbingers of
underlying disorders or impending health risks.

Now commercial smartwatches such as Apple watches and Samsung watches use PPG sensors to
measure heart rate, but this sensor has a large measurement error due to motion artifacts generated
by the sensor’s changing contact with skin. So some studies use ML to help PPG artifact removal
and enhance heart rate precision. Burrello et al. used the architecture of temporal CNN to estimate
the real HR value based on the PPG measurement. They achieved a lower cost to correct and predict
HR with a high accuracy rate [133].
Sleep monitoring could diagnose sleep disorders and also provide information on some CVDs

and neurological diseases. While the traditional monitoring way, polysomnography, is invasive
and expensive. In that case, participants have to sleep in the specific clinical. Wearable sensors
make it easy and affordable to monitor sleep at home for normal people. Boe et al. applied an ML
model to monitor five different sleep stages based on a wrist-band ACC and three ECG sensor
patches [94]. Zhang et al. used wristbands to get the HR and motion signals, then applied a feature
extraction and RNN model to learn the classification of sleep stages [134]. In addition to sleep stage
recognition, sleep monitoring also includes respiration monitoring. For instance, obstructive sleep
apnea (OSA) is a common sleep disorder characterized by episodes of partial or complete cessation
of airflow during sleep. This condition poses a significant and potentially insidious threat to health,
as it often remains undetected by patients. Jothi and colleagues have employed ML techniques to
analyze PPG data, thereby enabling the monitoring of OSA and facilitating its timely identification
[135].
Respiratory monitoring does not only occur during sleep. Daily life requires respiratory moni-

toring. Respiratory rate and pattern can provide valuable information about an individual’s overall
health status and the presence of health conditions such as asthma and pulmonary disease. Filosa
and his colleagues also designed ML algorithms to monitor the daily respiratory flow through
wearable data [39]. The respiratory airflow encompasses crucial information as well. Research has
demonstrated that the exhaled breath of an infected individual may contain pathogenic aerosols
capable of disseminating into the surrounding atmosphere, thereby posing a potential risk for
transmission [136]. By monitoring and analyzing aerosols, we may find aerosols as biomarkers and
monitor potential diseases and human physical conditions.
Patients with disorders often have an unsteady gait so gait analysis could analyze the balance

and coordinates of the gait. But this usually requires long-term monitoring and evaluation, which
is very time-consuming and inconvenient for the patient. The emergence of smart insoles, smart
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socks, and other wearables has led to advancements in gait analysis and guidance. Naturally, ML
could use sensor data to improve the gait analysis in multiple disease rehabilitation. Park et al.
applied ML to the data obtained from a smart insole (integrated with a pressure sensor, ACC, and
GYRO). It enables effective real-time monitoring and gait classification of stroke patients [70].

4.1.3 Rehabilitation. Some disorders, such as PDs, stroke, and arthritis, can make it difficult for the
body’s upper and lower limbs to move. On the other hand, rehabilitation is lengthy and requires
patient care from medical staff. Based on these problems, we now introduce the ML and wearables
application in the rehabilitation process.

the most common recovery application is limb rehabilitation. Especially for some patients who
need careful care and restore their limbs after the surgery. Ramkumar et al. developed a platform
that can monitor the rehabilitation of patients using the smartphone and motion sensors after
the knee arthroplasty [137]. Lee et al. propose an ML-based method to help the rehabilitation in
activities of daily living of stroke patients [138]. Ernesto et al. used ACC to track the upper-limb
motor recovery of patients with stroke or a traumatic brain injury and ML analysis for recovery
intervention for patients [139].
In addition to recovery of limbs, general postoperative recovery except limbs can also be mon-

itored with different wearables. For example, Zhang et al. used smart wristbands to monitor
pancreatic surgical patients’ conditions and then utilized ML to analyze the wristband data to
predict the post-operative complications [82]. Counci et al. also utilized smartwatches to help assess
patients’ recovery outcomes in hospitals [140].
Intelligent wearable systems have promoted the development of exoskeletons for various limb

rehabilitation. Some studies use wearables to translate patients’ recovery intentions into signals,
which are then analyzed using ML algorithms. Based on the analysis, the exoskeleton robot will
receive instructions for continuous movements that can aid in the patient’s recovery process [141].
To produce continuous instructions, studies tried to estimate continuous numerals. Zhang et al. used
an EMG-driven ML model to estimate the ankle joint torque that can help the patient’s recovery
[30]. Liu et al. designed a human-machine interaction system based on sEMG, which ML algorithms
analyze to identify human motion intentions [142].

4.1.4 Personalized medicine. First, from the human point of view, personalized treatment always
consumes medical resources and cannot find a satisfactory solution because different doctors’ and
patients’ feedback and preferences are considered. So digital health provides us with a way to make
personalized medication management. Second, from the system perspective, with the population
of personalized medicine in the future, the sensor network between patients will become more
complex. So networks with low energy and high-efficiency transmission are more conducive to
personalized medicine.
Patients frequently struggle to adhere to their medication regimen due to a variety of factors,

such as a lack of understanding, mistrust of healthcare providers, or simply forgetting to take
their medication as prescribed. The main aim of medication inference is to optimize therapeutic
strategies by tailoring prescriptions to each patient’s unique needs and circumstances. Therefore,
some studies tried to explore intelligent wearables that could achieve medication adherence. These
studies are mainly divided into two aspects: motion-based and policy-based. Motion-based methods
usually use motion sensors to detect if the patients are taking the pills. Cheon et al. used ML to learn
the smartwatches data that can detect the patients’ low medication state [143]. There are other
researches using motion sensors to evidence the action of taking medicine [144–146]. The other
is policy-based studies, which are based on the data provided by wearables to make personalized
medicine management for patients, that is, to propose personalized drug dosage and time use deep
reinforcement learning [147, 148].
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In addition to medication intervention, ML can also perform different end-to-end interventions
on the patient’s health status based on the wearable data [149].

