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Abstract—Pretraining large models on generous multi-modal
corpora has accelerated the development of visual-linguistic (VL)
representation and achieved great success on various vision-and-
language downstream tasks. Learning these models is usually
executed by predicting the randomly masked words of captions or
patches in images. Such approaches, nevertheless, seldom explore
the supervision of causalities behind the caption descriptions or
the procedure of generating events beyond still images. In this
work, we endow the pretrained models with high-level cognition
by delving into dynamic contexts to model the visual and lin-
guistic causalities uniformly. Specifically, we format the dynamic
contexts of an image as the sentences describing the events before,
on, and after image. Unlike traditional caption-wise similarity,
we propose a novel dynamic contexts-based similarity (DCS)
metric, in which the correlation of potential causes and effects
besides immediate visual content are considered to measure
the relevance among images. DCS can be further simplified by
parameterizing event continuity to relax the requirements on
dense contextual event annotations. A new pre-task is designed to
minimize the feature distances of dynamically contextual relevant
images and incorporate the event causality and commonsense
knowledge into the VL representation learning. Models based
on our dynamic contexts significantly outperform typical VL
models on multiple cross-modal downstream tasks, including
the conventional visual commonsense reasoning (VCR), visual
question answering (VQA), zero-shot image-text retrieval, and
extended image / event ordering tasks.

Index Terms—Vision-language Pretraining, Event Reasoning,
Dynamic Contexts

I. INTRODUCTION

Motivated by the remarkable performance of large-scale lan-
guage modeling [1], [2], [3] on target NLP tasks, researchers
found that pretrained models on large-scale image-text datasets
lead to superior performance over direct training on down-
stream visual-linguistic (VL) tasks. Existing VL pretrained
methods [4], [5], [6], [7], [8], [9] adopt the transformer [10]
as the backbone and extend the model to learn the joint repre-
sentation through visual grounding tasks on large image-text
datasets. By mimicking the objective functions in large-scale
language modelings such as the mask word modeling and next
sentence prediction, the objective functions of these pretrained
Visual-Linguistic (VL) networks focus on similar targets, e.g.,
predicting masked words in captions, reconstructing masked
patches in images, and image-caption matching. Nevertheless,
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Fig. 1. Images in the first and second rows share similar captions (now
events) but different before and after events, while images in the first and
third rows have similar dynamic contexts. Dynamic context beyond (image,
caption) carries rich causal knowledge of events.

still image frames with caption annotations, as shown in Fig. 1,
mainly target describing the immediate visual content (now
events, a.k.a. captions in most images) of the image, and suffer
from a short understanding of dynamic situations captured
in the image. In contrast, with commonsense knowledge and
causality reasoning ability, people can easily reason out rich in-
formation about the story underlying the visual scene that goes
far beyond the frame of the image and caption descriptions.
The causality of event development beyond current visual
scenes plays a crucial role in visual commonsense reasoning.
It means correlating the dynamic story of before, now, after
and the visual content together might bring cognition-level
supervision for visual-linguistic representation learning.
Existing VL representation learning models supervised by
cross-modal alignment and single-modal cloze testing could
learn the correlations between image and caption. Such models



might lead to recognition-level understanding but are still far
from cognition-level understanding. Intuitively, the cognitive
capability is reflected by whether the learned representations
can distinguish images, as human beings, in accordance with
the dynamic contexts. From this viewpoint, pretext tasks on
low-level text tokens and image patches lack the supervision
of dynamic contexts, and are hard to characterize the subtle
differences across images. As shown in Fig. 1, similar captions
with slightly different wordings might respond to totally
different contexts. Meanwhile, the causality of events can
be affected by various factors, resulting in non-uniqueness
in many cases. As such, directly measuring the dynamic
contextual relevance of two given images based on sentence-
level similarity would be dogmatic. As depicted in Fig. 2,
there can be more than one reasonable assumption and logical
inference regarding the cause and effect of the immediate
visual content.

To alleviate these issues, we devise a novel learning-based
metric concept, namely dynamic contexts-based similarity
(DCS), to measure the similarity between any image pairs. To
align the data format requirements of existing VL pretraining
methods and maintain the consecutiveness of dynamic con-
texts, we implicitly model the before and after events as a
distribution conditioned on the representation of the events
as the image presents. Technically, a reasoning model is
trained to extract the relations across consecutive events. A
brief mathematical equation is then constructed to compute
DCS in terms of events happening now while considering
multiple potential event developments. Furthermore, we pro-
pose a new pretext task for VL pretraining models, aiming
to incorporate event causality and commonsense knowledge
into the VL representation learning. Specifically, we construct
relevant image pairs based on the pre-calculated DCS, and
an in-batch contrastive learning framework is applied to the
image pairs. Such a pre-task is readily applicable to any VL
pretraining methods. Extensive experiments have demonstrated
that our proposal of dynamic contexts empowered models
leads to a significant performance boost across different visual
reasoning downstream tasks. Visualizations on downstream
tasks and ablation studies illustrate that enhanced models
boost performance by distinguishing the images with different
dynamic contexts. We conclude our contributions as follows:

« We propose a novel learning-based criteria (DCS) to mea-
sure the similarity of images according to the continuity
of contextual events beyond still images.

o Based on the quantification of dynamic contexts rele-
vance, we design a new pretext task to incorporate the
event causality and commonsense knowledge to large-
scale vision and language pretraining.

« Experimental results on a wide range of visual-linguistic
downstream tasks demonstrate the effectiveness of our
proposed criteria. Extensive experiments, qualitative anal-
ysis, and ablation studies also prove that our newly de-
signed pre-task captures cognitive understanding beyond
the still image and can be feasible to be extended to
several novel applications, such as image / event ordering
tasks.

II. RELATED WORK
A. Multimodal Pretraining

The idea of pretraining transformer-based networks [10] on
large raw datasets and transferring on downstream tasks has
been spread into the vision-linguistic area. Co-attention [11],
[12] is straightforward to align the representation of different
modalities to suit the format of vision-linguistic transformer
based models. Authors in [12] build a modular network
architecture with co-attentions, which consist of two paral-
lel streams for visual and linguistic processing that interact
through co-attention transformer layers, and they achieved new
state-of-the-arts on the task of VQA. VILBERT [6] adopts the
similar idea and allows its structure for variable depths for each
modality and enables sparse interaction through co-attention.
They build pretraining tasks on multiple V+L datasets with
three loss functions: predicting the masked words given the
visual clues, reconstructing the masked image regions given
the language clues, and predicting whether the text describes
the image content. VL-BERT [5] simplifies the fusion of multi-
modality and proposes an effective single-stream architecture,
which uses BERT for text feature extraction and Faster-
RCNN for image feature extraction. Furthermore, it takes a
transformer encoder as its backbone network with the con-
catenated text and image features as its training input tokens.
While adopting the same single-stream architecture, UNITER
[8] proposes a new pretraining loss function with optimal
transportation, whose target is to optimize the matching loss of
word and corresponding image region pair. Recent works [13],
[14], [15], [16], [17], [18] on multi-modal pretraining adopt
similar single-stream or parallel-streams architectures with
transformers as the backbone networks despite the downstream
tasks or training schemes.

B. Knowledge Enhanced VL Representations

Besides imitating the network architecture and loss func-
tions of large language modeling, researchers find the perfor-
mance of the pretrained network benefits a lot from struc-
tured knowledge [19], [20]. ERNIE-ViL [7] enhances VL
representations by constructing structured knowledge of visual
scenes, including the present objects, attributes of objects,
and relationships between objects. ERNIE-ViL uses a two-
stream cross-modal transformers network to model the joint
VL representations and construct object prediction, attribute
prediction, and relationship prediction tasks to learn cross-
modal detailed semantics alignments. Another direction is to
integrate outside knowledge in VL representation learning to
enhance the performance on in-domain datasets [21] or deal
with the open knowledge challenge [22], such as the OK-VQA
[23]. SOHO [21] learns to extract image features through
a visual dictionary, which is a moving-averaged encoder to
group visual pixels with similar visual semantics on the out-of-
domain datasets and can be further updated on-the-fly during
pretraining. KRISP [22] utilizes a symbolic knowledge graph
as well as the implicit knowledge learned from large-scale
BERT training to answer the questions focusing on knowledge
that is not tied to a specific knowledge base. Since knowledge
is organized in a format of graph, graph neural networks
[24] are also applied to learn explainable multi-modal models
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Fig. 2. A sample of dynamic contexts is illustrated with three pairs of images, where each pair shares a similar caption. 1) Each pair of images may have
multiple events that happened shortly before (before events, in yellow) or will happen after (after events, in blue). 2) Each pair of images share similar before
or after events. 3) Images with dissimilar captions might also share similar before or after events.

[25], [26]. They generate path representations by composing
the structural, linguistics, and visual information of entities
from multi-modal knowledge graphs. Thereafter, the rationale
of visual-linguistic interactions can be inferred by leveraging
the sequential dependencies within a path. However, existing
methods to insert knowledge in VL models during pretraining
helps little to understand the rationality, because the sub-
task of masked language modeling is powerful enough to
understand the token level knowledge [27].

III. APPROACH

Our approach aims to embed the dynamic context knowl-
edge into existing VL models while aligning its format with
the popular datasets utilized in existing methods. We generate
dynamic context-based similarities to measure the distances
of any image pairs in terms of dynamic contexts with the
knowledge of still information. The solution decouples the
dynamic contexts with the still information by construct-
ing positive image-caption sample pairs based on the pre-
calculated DCS for contrastive learning and maintaining the
input format compatibility with existing VL models.

A. Dynamic Contexts based Similarity

Given a still image I;, its dynamic contexts are de-
fined as a combination of three kinds of event descriptions

[Ebeforer Enows Eqprer], Where the elements [e}, €5, e;] €

[EéeforevE;mvather] denotes the sentence description of
the event happened “shortly before”, “on”, and “shortly after”
the image taken time, as shown in Fig. 2. With a well-
trained sentence embedding model, the representations of
these event descriptions can be encoded as feature vectors
el €l €l], respectively. Assume that € € R™ is the normalized
sentence embedding for each event sentence, and the dot-
product function is applied for measuring the similarity of any
two sentences embedding [28].

Therefore, for any two images I; and I,, given their

dynamic context instances of [e}, el e’] and [e], el el], a

naive dynamic context-based similarity of these two images
can be measured as:

. ;T i ST i T
Sij=€"€ +e, € +e, €. (D)

Here we ignore the normalization procedure (dividing by 3) for
simplification. The representation of §;; has the properties of
symmetrical, bounded and transitivity, which well represents
the similarity of images I; and ;. However, there are two main
obvious limitations of directly incorporating the supervisions
of 8;; for practical model training:

o Required dense event annotations. Almost all advanced
VL multimodal models are pretrained on the large-
scale corpora [1]. Constructing the dense annotations
of dynamic context for these corpora is laborious and
expensive and also computationally heavy.

o Neglected event causality. Similarity metric 3;; treats
the dynamic contexts independent, hence, it lacks the
capture of events causality, which plays an essential role
in downstream tasks, such as commonsense reasoning.