4.2 Sports
ML has a wide range of applications in sports to evaluate athlete performance, prevent injuries,
and propose training improvements [150]. But these ML applications are generally based on optical
cameras. Studies have used cameras to capture motion information and then use ML to analyze
the captured video to make interpretable assessments of athletes’ movements [151]. But these
camera-based methods are unsuitable for some outdoor sports places because the venue is too
large, and the video may have some occluded motion. Some studies used professional equipment,
such as an isokinetic dynamometer, to get the dataset. But this way requires athletes to conduct
off-filed additional tests under professional equipment, rather than on-field real-time sports data of
athletes [152]. Based on these limitations, wearables provide a way to get real-time data without
venue limitations and expert guidance.

In this part, we will mainly introduce three aspects that wearables could be integrated with ML
in sports science: sports analytics, injury prevention, and physiological variables prediction. And
the corresponding concept categories are presented in the concept map in Figure 6.

Fig. 6. Sports science applications using intelligent wearables

4.2.1 Sports analytics. Sports analytics represents a critical domain for both coaches and athletes.
They can analyze the data during the competitions or training stage to evaluate the athletes’
physical fitness, performance evaluation, and improvement of training strategies. ‘On-field’ means
the performance occurs during an actual game, while ‘Off-field’ means the performance occurs
outside of the competition.

The most common and popular on-field application is sports activity recognition. In the majority
of athletic pursuits, the assessment of body posture and limb coordination serves as a proficient
means of acquiring motion-related data. Through feedback on postures, coaches can adjust athletes
for more efficient training and, at the same time, prevent athletes from being injured [153, 154]. The
development of motion sensors allows us to more sensitively and accurately capture the movement
information of athletes, even some minor movements that are not easy to be observed by the naked
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eye. So many studies use motion sensors to recognize sports activities. Anand et al. developed an
ML-based method to effectively classify shots using data generated by motion sensors in swing
sports [155].
Evaluating body posture and limb coordination can also contribute to the appraisal of athletic

performance. At times, the feedback provided by referees can be influenced by subjective opinions
and inherent biases, potentially leading to less objective assessments of performance. ML can avoid
such mistakes and provide objective feedback on the motion assessment of sensor data. Wang et al.
designed a wireless wearable device integrated with ML that can provide real-time biomechanical
feedback [156]. Kowsar et al. developed an unsupervised ML-based wearable device Liftsmart which
could track and analyze weight training exercises in real-time [157].
Sports activity recognition can also be achieved off-field. Haladjian et al. harnessed wearable

data to construct an ML model that operates as a virtual referee for goalkeeper trainees during
the training phase. Then goalkeeper could recognize the activity and get feedback to foster skill
development [158].

Apart from analyzing sports activities and performances, it is equally crucial to assess the athletes’
physical condition. As it enables coaches and support staff to assess performance, identify potential
health concerns, and optimize training regimens. Wang et al. applied ML on the wearable data
and designed a system that can continuously monitor the health of sportspersons [32]. From the
athlete’s personalization aspect, analyzing the athletes’ conditions helps to get an explainable
profile for each specific player. Lisca et al. learned insights from a single motion sensor by the ML
model to get an explainable prediction of the goalkeeper. They found different motion components
of a specific goalkeeper could have different explainable results, which provide a way for others to
manage personalized training plans [159].

4.2.2 Injury prevention. Athletes injury prevention is important both for the athlete and the team.
For example, physical injuries in football players can be costly to both the player and the team. One
study found that in the 2016-2017 season, Premier League injury-related wage bills £9m per team
for a season [160]. Moreover, addressing and preventing mental health issues among athletes is also
of vital importance, as these concerns can significantly impact their sleep and overall performance.
A study showed that early psychological intervention has positive therapeutic effects in athletes
[161]. Based on these two directions, we will introduce the studies that used Intelligent wearables
to prevent physical and mental injury.

Asmentioned, the referee’s judgment is biased and limited. ML can usually providemore objective
and timely feedback to prevent body injuries using some motion sensors. Rossi et al. used the
GPS composed of IMU sensors to measure the personal training data of football players and then
used these data to train an ML model to predict the players’ injuries [162]. Tedesco et al. also used
an IMU sensor to capture the motion information. The generated data was used for training an
injury classifier using ML models (KNN, NB, SVM, XGB, MLP) [163]. In addition to a motion sensor,
muscle signals also provide a way to assess the injury. The sEMG sensor was used by Dai et al. to
predict the muscle fatigue of volleyball players. They applied an ML model on the sEMG sensor
data to evaluate muscle fatigue into three levels [164].

Athletes’ mental health is often overlooked but plays an important role in athlete performance.
The majority of studies have used psychological stress questionnaires to screen athletes with
initial mental problems. However, this method depends on the subjective answers of athletes, and
it cannot avoid missing some early athletes who really have mental problems [165]. Wearables
can effectively and accurately collect physiological data without being subject to the subjective
influence of athletes and can be used as a better basis for analysis. However, there are very few
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studies in this area. Melentev et al. applied the ML models on EEG data to detect the tiredness of
the eSports players [166].

Fatigue increases the risk of injury during games of athletes, as the tired muscles are more prone
to strain and other injuries. So, fatigue prediction provides feedback for both coaches and athletes
to adjust the training strategy. IMU sensor data was used by OP and his colleagues to develop an
ML model that predicts the rating of perceived exertion, a validated subjective measure of fatigue
[167]. In addition to real-time fatigue prediction during sports, Jiang et al. used a temporal ML
model to predict future fatigue by analyzing the IMU sensor data [168].

4.2.3 Physiological variables prediction. The measurement of an athlete’s physiological parameters
has a significant impact on the athlete’s training plan and preparation. And that usually requires the
help of a kinesiologist measurement. For kinesiologists, measuring and judging some physiological
parameters is time-consuming and expensive, and they cannot avoid being influenced by subjective
and empirical factors. Based on real data, ML can quantify data into objective scores based on
continuous learning. The combination of ML and wearable could assist the kinesiologist’s judgment
and predict higher accurate physiological variables. Based on the related literature, we have VO2,
tidal volume, and running variability that could be explored and predicted by wearable data using
ML.
VO2 is an important physical index for athletes. Represents an individual’s body’s ability to

inhale, deliver and transport oxygen. Accurate measurement of VO2 can help athletes guide their
training, but this usually requires expensive professional equipment. The measurement process
is invasive and needs to be completed under the supervision of professional personnel. Although
wearable smartwatches on the market can measure VO2, they are limited by the low accuracy
and cannot measure instantaneous VO2 in real-time [169]. Some research applied ML models to
affordable wearable devices to get easy-to-obtain parameters such as heart rate, breathing frequency,
and minute ventilation to predict accurate instantaneous VO2. Shandhi et al. used a built wearable
patch placed on the mid-sternum to collect seismocardiography (SCG), ECG, and pressure signals.
Later, they trained the ML models to predict the instantaneous VO2 based on the multi-sensor
fusion data [170]. Amelard et al. collected some RIP data by the smart shirt and trained a temporal
ML model to predict the VO2 [171].