To address these two issues, we look back the proper-
ties of dynamic contexts for images. Considering a function
f + R",R" — R as the causality measurement of two
vectors, then we have constraints on the function f as follows
according to the intuition on causalities:

o Asymmetry: f(w,v) # f(v,w), Yw,v € R™; the
causality measurement can distinguish the order of two
events, so that the function should be asymmetrical.

o Continuity: wy - woT ~ 1,v1 -7 = 1, f(wy,v1) =~ 1
= f(wz,v2) = 1;

Considering the constraints of causality measurement men-
tioned above and the sententious structure of equation (1), we
apply a linear mapping function as an encoder on normalized
events embedding, and use the cosine similarity on the map-
pings of two consecutive events to measure the causalities,
represented as follows,

Jo141(e—1,€e41) =cos(e—r - Woiseqr - Why)
=e_1-W- ezl,
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where cos(x;y) = ”m” ” T; measures the cosine similarity of
two vectors x and y; W_; and W, are parameters of two
linear mapping functions on two types of events; (e_; and €41)
denote any two consecutive events embedding, such as (¢, and
€n) or (€, and €,); For simplifying the training process, we
relax the linear mapping process on two events as a trainable
bi-linear function, as long as W is not a symmetric matrix. We
can clearly observe the properties of asymmetry and continuity
with the definition of f_; ;4.

As f_1,41 is ascalar value, and replace €_1, €4 with €, €,
we have as follows,

T 1
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3)
Similarly, by replacing €_1, €41 with €,, €,, we have:
. -T T T 1
i, el . ot
€a "€y fn a €' a n,a j
n,a fra 4)
—(fi Y e oW wT e
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Given the pretrained W, f3,,, and f, ., by plugging equa-
tions (4) and (3) into equation (1), we obtain the same
similarity value of 5; ; on a specific dynamic contexts instance.
Therefore, we can neglect any instances of ¢, and ¢, by ¢,
with the pretrained parameters.

815 =0-cos (e, - W5 el - W) + cos (eh; €))

. A 5
+5T~cos(e;~W;6%-W), ©)
where
o lle W e W,
fom Tom
T WHzHef Wi,
fna

As we presented in equation (5), the dynamic context-based
similarity §;; can be calculated with now events and the
coefficients of 6 and d7. However, as Fig. 2 presents, many
images have multiple possible before and after events, which
indicates that coefficients of & and 5T are random variables
in terms of before, now, and after events. Thereby, instead
of considering an instance of f,, and f, , from specific a
(before, now, after) event combination, we use a statistical
value to represent the relationships among event spaces of &,
&, and &, to avoid the risk of noise and outlier annotations.
Hereby, we obtain our final DCS criteria s;; as follows,
Wl - W) + cos (€5 ¢l
Wil - W)

Si,j =4 - cos (

6
+ 67 - cos (€, ©

where
i, T 2 i, T 2
s ppi = o [l W) 1 s e W]
b,n ‘I| el b.n
2
b= = [V [ 15 T
n,a cI n,a

where § and dp are two statistical constants depending on
the training dataset and can be calculated with the optimized
parameter W with respect to the image samples. The sec-
ond operation for the above equations satisfies due to the
independently selected image samples ¢ and j. In practice,

because of E[§] = E E[3|6§L]}, we can calculate the value

T . )
of anlillz for each before event given the now event e},

Jb,n
of image i. We can do the similar calculation for E[57]. We
apply the average values over the training dataset I of image
samples to estimate the expectations of & and dr. We present

lewl, - Tl wl
I fa

b,n X n,a
with the optimized W in Fig. 3 for a brief overview.
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optimized W on Visual COMET dataset.

Eventually, with the event causality measurement function
f trained on datasets with human labored dynamic context
annotations, such as Visual COMET [29], the requirement of
dense event annotations of before and after events would be
no longer necessary, and the dynamic contexts relevance of
image pairs can be smoothly parameterized by W.

B. Learning DCS on Visual COMET

We extract the event descriptions for each image from
the supervised VisualCOMET dataset in the format of
(Ebefore, Enow) pair and (Eyow, Eqfier) pair to be the posi-
tive training samples. Every event sentence is embedded into a
normalized vector by the pretrained universal sentence encoder
(USE) [30] before training the bi-linear model on the event
pairs. Any other unpaired events in a training batch are treated
as negative samples for the event causality learning. The in-
batch contrastive learning loss function is used for optimiza-
tion by maximizing the positive pair scores and minimizing
the negative pair scores.

We split extracted event pairs from the training and val-
idation annotation files of Visual COMET as training and
validation sets, respectively. The model has trained 400 epochs
with a batch size of 512 and a learning rate of le-5 with a



step decay rate of 0.1 every 100 epochs. With the optimized
bi-linear causality model, we can calculate the DCS for any
two images to measure their dynamic contexts-based similarity
by given image captions.
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Fig. 4. Recall accuracy on the validation dataset with varied percentages of
training dataset used.

Training with Varied Dataset Sizes Pre-text tasks usually
need a large dataset for supervision, which requires a heavy la-
bor force to annotate and limits the practical scope. However, a
vast dataset for learning DCS might be unnecessary. We apply
the pretrained USE model for sentence embedding, making the
pre-embedding of sentences out of our consideration. There-
fore, the dataset size should only be considerable compared
to the applied bi-linear model size to avoid over-fitting during
training. Meanwhile, the bi-linear model size depends on the
embedding dimension of the USE model. Hence the required
dataset size depends on the sentence embedding dimension.
To visualize the effect of applying varied dataset sizes, we
present the recall accuracy with different ratios of the total
training dataset samples in Fig. 4, where the solid and dash-
dot lines represent the results of recall@10 and recall@1.

Analysis The relationship between our defined DCS and
the caption-based similarity of events is essential to excavate.
To quantify the relations, we find the top-% closest images for
each image from the training set of Visual COMET with both
similarity metrics and gather the statistics of overlaps from
the top-k selected images. For the clearance of visualization,
we normalize the overlapping ratio by dividing the counts
of the overlapped image by the dataset size. We present
the overlapping ratio statistics for £ from 1 to 10 and the
summation of overlapped ratio at the bottom in Fig. 5.

As shown in Fig. 5, the summation of the overlapping ratio
increases as the k& value increases, and when the k& value is
greater than 5, the ratio is greater than 0.9. In other words,
DCS is not counter-intuitive. A correctly and rationally defined
DCS metric should measure the dynamic contexts of two
images in similar at a high chance if they have similar captions.
However, in a limited dataset, the similarity rank based on
captions and dynamic contexts might differ. Fig. 6 presents
a sample case to explain this phenomenon. The overlapping
ratio for k equaling 1 is 0.3, which means the most similar
image for any image in the dataset will be the same by the
two similarity metrics at the probability of 30%. Therefore,
we choose the top-1 similar images to form positive sample
pairs to distinguish the effects of DCS with the caption-based
similarity significantly.

C. Dynamic Contexts Enhanced Pretraining

The pre-calculated DCS for each paired image does not
mean the similarity value of the image and text joint em-
bedding generated by the VL model. Hence it cannot be
directly applied as a supervised signal in pre-training, such
as minimizing the distance between the similarity values of
the joint embeddings and the DCS values in a mean-squared-
error (MSE) way. Therefore, based on the pre-calculated
DCS for each paired image, we bring a new pretext task
named Dynamic Contexts Enhanced (DCE) VL pretraining.
The task is designed following the intuition that images with
similar dynamic contexts will generate similar representations
by the VL models. In order to 1) keep consistency with
existing network architectures and 2) insert high-level dynamic
contexts knowledge during pretraining, we re-construct a new
dataset from the original one with its entry being the format of
image and caption (I;, e/, ). Hereby, during VL pretraining, we
hide the high-level dynamic contexts knowledge and keep the
still information visible to force models to learn the hidden
information with the prior knowledge according to the pre-
calculated DCS.

With this ambition, we construct the DCE contrastive learn-
ing loss function, allowing the VL models generated joint
embeddings of samples with similar dynamic contexts to stay
close and keep the embeddings in contrast far away. Con-
trastive learning requires positive sample pairs and negative
sample pairs as supervised information. It requires multiple
negative samples to achieve good performance and thus can be
computationally expensive (e.g., [31]). In our case, we select
the in-batch contrastive learning to balance the performance
and computational efficiency. We rank the DCS value among
all other images for each query image and select the top-1
image as its positive sample. The in-batch contrastive learning
constructs a batch with randomly selected NV pairs of similar
images iteratively. Optimizing models in a batch iteration
treats the NV pairs of similar images as positive samples, and
all other N2 — N possible paired combinations are negative
samples.

Denote the processed joint representation of the DCE task
for sample (I;, €', as z;, then we obtain the DCE loss function

iy Cn
with in-batch contrastive learning as follows,

o exp (COS (zi; Zarg max; (s; )) /T)
Lpce = — Z log N R s

D1 k=1 Likarsmax; (s; ;) ©XP (cOs (245 2k) /T()7)
where N is the batch size, arg max;(s; ;) denotes the index of
I;’s top-1 similar image according to the pre-calculated DCS,
Lk arg max; (s; ;)] Tepresents the image index in a batch which
is not I;’s top-1 similar, and 7 is used here to smooth the
distribution. The loss function mentioned above achieves the
ambition by maximizing the cosine similarity of images sim-
ilar in dynamic contexts and minimizing the cosine similarity
of negative pairs.

IV. EXPERIMENTS

Typical large-scale VL pretraining [7], [8], [32] apply
multiple sub-tasks in parallel to force models learning a fusion
of visual and language representations within the backbone
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network and finetuned on the downstream tasks by transferring
the sub-task heads accordingly. In the experiments, we apply
the VL pretraining on the well-known benchmark network
architectures with our proposed DCE head to force the network
to learn high-level causal knowledge beyond the low-level
text tokens and image patch representations. In the following
subsections, we will go through the pretraining settings, visu-
alize the performance of in-batch contrastive learning of the
DCE head, evaluation on downstream tasks, ablation studies
to excavate the influence of the DCE head, and visualizations
of how the pretrained DCE models capture dynamic context
relations on the out-of-domain dataset.

A. Pretraining Settings

We adopt VL-BERT [5] and UNITER [8] as the basic
VL pretraining methods for our simulation experiments. Both
VL-BERT and UNITER have a similar transformer-based
network architecture and combine multiple sub-tasks for pre-
training. In detail, VL-BERT states that the loss summation
of masked language modeling (MLM), masked visual region
construction (MVRC), and image-text matching (ITM) sub-
tasks could be regarded as its pretraining objective function.
Meanwhile, UNITER introduces an additional word-region
alignment (WRA) sub-task, and it randomly shuffles a sub-
task to optimize its parameters at each training step. Besides
the training schemes, UNITER introduces more pretraining
sub-tasks than VL-BERT, while introducing DCE head could
be regarded as a further step on UNITER. Therefore, by
comparing the basic VL-BERT, UNITER models, and their
DCE versions, we can make a comprehensive analysis about
the robustness of DCE head in different training schemes and
how it influences model performances among other pretraining
sub-tasks.

Implementation details During the experiments, we keep
both their network backbones and training hyper-parameters as
they reported in their works and apply the open-sourced codes
[33], [34] to train our enhanced models. Both VL-BERT and
UNITER have experimented on small and large size network
architectures, we focus on the performance comparisons on
large-size models in this paper. To be compatible with the
conventional design idea, we construct our newly proposed
DCE pre-task as an independent head attached after the back-
bone network with a two-layer perception module and a GELU

person is sitting in her chair recording the kids on stage.

attend the children’s play; sit in the front seats; have their camera; buy a ticket to
the play; buy the camcorder.
After: eagerly film the play; watch the play with excitement; give a copy of the film to family
members; applaud the children

Fig. 6. A query image and its Top-5 similar images from left to right based on captions and dynamic
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Fig. 7. The CDF of the cosine similarities for dynamic context-based similar
image pairs whose representations are generated by the DCE pre-task head
on Visual COMET training and validation splits.

layer [35] as the activation function. We composite image pairs
according to the DCS values in a batch and perform DCE
head for enhancing the original VL pretraining. Meanwhile,
the input entry is still in the format of (image, now event)
to make our DCE head compatible with most existing VL
pretraining methods. Noting that the DCE pre-task only takes
effect on the data samples of (image, now event) extracted
from the original Visual COMET dataset during pretraining if
without further annotations.