Tidal volume is another important variable of respiratory function and is a measure of the differ-
ence in the amount of air that is inhaled or exhaled in a single breath during normal breathing. In
the sports field, tidal is a significant measure of respiratory function. Thus, it provides valuable signs
about an athlete’s aerobic capacity and endurance. Traditional methods usually use mathematical
methods to predict tidal volume, which is restricted to the data pattern. So, some studies use ML to
predict the tidal volume based on wearable data. Hurtado et al. collected respiratory data through
the RESP belt and applied the data to the ML model to predict the tidal volume [172]. Soliman et
al. extracted features from the ECG and SCG signals with an ML model to help predict the tidal
volume [173].

Moreover, existing research on the variability and fluctuation of the running is usually done by
professional kinesiologists to reveal the fluctuation characteristics of complex time series data [174].
Although the existing standard is to use mathematical models to analyze variability, one research
has begun to explore ML-based methods, which proposed the use of an ML model to analyze the
data obtained based on the IMU sensor to estimate running variability [175].

5 METHODOLOGIES
As AI technology evolves, traditional statistical methods are being complemented by an increasing
number of ML-based techniques in wearables applications. ML is an important branch of AI, which
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can learn from data and automatically optimize its own system without human intervention. The
utilization ofMLmodels for data analysis enables decision-makers to unearth concealed patterns and
regularities within the dataset. By processing the available information, ML algorithms facilitate the
generation of future predictions and provide valuable insights to inform decision-making processes.
ML mainly falls into four primary categories: supervised ML, unsupervised ML, semi-supervised
ML, and reinforcement learning (RL).

In an effort to provide deeper insights to researchers regarding the application of ML algorithms
in intelligent wearables, we conduct a comprehensive examination of various ML methodologies,
drawing upon the literature discussed in Section 3. Primarily, we elucidate four distinct categories
of ML, along with the prevalent ML models utilized in these applications. The categories of ML and
their corresponding models are detailed in Table 4 (for Health applications) and Table 5 (for Sports
applications). In the subsequent section, we shed light on the diverse ML techniques’ application in
the fields of sports and health, demonstrating how they can bring value to these domains.

5.1 Supervised learning
The most popular category is supervised learning, which is a method of training models with labeled
data. Supervised learning learns a mapping function between inputs variables and corresponding
outputs through labeled training data. Usually, the model uses a cost function to measure the gap
between the model output and the true output. Then the model automatically adjusts and updates
internal parameters through this feedback to reduce the cost.

There are two main categories in supervised learning: classification and regression. Classification
predicts class category labels, while regression predicts continuous variables. For instance, consider
the prediction of sleep stages. In classification, we can categorize sleep stages into discrete categories
(e.g., awake, light sleep, deep sleep) based on brain wave patterns and other physiological signals.
The model learns to classify each period of sleep into these categories. On the other hand, regression
could be used to predict a continuous quantity related to sleep, such as the precise duration of each
sleep stage. It seeks to fit the actual duration of each sleep stage as closely as possible.

A wide variety of classification models are commonly employed in supervised learning, including
Decision Tree (DT), Support Vector Machines (SVM), Support Vector Regression (SVR), K-Nearest
Neighbors (KNN), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
Gradient Boosting algorithms (GT) such as eXtreme Gradient Boosting (XGBoost), AdaBoost
(Adaptive Boosting), Naive Bayes (NB), and several types of Neural Networks like Multilayer
Perceptrons (MLP), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and
transformer. Given the limited space available, we do not elaborate on these models. Our purpose
is to give readers a more high-level idea of how to abstract the specific problems of intelligent
wearables into different ML applications.

As for the classification problem such as the disease classification, and sleep classification. A
popular approach is to directly apply one of the classification models like SVM and KNN, for
classifying electrical signals. Nevertheless, some techniques consider the temporal characteristics
of 1-D electrical signals (e.g. CGM, ECG signals), and employ temporal models such as Temporal
Convolutional Networks (TCN), causal networks, RNNs, and transformers for classification tasks.
Additionally, some researchers transform 1-D signals into 2-D signals for further analysis. For
instance, Liu et al. converted the original 1-D electrical signals into 2-D spectrograms, facilitating
the use of CNNs and other models for training [186]. In addition, numerous studies employ the
strategy of running multiple ML models concurrently and then utilizing ensemble methods to
derive the most optimal results. This approach takes advantage of the strengths of various models
and mitigates individual model weaknesses.
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Table 4. Application of intelligent data analysis in health

Category Applications Count Supervised Un-
supervised

Semi-
supervised

Rein-
forcement

Sensors&
Devices

Approach

Cardiovascular

Atrial
fibrillation
detection

9 [176–183] [184] ECG, PPG RF, CNN, SVM,
KNN, RNN,
BiLSTM

Arrhythmia
detection

8 [185–190] [191] [192] ECG,PPG CNN, SNN,
BiLSTM, VIT

Heartbeat
detection
and
monitoring

3 [133] [193] [194] ECG,PPG CNN, TCN,
Causal-CNN,
MLP, model-
basde RL

Heart failure 3 [195, 196] [197] ECG RF, SVM, KNN,
RF, EBT, U-Net,
Word2Vec

Other
cardiovascular
disease
detection

2 [198] [199] ECG, PPG XGBoost, CNN,
BiLSTM

Blood
circulatory
system

Blood
glucose
levels

4 [52, 130,
200]

[201] CGM, EDA,
PPG, TEMP,
Smartwatch,
Smartphone

MLP, RF, SVR,
SVM, KNN,
Clustering

Blood
disease
classification

1 [202] PPG XGBoost

Blood
pressure
estimation

12 [120–
129, 132]

[203] ECG, PPG CNN, TCN,
U-Net, GRU,
LSTM

Neurological
disorders

Stroke
detection

2 [70, 204] ACC, ECG,
Smart insole

SVM, RF

Seizures
detection

6 [111, 205,
206]

[207–209] ACC, ECG,
EEG, Smart
insole

CNN, RNN, LR,
XGBoost, BiL-
STM, VAE

Parkinson’s
disease
detection

7 [109, 112,
148, 210–
212]

[213] ACC, MAG,
IMU, GYRO

KNN, SVM,
CNN, KNN,
transformer,
RF, NB, DA,
XGBoost, DT

Alzheimer’s
disease
detection

3 [214–216] EEG DNN, DT, NB,
KNN, SVM, RF,
MLP, GBDT

Rehabilitation

Motion 8 [30, 82,
137–140]

[217] [218] GYRO,
IMU, EMG,
Smartwatch,
Smartphone

MLP, LR, RF,
SVM, K-means,
Q-learning

Vision
impairment

5 [68, 219–
222]

Smart
glasses,
camera,
smartphone

Transformer,
YOLO, CNN

Respiration

Respiration
monitoring

5 [39, 88,
223, 224]

ECG, EMG,
IMU, PPG,
RESP, Smart
ring

LSTM, KNN,
CNN

Cough 1 [114] ACC CNN

Sleep

Sleep
monitor

11 [38, 88,
134, 135,
225–230]

[231, 232] PPG, EDA,
EEG, ECG,
IMU, RESP,
Smart ring,
Smartwatch

RF, MLP, RNN,
KNN, NB,
SVM, LDA,
QDA, CNN
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Table 4. Application of intelligent wearable data analysis in health (Continued)

Category Applications Count Supervised Un-
supervised

Semi-
supervised

Rein-
forcement

Sensors Approach

Mental health

Emotion
detection
and classifi-
cation

9 [92, 233–
235]

[91, 236–240] ACC, ECG,
EDA, EEG,
PPG, Smart-
watch,
Microphone

SVM, RF, XG-
Boost, CNN,
Clustering,
Transformer,
K-means

Stress
detection

6 [36, 37,
113, 241,
242]

[243] ECG, EDA,
EMG, PPG,
RESP, TEMP

AdaBoost,
KNN, LR, RF,
SVM, CNN

Depression
detection

3 [244–246] ACC, IMU,
Smartphone,
Smartring

SVM, CNN, RF,
KNN, LR

Mental
illness
detection

4 [247–250] ACC, EEG,
Smartwatch,
Smartphone

CNN, KNN,
XGBoost

Movement
and activity

Fall
detection

15 [107, 108,
251–262]

[263] ACC, MAG,
GYRO,
IMU, ECG,
Smartwatch,
Smartphone

RNN, LR, NB,
RF, SVM, KNN,
CNN, DNN,
MLP

Gait
monitoring

12 [264–271] [70, 266, 272] [273] IMU, ECG,
ACC, Smart
insole, pres-
sure sensor

SVM, KNN,
CNN, LSTM,
HMM

Medical system

Medication
adherence

5 [143, 144,
146]

[147, 274] Smartwatch,
ACC, GYRO,
IMU

LR, MLP, CNN,
Policy-based
RL

Health
inference

1 [149] ACC CNN

Similarly, in regression problems, related research also uses one model or model ensemble
methods to obtain optimal results. Whether it is a classification or regression when dealing with
situations characterized by large volumes of data or high data complexity, deep learning is often
the go-to approach. CNN-based models such as ResNet and U-Net, are particularly prevalent in
these scenarios due to their effectiveness and versatility.
In different application fields of health and sports, both classification and regression are indis-

pensable and are flexibly applied to different scenarios. Classification serves as a prevalent approach
in numerous applications, including diagnosing illnesses, identifying driver fatigue, among other
uses. For example, in the case of early diagnosis of PDs, multiple neurologists would need to
mark the severity ratings of the patients in the data set, and this labeled data would be used to
train a supervised learning model [210]. However, in some scenarios, regression models are more
suitable. For example, ML converts the human cognitive recovery processes into command signals
to control the movement of the exoskeleton. Because the motion of bones and joints is continuous,
the signal output by ML should also be continuous. In this case, they use the sensor data to generate
continuous output signals, which are treated as the labels for the supervised learning model [141].

5.2 Unsupervised learning
In many cases, labeling data is cumbersome and time-consuming, and the categories of some data
are even unknown. Hence the emergence of unsupervised learning, in which the model can find
and classify some patterns in unlabeled data sets. Different from supervised learning, unsupervised
learning has no label and cost function. The input of the model includes unlabeled data and a set of
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Table 5. Application of intelligent wearable data analysis in sports

Category Applications Count Supervised Un-supervised Semi-
supervised

Sensors Approach

Sports analytics

Sports
activities
recognition

8 [155, 158, 275–
279]

[280] IMU, smart
insole

CNN, BiLSTM,
SVM, NB, RF, DT,
LDA, QDA, KNN

Athlete
condition
monitoring

2 [281, 282] IMU, smart-
watch

RBM, NB

Performance
assessment

6 [156, 159, 283–
285]

[157] IMU DNN, XGBoost,
CNN, DT, NB,
AdaBoost, RF,
SVM, KNN

Injury prevention

Physical
injury preven-
tion

4 [162, 163, 286] IMU, pres-
sure sensor

DT, KNN, NB,
SVM, MLP, XG-
Boost, LR

Mental injury
prevention

1 [166] EEG RF, GBT

Faults
detection

1 [287] IMU SVM, DT, KNN,
MLP

Fatigue
prediction

2 [167, 168] IMU GBT, MLP, LR

Physiological
variables prediction

Oxygen
uptake predic-
tion

2 [170, 171] RESP, ECG,
SCG, Pres-
sure sensor

XGBoost, TCN

Tidal volume
prediction

2 [172, 173] ECG, RESP SVR, LR, RF

Running
variability

1 [175] IMU CNN

observations, and the model’s goal is to learn hidden patterns through the mapping of inputs to
observations.
Unsupervised learning algorithms usually include clustering, dimensionality reduction, and

association. Clustering means putting similar features of data together as a category, such as
K-means and hierarchical clustering. Dimensionality reduction could reduce the dimensions of
the features while retaining the necessary information as much as possible. Principal component
analysis (PCA), singular value decomposition (SVD), and linear discriminant analysis (LDA) are the
common dimensionality reduction methods. The association aims to identify relationships between
variables in large datasets. Through our survey of the literature, it’s evident that clustering is
widely applied in various domains. This method of identifying and grouping similar data points
can yield valuable insights, especially when dealing with large or complex datasets. It’s an essential
tool for exploratory data analysis, enabling the discovery of hidden structures and relationships
within the data.