Pretraining datasets We follow the same settings re-
ported in the work of Su er al. [5] to train our DCE VL-BERT
on the datasets of Conceptual Captions [36], BooksCorpus
[37], and Visual COMET [29], with the sub-tasks of masked
language modeling with visual clues, masked Rol classifi-
cation with linguistic clues, and dynamic contexts enhanced
in-batch contrastive learning. Following the same settings
reported in [8], DCE UNITER is pretrained on datasets of
COCO [38], Visual Genome [39], Conceptual Captions [40],
SBU Captions [41], and Visual COMET [29], with the sub-
tasks of masked language modeling, image-text matching,
word-region alignment, masked region modeling and dynamic



contexts enhanced in-batch contrastive learning.

B. In-batch Contrastive Learning Performance Visualization

We use cosine similarities of dynamic contexts-based sim-
ilar image pairs to visualize their feature distances. For each
image in the dataset and its pre-calculated DCS-based top-
1 similar image pair, we generate the DCE pre-task rep-
resentations from the pretrained DCE models and calculate
the cosine similarity on the paired representations. Fig. 7
presents the cumulative distribution function (CDF) of the
cosine similarities for both the training and validation splits of
the Visual COMET dataset. As both the training and validation
CDF curves imply, most dynamic context-based similar image
pairs have cosine similarity values greater than 0.9, which
means the distances of positive image pairs (top-1 similar
in terms of dynamic contexts) are minimized as expected.
Meanwhile, the CDF values for cosine similarities of both
pretrained DCE models lesser than 0.5 is under 2% and 6% for
the training and validation splits, meaning almost all positive
image pairs are correctly classified as positive in the in-batch
contrastive pre-task. The experimental results of pretraining on
our DCE models prove that the feature distances of dynamic
contexts relevant images are minimized as expected with
in-batch contrastive learning, and the performance on the
validation split proves the generalization of the new proposed
pre-task head on the pretraining models.

C. Evaluation on Downstream Tasks

We verify the effectiveness of incorporating dynamic con-
texts information to VL representation learning on several
typical visual-linguistic downstream tasks, e.g., Visual Com-
monsense Reasoning (VCR) [42], Visual Question Answering
(VQA) [43], and zero-shot image-text retrieval [8].

1) Finetuning on VCR and VQA: We evaluate the per-
formance of VCR and VQA by transferring the pretrained
models to each downstream task and finetuning them through
end-to-end training on the target datasets. Table I presents
the results of DCE models achieving better performance for
both network architectures in both downstream tasks than the
benchmark models !. In conclusion, the DCE VL-BERT has
1.04% and 0.80% accuracy improvements on the VQA test-
dev and test-std tasks compared to the baseline VL-BERT. The
DCE UNITER has 0.36% and 0.30% accuracy improvements
on the VQA test-dev and test-std tasks compared to the
baseline UNITER. On the task of Q—AR, both DCE models
have 0.6% accuracy improvement over the baseline models.
Since DCE UNITER’s performance improvements are not as
significant as that of DCE VL-BERT, to question the statistical
significance, we make four trials with different model weights
initialization for DCE UNITER pretraining and finetuning the
pretrained model on VQA and VCR tasks with the same
settings as reported. We report the average values and the
maximal absolute deviations of the four trials from the average
values.

IBoth works lack the results of “other”, “number” and “yes/no” of VQA,
so we report them by training on their public code bases.

Both VCR and VQA require reasoning on the knowledge
of image-question. Still, the VCR dataset is more compli-
cated of stories than that of VQA, which in nature requires
cognition understanding and commonsense reasoning about
the world [42]. Our DCE sub-task constrains the model to
learn images-question semantics by forcing dynamic contexts
similar images to stay together in the output embedding space.
Hence, it performs better on the VCR tasks requiring higher-
order cognition than the VQA tasks. Moreover, despite the
different training schemes of both benchmark networks, DCE
UNTER applies five sub-tasks for pretraining, while VI-BERT
only has three. Therefore, the effectiveness of the DCE sub-
task for UNITER during pretraining is diluted by other sub-
tasks compared to VL-BERT, which might make performance
improvements on VL-BERT more significant than that on
UNITER.

Fig. 8 presents a case study of the Q—+AR task on the
VCR validation dataset, where we select the first four cases
such that both DCE models make correct choices while base
models make wrong choices. None of the selected questions
can be directly answered without speculation on the dynamic
contexts of images. For instance, the first two questions are
equivalent to inference on what will happen next with the im-
ages presenting. The last two questions require understanding
the background contexts and inference on what has happened
before. If training models without speculation, the answers to
the third question like “taking out a weapon” or “looking for
money” could also be correct. Meanwhile, the answer like
“10 has some type of college papers he is shoving in 2’s
face,” which describes the image, could also be a suitable
choice. In conclusion, pretraining with dynamic contexts helps
downstream tasks better capture higher-order cognition and
commonsense reasoning about the world.

2) Zero-Shot Image-Text Retrieval: The evaluations on
zero-shot image-text retrieval are more illustrative. Different
from the standard image-text matching [45], [46], the influence
factors of finetuning are neglected, as no images and captions
have been probed during training [8]. Hence it can directly ex-
plain the performance of the pretrained models on downstream
tasks. We transfer the parameters of the image-text matching
sub-task to generate the retrieval score of any image-text pair.
Because the reported VL-BERT is not pretrained with the ITM
sub-task, we only report the results on the UNITER network.