Unlabeled data is ubiquitous in many fields, including medicine, where large quantities of
data are often collected without explicit labels. This makes unsupervised learning techniques
particularly useful for analyzing medical data and discovering patterns and relationships that can
aid in diagnosis, treatment, and drug discovery. Yeche et al. used unsupervised learning to monitor
patients in Intensive Care Units (ICU) online based on the time-series data [288]. For example,
Kowsar et al. proposed the first smart wearable device based on unsupervised learning, which can
provide real-time feedback and evaluation of the performance of weightlifters [157].
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5.3 Semi-supervised learning
Semi-supervised learning is between supervised and unsupervised learning, which combines both
labeled and unlabeled data to improve the model. Semi-supervised learning typically involves
using a smaller amount of labeled data in combination with a much larger amount of unlabeled
data to train a model. The idea is that the additional unlabeled data can help the model learn a
better representation of the underlying structure of the data. Semi-supervised learning employs
a variety of techniques such as self-training, autoencoder, model titillation, etc. From Tables 4
and 5, an encoder-decoder structure is most popular used in the related semi-supervised setting
papers [192, 199, 207, 208, 280]. In this setting, the encoder learns a compressed representation
from the labeled data, and the decoder generates new data instances from this representation. For
example, the ECG is not easily available most of the time. Mohebbian and his colleagues developed
a generative model based on CNNs. They constructed a CNN-based autoencoder, where the encoder
was trained on data from 47 labeled participants. The decoder was then finetuned using data
from an additional 26 unlabeled participants [192]. Besides, Samyoun et al. used an encoder to
extract meaningful features from the input data, so that the model serves as an additional input
representation that can improve the performance [243]. Qu et al. utilized the CNN-based teacher-
student setup which is popular in model distillation to classify the gait in the semi-supervised
learning way [263]. Mikos et al. utilized the self-training way, where the model uses its predictions
on the unlabeled data to generate pseudo-labels, treating them as if they were true labels [273].

5.4 Reinforcement learning
RL has no labels but with less supervision. It performs the optimal actions of agents with the aim
of maximizing the reward from the observations it gleaned from interacting with the environment.
The model constantly modifies itself based on feedback. So, RL is suitable for people to find the
optimal policy in an uncertain environment with continuous trial and error between the agent and
the environment. RL can be broadly categorized into three key approaches: Value-Based RL, where
the goal here is to find the optimal value function, which is the expected return for each state or
state-action pair. The agent uses this function to decide the best actions to take. Examples include
Q-learning and Deep Q-Network (DQN). Model-based RL involves an agent acquiring knowledge
about the environment by constructing a model, which is subsequently utilized to make informed
decisions for future actions. This can be more sample-efficient but often requires more complex
algorithms and computation. Policy-based RL, where the agent learns a policy function directly
from the state and action pairs it experiences.
Based on the gathered literature, researchers commonly employ RL techniques to customize

treatment plans for diseases [147] and to model and analyze musculoskeletal movements in patients
[218].

6 CHALLENGES
Intelligent wearable devices have shown tremendous potential for human future life. The use of ML
in wearable devices can enhance their capabilities for data analysis and enable more personalized
insights into user behaviors across various fields. However, the development of these technologies
must be carefully balanced with challenges that arise from both the user and wearable device
perspectives. In this section, we delve into potential challenges from three distinct perspectives:
those related to wearable devices, technological considerations, and user-associated issues.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: June 2023.



Intelligent Wearable Systems: Opportunities and Challenges in Health and Sports 1:27

6.1 Wearable devices
6.1.1 Ergonomics. Wearables need to conform to the human body and accommodate natural
movements comfortably. Achieving a design that fits well and avoids discomfort can be challenging.

6.1.2 Size. Users often favor lightweight, compact devices for comfort and convenience. But as
wearables become smaller and more compact, maintaining high functionality and performance
becomes challenging due to limited space, heat dissipation issues, and integration difficulties.

6.1.3 Manufacturing and cost. Wearables need to be durable and able to withstand everyday use,
including exposure to moisture, impact, and wear. Ensuring quality materials, robust construction,
and rigorous testing can increase manufacturing costs. The size of wearable devices can also
impact the manufacturing process and associated costs. Smaller devices may require more intricate
manufacturing techniques and assembly processes, which can increase production expenses.

6.1.4 Battery technology. Users often favor lightweight, compact devices for comfort and conve-
nience, but this limits the size and life of the battery. Thus, achieving high energy density in small
form factors is challenging.

6.1.5 Optimization. The advanced capabilities of the wearables such as continuous data processing,
sensor operations, and inter-device communications demand high power, leading to faster battery
drain. Thus, optimizing these operations to be power-efficient is an ongoing challenge.

6.1.6 Storage. Wearable devices often require quick access to data to provide real-time feedback
or enable interactive functionalities. However, devices with larger capacities may have slower read
and write speeds, resulting in delays in data access and response times. Balancing storage capacity
with data access speed is challenging.

6.2 Technology
6.2.1 High-quality data availability. Despite the significant progress made in the development
of wearable devices, challenges about data quality persist [289]. These challenges include noise,
missing data, motion artifacts, and electromagnetic interference, which may arise due to hardware
or software issues with the sensors or data transmission. In addition, user behavior during physical
activity can also introduce noise and artifacts, further complicating the acquisition of high-quality
wearable sensor data [290].

6.2.2 Information fusion. In addition, in multi-sensor systems, data acquisition is more challenging.
As discussed previously, using multi-sensor systems can enhance the capture of activity information
compared to single sensor data acquisition. However, the integration of data from multiple sensors
presents unique challenges. These challenges arise due to differences in sensingmodalities, sampling
rates, and data formats between sensors, which hinder the screening and integration of high-quality
data [291].

6.2.3 Model reliability. Many powerful ML models rely on large amounts of high-quality training
data. But at some point, the derivedmodels are biased or have low accuracy due to limited data. Some
models misinterpret data due to overfitting. Although the model can never achieve 100% accuracy,
we still need to improve the model’s reliability constantly. In the pursuit of future advancements, the
implementation of reliable and applicable models presents challenges. As the complexity of models
increases, it becomes crucial to strike a balance between sophistication and practical usability while
maintaining generalizability to accommodate the specific needs of different fields.
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6.2.4 Interpretability. ML-based wearables face challenges in interpretability due to the complexity
and black box nature of most of ML models. This is particularly crucial in medical and sports
applications, where having a standardized explanation plan can facilitate decision-making for
doctors and coaches.

6.2.5 Real-time communication. Due to the limitations of sensor storage memory and computing,
a large amount of data generated usually needs to be transmitted to edge nodes or the cloud for
computing. In some scenarios, real-time or near real-time data feedback is particularly important,
such as the emergency of some cardiac patients [292] and the real-time performance feedback of
athletes on the field [23]. However, these could be challenging due to various factors, including
network congestion, packet loss, and signal interference. High latency can compromise the reliability
and effectiveness of wearable devices in healthcare and sports.

6.2.6 Individual difference. Each person has unique characteristics, including their health status,
fitness level, lifestyle habits, and even the way they wear and interact with the device. These
differences can greatly affect the performance of ML algorithms, which may have been trained on
population-level data and may not account for nuances at the individual level. Even for a single
individual, many factors can change over time. Aging, changes in health status, variations in
lifestyle and activity levels, and even changes in the way the person wears the device, all can affect
the device’s data and, consequently, the performance of the ML algorithms.

6.2.7 Compatibility. Wearable devices often need to integrate with other devices, platforms, or
ecosystems to provide a comprehensive user experience. Ensuring seamless integration with other
smart devices can be challenging due to compatibility issues of different platforms.

6.3 User
6.3.1 Security. Wearables have the potential to offer significant benefits to human beings, but
they also introduce security concerns. Especially for medical uses, as these sensors collect and
transmit sensitive patient data, they are vulnerable to cyber attacks that may result in catastrophic
consequences. For example, malicious hackers may attempt to gain control of wearable medical
devices and cause harm to patients [293].

6.3.2 Privacy. One study shows that the de-identification of wearables is not doing a good job
of protecting our privacy [294]. Privacy issues stems from the collection of sensitive information
by sensors, such as the user’s health status, activity location, and other personal data. In some
cases, sensors may transmit this information to cloud service providers without adequate protective
measures in place, potentially exposing users to privacy breaches. Furthermore, some sensors may
also collect information about the user’s surrounding environment, which can further exacerbate
privacy concerns [295]. Ensuring user privacy is a significant challenge that developers must
address to maintain trust and promote responsible AI development.

6.3.3 Informed Consent Complexity. Obtaining informed consent from users is a fundamental
ethical principle. However, communicating complex data practices, potential risks, and implications
to users in a clear and understandable manner can be challenging. Because users usually don’t
have a genuine understanding of the data they are sharing.

6.3.4 User acceptance. Although the wearables technology is constantly evolving and updating,
user acceptance is an important issue to consider. In a study conducted in France involving 1,183
chronic disease patients, it was found that 35% of these patients would decline a treatment recom-
mendation made through a wearable device [296]. User acceptance of wearable sensors depends
on a variety of factors, including comfort of use, cost, invasiveness, operational complexity, data
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privacy, and other considerations. As the user base continues to expand, it is a big challenge for
wearables to strike a good balance between user experience acceptance and device effectiveness.

7 OPPORTUNITIES
Contemporarywearables are becoming seamlessly integrated into human lifestyles, so it’s important
to consider the development of ML-based wearables in this field. In thi s section, we aim to offer
an in-depth exploration of the potentialities encompassed by AI applications within the realm of
wearable technologies.

7.1 Intelligent wearables
7.1.1 Sensing mechanism. The future of smart devices lies not just in their ability to collect data
but also in their capacity to gather more specialized and professional health indicators. For example,
the non-invasive detection of blood sugar allows users to get professional health indicators without
leaving home. However, the sensing capabilities of these sensors are not yet sufficient for clinical
use, and it is essential to improve their sensing functions and measurement accuracy [297].

7.1.2 Battery. Advances in extended battery life and energy-efficient design are particularly im-
portant for related commercial equipment. For example, although the Apple Watch can measure
users’ ECG data, HR, fitness tracking, and sleep stages, it often causes headaches due to its battery
consumption.

7.1.3 User-friendly design. User-friendly designs include accessible design, ensuring the technology
is usable and beneficial to everyone, including people with disabilities. User-friendly designs such
as voice recognition and tactile feedback are increasingly needed.

7.2 Integration of wearables with IoT
7.2.1 Real-time communication. As the proliferation of diverse devices continues, it becomes
imperative to ensure seamless communication between smart wearables and other IoT devices.
This seamless interconnectivity is crucial to deliver personalized user experiences.

7.2.2 Privacy and security. As we increasingly rely on cloud-based data models for user data
analysis, issues related to privacy breaches and security vulnerabilities become prevalent. To
mitigate these issues, strategies such as data anonymization, data encryption, and differential
privacy are often employed. Moreover, edge computing is gaining significant traction in the present
scenario. A popular approach in this context is federated learning, where the model is dispatched
to the edge device holding the data and is trained locally. This approach ensures that only model
updates are relayed back to the central server, not the actual user data.

7.3 Improvement of ML algorithms
7.3.1 Denoising. Wearables continuously amass an extensive array of data, thereby necessitating
the deployment of meticulous data processing methodologies. A critical preliminary step in this
procedure is denoising. While this task can be accomplished via conventional data processing
methods, ML techniques present a promising prospect for efficacious noise elimination. These
techniques include methods such as time-series anomaly detection and noise forecasting.

7.3.2 Annotation. Simultaneously, the manual annotation of the copious data derived from these
devices is not only labor-intensive but also imposes substantial time demands. As a result, the scope
for unsupervised learning in this domain is considerable, given its ability to effectively harness the
unlabeled data generated in real time.
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7.3.3 Model refinement. Refining the model structure, algorithm, and real-time parameter estima-
tion is pivotal to maximizing the utility and value derived from wearables.