Table II presents the experimental results of zero-shot image
retrieval (ZS IR) and text retrieval (ZS TR) on Flickr test
set, following the dataset split and experimental settings in
UNITER [47]. It can be found that our DCE UNITER
performs better than the base model in terms of different recall
and precision for both image and text retrieval. Moreover, the
improvements of IR (0.80%) and TR (1.40%) on R@]1 are
more significant than that on R@5 (IR: 0.20%, TR: 0.30%) and
R@10 (IR: 0.04%, TR: 0.30%), proving that DCE UNITER
can understand the semantics of image and text more deeply
than the base model with dynamic contexts knowledge, leading
to better correlation modeling between image and text with
more accurate relationship capturing.

Fig. 9 presents several cases of the text and image retrieval
tasks. We present the query captions/images and the correct re-



TABLE I
PERFORMANCE COMPARISON TO THE BASELINE PRETRAINING METHODS ON TASKS OF VCR AND VQA. NOTING THAT VQA FOR VL-BERT AND DCE
VL-BERT ARE FINETUNED ON THE TRAIN+VAL SPLITS, WHILE UNITER AND DCE UNITER ARE FINETUNED ON TRAIN+VAL+VG SPLITS.

Model VQA test-dev VQA test-std VCR
other number yes/no overall other number yes/no overall Q—A QA—R Q—AR
VIiLBERT [6] - - - 70.55 - - - 70.92 733 74.6 54.8
VisualBERT [4] 70.80 - - - 71.00 71.6 73.2 52.4
LXMERT [11] 72.42 63.10 54.20 88.20 72.54 - - -
Oscar [13] - - - 73.61 - - - 73.82 - - -
VL-BERT 61.00 53.66 87.03 70.89 61.37 53.93 87.46 71.38 75.8 78.4 59.7
DCE VL-BERT 62.25 53.41 88.20 71.93 62.37 53.21 88.45 72.18 76.94 79.48 61.30
UNITER 63.88 56.95 89.91 73.82 64.31 56.34 89.83 74.02 773 . 62.8
DCE UNITER 64.31 £ 0.02 5739 +£020 90.18 +0.01 7418 £0.02 6447 +0.04 56.65 £ 0.13 9028 +0.01 7432 +£0.02 | 77.57 +£0.02 81.35 +0.02 6348 + 0.02

Image & Question Answer Choices

Rationale Choices

No she would walk around it;

Yes, if she doesn' t dance , she will sit soon;
No, she won’t;

Yes , 4 will put her glove back on, it is on the
bench near 1.

4 is a young girl and young girls tend to be shy. she is waiting for a young man like 6
to ask her to dance;

She does not have an instrument on stage;

9 is empty and nearby. She will tire of standing in dress shoes soon;

She looks happy and confident. Her dancing posture is on point.

6 would be offended;

6 would accept the drink;
6 would stop talking;

4 would start to talk with 6.

Person 6
‘What would happen if 4 bought 6 a

drink ?

The lady at the top of the stairs is probably the homeowner, so 6 is the

hot per and the hot per would offer guests a drink;

6 is sitting at a bar without a drink, usually means she will be ordering one;

The larger glass of milk is closest to 6, she will continue drinking it after she is done;
Based on her mode of dress and position behind the bar, 6 is a bartender and
therefore expected to continually offer and serve drinks until asked otherwise.

He’s about to put it in his pocket;
It is a lottery ticket and he is checking it as the
numbers are drawn on tv;
| He is taking out a weapon;

|| 0is looking for the money he wants to deposit
with 8.

He is reaching into inside pocket to take something out;

He is looking off in the distance with a worried look;

He has it raised behind his back prepared to strike if the cow ever does come near;
0 has a gun and he has his hand on his arm.

4| No he does not;

il No 10 took an oath before testifying that he
“| would not lie when giving his testimony;
No, 2 is fulfilling his job function and did not
benefit in the way 10 did;

No, 10 has some type of college papers he is
shoving in 2’s face.

Person 10 Person 2

Does 10 have proof of 2’ s
interference in two thousand and
sixteen point zero election ?

2 sits in a packed room that looks like a conference hall and 10 is in the back with a
camcorder recording it;

2 has a textbook and a college sweatshirt on, and many of the girls are holding
textbooks , so 10’s papers are college related;

2 is at the head of the room and appears to be a star of some sort pontificating on
the topic of fame;

2 appears shocked and nervous.

Fig. 8. A case study of the Q — AR task on the VCR validation dataset. The correct answers and rationals to each question selected by DCE models are
emphasized in bold, while the wrong choices selected by UNITER are labeled in gray.

TABLE I

RECALL PERFORMANCE COMPARISON TO THE BENCHMARK PRETRAINING METHODS

OF ZERO-SHOT IMAGE AND TEXT RETRIEVAL ON FLICKRIK.

TABLE III
STATISTICS OF DATASETS FOR IMAGE (IQ) AND EVENT
ORDERING (EO) TASKS.

Model 7S IR ZS TR Train set Validation set
R@1 R@5 R@10 R@1 R@5 R@10 EO | before  now  affer | before now after
VIiLBERT [6] 31.86 61.12 72.80 - - - 238K 467K 469K | 59K 29K 59K
Unicoder-VL [44] 48.40 76.00 85.20 64.30 85.80 92.30 # Videos # Image pairs
Oscar [13] 5750 8280  89.80 | 7350 9220  96.00 10 3105 24,346
UNITER 68.74 89.20 93.86 83.60 95.70 97.70
DCE UNITER 69.54 89.40 93.90 85.00 96.00 98.00

trieved images/captions by DCE UNITER for each task on the
left two columns of each sub-figure. The base UNITER model
retrieved images/captions, and the corresponding matched cap-
tions/images are presented on the right two columns. As shown
in the figure, the wrongly retrieved images and captions by
the benchmark UNITER model are somewhat similar to the
ground truths. For instance, as the left sub-figure showing,
both images on the first row present two women hugging
each other, and the matched captions have similar semantics.
However, the two images have different dynamic contexts. The
right image presents a girl wearing a bike helmet and several
people holding bikes in the background, so we can reason
that the girl might obtain a good grade in a cycling race, and

her friend embraces her for celebration, obviously different
from the right image in terms of dynamic contexts. The
base UNITER model pretrained with image-caption matching
pretext task cannot classify the difference between two images,
making an error retrieval on a similar caption semantic. A
similar conclusion can be inferred from the left sub-figure. The
query image in the first row presents a guy who rides on a
motorcycle, illustrated by the retrieved captions. The matched
image of the base UNITER retrieved caption presents similarly
where a group of men ride motorcycles. However, we can
reason that the people on the left might be in the parade as
they all wear the same red and black outfits, while the guy
in the right image might be a policeman managing traffic.