7.4 Interdisciplinary application: Health
7.4.1 Personalized medicine. The domain of biomedicine and health presents vast potential for
personalized medical practices, including comprehensive patient care, management of elderly
individuals’ daily routines, and more. Wearables could access and combine diverse models to create
a personalized user profile. This profile facilitates the recording and analysis of individuals for
informed health planning.

7.4.2 Disease detection and monitoring. Such capabilities are particularly critical for managing
chronic diseases and long-term health, improving the quality of life significantly. Moreover, the
early detection of diseases, such as cancer, can be facilitated by these devices, which greatly benefits
patients and medical staff and saves the cost of care [298, 299].

7.4.3 Cadiorespirory fitness for athletes. Numerous research endeavors have focused on aiding
patients in detecting and diagnosing cardiopulmonary diseases [176, 177, 185–189, 195–199]. How-
ever, limited attention has been directed towards facilitating athletes in identifying indicators of
cardiopulmonary health. These indicators encompass crucial parameters like maximum oxygen
uptake, minute ventilation, and tidal volume. Acquiring such measurements typically necessitates
the utilization of costly specialized equipment and trained professionals. Nevertheless, the wide-
spread availability and accessibility of everyday wearable devices, such as smartwatches and mobile
phones, hold substantial potential for enabling real-time monitoring of these data by athletes.

7.5 Interdisciplinary application: Sports
7.5.1 Mental health. In the evolving landscape of sports science, the future promises the realization
of multidimensional applications of wearables. These devices play a crucial role not only in the
physical well-being of individuals, but they also contribute significantly to mental health promotion.
While there has been research on using wearables to predict mood states for normal people, there is
a strong need for more studies that focus specifically on athletes. Unlike other groups, the emotions
of the athlete group will be reflected in their usual training and competition. They may experience
different emotional challenges from normal people, such as performance anxiety, training pressure,
and the desire to win [300].

7.5.2 Virtual coaches. In addition, like specific personal management in public health, we can also
use sensor data to analyze athletes’ own physical conditions and sports performance to develop
specialized virtual coaches. The virtual coaches could provide explainable recognition of sports
activities or performance evaluations. For example, explaining the contribution ratio of specific
actions to sports performance in a specific sport is more conducive to how coaches and students
improve training and competition.

7.6 Digital twins
Digital twins refer to the virtual representation or simulation of an individual’s physiological
and behavioral characteristics [301]. These simulations are crafted from data harvested through
wearables, capturing information such as biometric parameters, sleep patterns, and more. The
digital twin is capable of gathering multimodal longitudinal data, which facilitates personalized
plans for individuals.

7.6.1 Health. In the healthcare sector, digital twins play a crucial role in both routine care and
disease diagnosis. For everyday care, digital twins can track and analyze an individual’s data and
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lifestyle habits remotely, enabling the prediction of potential health issues. When it comes to disease
diagnosis, digital twins can create a model based on the patient’s specific disease characteristics
and personal information. This allows for the development of a tailored treatment strategy for
the patient and provides insights into possible disease progression. Digital twins also find utility
in various facets of healthcare such as disease diagnosis, pharmaceutical development, trauma
management, among others [301].

7.6.2 Sports. Similarly, digital twins have great potential in the sports field. Digital twins can
help athletes optimize their performance by simulating different training strategies and predicting
outcomes [302]. And it can also help athletes to manage the fitness activities through data recorded
by wearable devices (e.g. food income, activity, sleep) [303]. In the realm of team sports, digital
twins can emulate matches, aiding coaches and athletes in formulating superior strategies. They
have the capacity to dissect the tactics of opposition teams, anticipate the results of specified game
strategies.

8 PESTEL ANALYSIS
In the subsequent section, we will delve into a comprehensive analysis of the intelligent wearables
industry by employing the PESTEL framework. The PESTELmodel provides a comprehensive frame-
work for evaluating the multitude of external factors that influence the deployment of intelligent
wearables. It assists in navigating the complexities of government regulations, policies, and political
stability, enabling stakeholders to identify and meet the necessary legal and industry-specific stan-
dards. Economically, the PESTEL model helps assess market trends, consumer purchasing power,
and economic indicators that could impact the deployment of intelligent wearables. From a social
perspective, it aids in understanding societal attitudes, health consciousness, and demographic
factors that can influence the use of these wearables. From a technological perspective, it helps
to gauge the pace of technological innovation that can affect the development and adoption of
intelligent wearables. Environmentally, the PESTEL model assists in examining the environmental
impact of the production, use, and disposal of intelligent wearables. From a legal perspective, the
PESTEL model promotes an understanding of the ethical implications associated with the use of
intelligent wearables, such as maintaining data privacy, security, and respecting user autonomy.
Subsequently, our discussion will encompass these dimensions.

8.1 Political factors
Intelligent wearables should both consider the policies related to wearables and the policies of AI
research development. Those policies vary depending on different countries and regions. Regarding
wearables regulation, for instance, the FDA in the United States oversees only those wearables
that are classified as medical devices under the Federal Food, Drug, and Cosmetic Act. Most of the
wearables do not fall under FDA regulation [304]. But in order to make consumers more confident
in the protection and accuracy of user data privacy, some manufacturers seek FDA approval for a
specific feature of their device, like Apple gaining FDA clearance for ECG monitoring and irregular
heart rhythm monitoring. Regarding AI regulations, for instance, The European Union proposed a
comprehensive legal framework for AI in 2021, known as the AI Act. The regulation regulates AI
by conducting a risk assessment of AI and is constantly improving as AI develops [305].

However, there are still many countries that do not have mature regulations. But with the rapid
development of AI and wearables, more countries and regions will participate in making regulations.
Consequently, understanding and navigating these regional regulations is crucial for AI developers,
businesses, and policymakers to ensure compliance, promote responsible AI development, and
foster trust in AI systems among users.
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8.2 Economic factors
The economic factors influencing intelligent wearable systems in health and sports present both
opportunities and challenges. Growing demand for remote patient monitoring and fitness trackers
is driving market projections, supported by declining device costs through technological advances.
Venture funding is targeting customized health and performance-boosting solutions. However, while
affordable access remains a challenge, payment models integrating with insurers can help realize
the potential of therapeutic devices. At an individual level, economic stability impacts discretionary
wellness spending using innovative trackers. Regulatory programs stimulating digital healthcare
adoption, from rehabilitation to injury prevention, can expand provisions across global populations.
Cloud-based services and data platforms offer new commercialization prospects. Indeed, a balanced
approach leveraging standardized and tailored offerings may be required to optimize benefits
for users across varying economic capabilities. Ongoing innovation has the potential to further
minimize costs and maximize clinical values.