Query Caption UNITER UNITER Caption

Query Image [ DCE UNITER UNITER

DCE UNITER

Two best friends
embracing their
friendship.

A girl cyclist being
hugged by another girl.

A man sitting at a
picnic table with a tray
and partially
consumed beer in
front of him.

A mansits in an
outdoor cafe finishing
ameal.

Four people playing
instruments
underneath a white
tent.

A band on stage with
B | guitars and brass.

A man in a black shirt
prepares to play the
drum.

A band prepares as
they stand on a
latform.

&| Two small children
with older man plating
R a tree outside their

bl home.

The children are
playing outdoors,
while a man smiles
nearby.

A group of men in
matching red and black (&
outfits ride in a line on
their motorcycles.

A guy wearing an
§i| orange vest sitting on
a red motorcycle on
the street.

Little girl in kitchen,
kissing a fluffy orange
cat.

A blond child is being
bitten on the nose by a
little orange kitten.

An old man in dirty
clothes rides a bike
loaded with
possessions down a
busy city street.

An oriental woman
® wearing a hat riding
down the street on a
bicycle.

A technician in an
orange vest and a hard
hat removes cables
from a work truck.

A worker in a hard hat
and orange vest is
working.

An african child carries
an infant in swaddling
cloth on her back.

Asian looking lady
holding a baby while
~ = | sitting and looking at it.

Fig. 9. A case study of the text and image retrieval tasks on the Flickrlk dataset. The first column of each sub-figure presents the query captions/images,
and the second and third columns show the proposed DCE UNITER and UNITER retrieved images/captions. The fourth column gives the matched ground

truth of the UNITER retrieved images/captions.

TABLE IV
ABLATION STUDIES ON DOWNSTREAM VCR AND VQA TASKS. WE
REPORT THE ACCURACY OF VCR AND TEST-STD ACCURACY OF VQA.

Model VCR
Q—A QA—R Q—AR
VL-BERT 75.8 78.4 59.7
VL-BERT ,4; 75.7 78.9 60.1
VL-BERT 4 76.56 78.84 60.70
UNITER 713 80.8 62.8
UNITER,1,; 77.2 80.9 63.0
VQA test-std
Model other number yes/no overall
VL-BERT 61.4 539 87.5 714
VL-BERT,; 61.8 53.5 87.3 714
VL-BERT,,4 61.85 53.83 87.75 71.71
UNITER 64.3 56.3 89.8 74.0
UNITER ;5 63.3 56.4 90.0 73.5

The proposed method enhanced with dynamic contexts can
accurately distinguish two images with similar captions but
different dynamic contexts, increasing the ability to retrieve
images and captions more accurately.

D. Ablation Study

The experimental results in the above study prove that
the newly proposed sub-task significantly improves the
understanding of pretrained models on multiple down-
stream tasks. However, we introduced extra data sam-
ples (image,now event) extracted from the Visual COMET
dataset into pretraining compared with the baseline methods.
Therefore, it is curious whether the additional data samples
or the newly proposed sub-task causes increased performance
during pretraining. Besides, we learned the DCS model from
the Visual COMET dataset and pretraining the DCE models
on the data samples extracted from Visual COMET. Hence,

how the trained DCS models can be generalized on other
(image, caption) datasets is also worth discovering.

1) Effects of Introducing New Samples in pretraining: We
build an ablation study to explore the influence by removing
the proposed DCE pre-task head. We pretrain the models
of VL-BERT,;; and UNITER,;; based on the same hyper-
parameters and datasets as in the previous section where
the DCE models are pretrained except for the DCE pre-
task is trimmed. We finetune the pretrained VL-BERT;; and
UNITER,;; on the downstream tasks of VCR and VQA,
and Table IV presents the results. The results in Table IV
illustrates that introducing extra data samples in pretraining
has slight but not significant improvements for the VCR
task on QA—R and Q—AR. Moreover, it has slightly
worsened the VCR task’s performance on Q—+A and the
overall result of UNITER on the VQA task. The results are
surprising while not strange. The performance of downstream
tasks depends on the relevance of pretraining datasets. Larger
datasets usually lead to better performance, but not always, as
announced by recent studies [27] of decoupling the datasets
from VL pretraining. Thereby, discovering deep knowledge
from the raw dataset is wiser, while naively increasing the
scale of pretraining datasets cannot guarantee performance
well everywhere.

2) DCS on Out-of-Domain Dataset: The DCE pre-task in
the main experiments pretrained on the extracted data samples
from the raw Visual COMET dataset. At the same time, the
DCS is also trained on the dynamic contexts of the same
dataset. Hence, it is attractive to discover if the DCE pre-task
works on other (image, caption) datasets with the DCS model
parameters optimized on the Visual COMET dataset. We apply
the optimized bi-linear model W on the Conceptual Captions
dataset to generate the DCS of each pair of images and use
the DCS to generate positive samples for the DCE head in-
batch contrastive learning. We then build an ablation study
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Person 1 Serson 2 Person 3

Person3 is holding her purse in
her left hand while grinning at
Person2 with her head turned;

Person2 has a hand in his pocket
listening to Personl;

Person3 is upset and clutching
onto her belongings;

Person2 follows behind Personl
and smokes a cigarette;

Person2 is leaning forward trying
to hear Personl;

Fig. 10. An ordered set of images and the corresponding annotated captions (events happening as showing).