8.3 Social factors
Societal attitudes, demographics and cultural norms play an important role in influencing the
adoption of intelligent wearables. From a health and wellness perspective, rising health conscious-
ness is supporting demand for wearables that enable proactive healthcare monitoring and fitness
tracking to facilitate active lifestyles. From a demographics perspective, the aging population and
younger tech-native generations present opportunities for remote patient monitoring, assistive
care devices and physical activity trackers. Vulnerable groups like the elderly, pregnant women and
children could particularly benefit from wearables tailored for their needs. Notably, professionals
in healthcare and sports industries have specific needs for efficiency gains through work-focused
wearables.

Another important aspect is the social wealth distribution, where the adoption varies based
on income levels, with wealthier regions and populations viewing wearables more as a personal
care luxury. Developed countries tend to pursue high-quality wearables for daily wellness sup-
port. Cultural Acceptability plays a considerable role, where attitudes differ based on cultural
context regarding the form and functionality of wearables. Diverse groups may require tailored
solutions that consider cultural preferences and expectations. It is also important to take into the
consideration, the privacy, security, and trust aspects. User comfort levels depend on companies
adequately addressing data concerns and demonstrating responsible practices for sensitive infor-
mation collection. Overall, intelligent wearables must account for varied social factors influencing
their adoption potential across global population segments, industries and regions to maximize
benefits. Standardized as well as tailored solutions may be needed.

8.4 Technological factors
Technological innovation can profoundly shape the development and adoption of intelligent wear-
ables. Advancements in areas such as miniaturized sensor technology, network connectivity, com-
putational power, and data analytics can significantly impact this industry. Miniaturization of
sensors through technologies like printed and flexible electronics have enabled novel form factors
for wearables like smart tattoos and textiles. Small, powerful sensors allow for expanded health
and activity monitoring capabilities. Continuous improvements in short-range communication
protocols like Bluetooth help ensure reliable data transmission from devices. Integration of dif-
ferent wearables and other IoE devices through technologies like low-power wide-area networks
provides opportunities for real-time multi-device data analysis and sharing. This leads to more
convenient data management for users and data-driven insights. Additionally, advancements in
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energy efficiency are pushing the development of low-power wearables forward. Innovations
around energy harvesting, ultra-low power chipsets and optimized protocols enhance battery life,
sustainability and the user experience of continuously-worn devices. Growth of edge and cloud
computing infrastructure supports processing and analyzing large volumes of IoT data, including
datasets from wearables. Emerging techniques in ML and data mining unlock deeper insights.
Technologies like 5G and augmented/virtual reality also present opportunities for new application
areas. However, frequent iterative updates can introduce issues of compatibility, integration and
product obsolescence if not properly managed. Ensuring interconnectivity between generations
requires adherence to standardization. Substantial R&D investments are also needed to continuously
develop new capabilities in this fast-paced environment. Overall, the rapid technological evolution
presents both opportunities to innovate new wearable products and services, as well as risks of
sustainability if stakeholders are unable to effectively manage change. Continuous adaptation will
be crucial for intelligent wearables to remain relevant in this dynamic ecosystem.

8.5 Environmental factors
As for wearables manufacturing, wearables are typically constructed from diverse materials, encom-
passing plastics, metals, and textiles. Such materials, however, can pose significant environmental
challenges, with plastics, in particular, manifesting a substantial environmental impact due to
their non-biodegradable nature and their capacity to remain in the environment for extended
periods. To ameliorate the environmental impact of wearables, a number of measures have been
proposed, including the use of sustainable materials such as recycled metals and organic textiles.
By incorporating such materials into wearable device design and production, manufacturers can
help reduce the environmental impact of their products while simultaneously meeting the growing
demand for environmentally friendly technological solutions.

Additionally, wearables may serve as a valuable tool to facilitate the development of a sustainable
environment. For instance, intelligent wearables can be utilized to monitor air and water quality to
prevent the release of pollutants and safeguard the quality of our daily environment.

8.6 Legal factors
Intelligent wearables developers should be aware of the potential legal disputes and liabilities that
can arise to ensure the products’ rigorous testing and quality control. Specifically, developers must
take steps to safeguard the product’s patent and ensure that customers’ rights and interests are
protected. If a user is injured due to wearing a sensor or if sensitive data of a sensor user is leaked,
the developer should be obligated to provide relevant compensation. In some contexts, intelligent
wearables collect a variety of user data that could potentially be used for discriminatory purposes.
For example, during health monitoring, some health data may be used by insurance companies or
employers in a discriminatory manner against individuals. Therefore, users should be fully aware
of the type of data the device is collecting, how the data will be used, who will have access to
it, and how long it will be stored before using the wearables. At the same time, users have the
right to withdraw their consent at any time. Many countries have data protection laws, especially
for sensitive data about humans. For example, the Illinois Biometric Information Privacy Act in
the U.S. requires explicit consent from individuals before their biometric data can be collected.
Violations of these types of laws can lead to significant legal penalties. Moreover, developers must
be required to compensate users if the device provides inaccurate predictions that significantly
influence the user’s decision-making. Especially for some scenarios, the prediction error may lead
to a fatal impact on decision-making. More importantly, developers must consider industry-specific
regulations, such as FDA regulations in the United States, which are significant in shaping the
wearables.
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9 CONCLUSION
This survey provides guidelines for researchers interested in intelligent wearable applications,
from novice to experienced. We thoroughly review four critical areas: sensor technology, medical
and sports applications, ML algorithms, and sensor networks. We also discuss opportunities and
challenges around techniques as well as societal factors. Using the PESTEL framework, we analyze
external factors impacting the intelligent wearables industry, offering a holistic understanding
of the current landscape. Overall, our survey covers relevant knowledge in health and sports,
presenting a well-organized synthesis useful for researchers, practitioners, and stakeholders.
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