TABLE V
RESULTS OF EVENT AND IMAGE ORDERING ON THE VISUALCOMET
DATASET.
Model EO acc 10 acc EditDist
VL-BERT 82.27 87.35 0.34
DCE VL-BERT 83.64 89.38 0.29
UNITER 84.28 88.69 0.31
DCE UNITER 85.15 91.41 0.22

by applying the same datasets reported in the baseline VL-
BERT model and the DCE pre-task works on the Conceptual
Captions dataset for pretraining. The results of downstream
tasks of VCR and VQA are presented in Table IV, denoted
as VL-BERT,,q. As the table presented, VL-BERT,,q has
improvements of 0.8%, 0.4%, and 1.0% on the tasks of VCR
and 0.33% on the VQA overall task than the baseline VL-
BERT. The performance increments of VL-BERT,,; prove
that the optimized DCS model and the proposed DCE pre-
task can be transferred to other (image, caption) datasets to
excavate the causalities and commonsense behind still image-
caption information.

E. Event and Image Ordering Tasks

To further understand the effects of DCE on visual-linguistic
representations learning, and evaluate its performance on event
reasoning, we construct two downstream tasks of event order-
ing (EO) and image ordering (IO) based on the Visual COMET
dataset to check if DCE models can capture the logic beyond
the static image and caption. Each task is finetuned from the
pre-trained models.

Specifically, for each image, we randomly sample an event
from its corresponding dynamic contexts (before events, now
events, after events) and compose the data in the format of
(image, event). We construct a three-label classification task,
where EO aims to classify the event into before, now, or after,
given the image, event as input. We train on the training split
of Visual COMET and report the corresponding performance
on the validation split. The joint representations for each
image-event pair generated by the VL backbone networks are
fed into a linear mapping layer followed by a cross-entropy
loss function for optimization.

IO constructs a more challenging application to re-order
the shuffled images sampled from the same video clips in
the original VisualCOMET dataset. As images in the Visu-
alCOMET dataset are selected from some video clips, we
make a permutation of every two images in the same video

Query Images UNITER DCE UNITER

Fig. 11.

Visualization of similar images in the VCR test dataset. Figures
(a)-(e) present a group of persons, a car, a team, an airport, and a street,
respectively.

clip and label the paired images according to their ground-
truth ordering as false (0) or correct (1). We construct the 10
training dataset with paired images and their corresponding
now events. Noting that we select video clips which contain
at least three shots to make the ordering task reasonable. Half
of the randomly shuffled image pairs are selected to form
the training dataset, while the left are used for validation.
The VL backbone networks generated representations are fed
into a bi-linear mapping layer attached with a binary cross-
entropy loss function for optimization. We rebuild the images
ordering sequence based on the predicted ordering for all
image pairs generated from the same video clip. To verify
the re-ordering performance, we use the shortest edit distance
(EditDist) dividing by the length of the ground-truth ordering
sequence and the classification accuracy on the whole dataset
as metrics. We present the statistics of datasets for the EO and
IO tasks in Table III. For all experiments, we choose AdamW
[48] as the optimizer, and we set learning rates of le-5 and
le-6 for 10 and EO, with the batch size to be 40, respectively.

The results of both DCE and base models for event and
image ordering tasks are shown in Table V. Fig. 10 presents a
sample of the ordered images and the corresponding captions,



where baseline models with patch-level information almost un-
able to distinguish these images. As Table V shows, pretrained
DCE models perform better than baseline models in terms
of EO and IO, evidencing that the DCE sub-task can better
capture the cognition and help models to understand the logic
beyond the visual-linguistic information from raw datasets.

F. Visualization of DCS in Out-of-Domains

The essential hypotheses are that we assume images con-
tain wealthy dynamic contexts and similar dynamic contexts
generate similar images. The above experimental results im-
plicitly prove the hypotheses with outstanding downstream
task performances compared with benchmarks. Further, we
want to visualize the image similarities with the pretrained
DCE models and show whether the models capture dynamic
context relations in out-of-domains. Therefore, we conduct
experiments on the VCR test dataset to ensure that no entries
have been observed during pretraining and whose domain is
similar to the Visual COMET dataset.

In detail, we generate the representation for each image
from the pretrained DCE UNITER by normalizing the output
from the DCE head while masking the whole text tokens
during experiments. To make a fair comparison, we generate
the baseline representation by normalizing the pooled output
from the backbone of UNITER. Fig. 11 presents the first five
images in the test dataset of VCR and their closest images
generated by DCE UNITER and base UNITER.

As shown in Fig. 11, the DCE UNITER can cluster similar
images with the query images even if the images are not
observed during pretraining. In contrast, the paired images
of the base UNITER are not reasonably related to the query
images in most cases. The out-of-domain results prove that
pretrained models with the DCE sub-task can “understand”
the dynamic contexts beyond images even without hints from
captions.

V. CONCLUSION AND FUTURE WORK

Embedding high-level knowledge from dynamic contexts
endows the pretraining of large VL models with causal rea-
soning capability, and significantly improves the performance
of downstream tasks. Particularly, this paper introduces a
learning-based metric to measure the contexts similarity of
the given image pairs. On this basis, we devise a contrastive
learning sub-task to boost VL representation learning with
dynamic contexts. Extensive experiments on reasoning related
downstream tasks and a new image/event ordering task demon-
strate the effectiveness of our mechanisms.

Possible future direction includes extracting the causality
of events directly from visual content irrespective of the
dependency of dense textual event annotations. Moreover,
taking event causalities into account in video understanding
task, e.g., video2caption [31], would yield more interesting
applications, and further enhance VL representation learning.
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