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Visible Light Communications via Intelligent Reflecting Surfaces:
Metasurfaces vs Mirror arrays

Amr M. Abdelhady, Ahmed K. Sultan, Osama Amin, Basem Shihada, and Mohamed-Slim Alouini

We propose two types of intelligent reflecting systems based on programmable metasurfaces and mirrors to focus the incident
optical power towards a visible light communication receiver. We derive the required phase gradients for the metasurface array
reflector and the required orientations of each mirror in the mirrors array reflector to achieve power focusing. Based on which, we
derive the irradiance expressions for the two systems in the detector plane to characterize their performance in terms of aiming
and focusing capabilities. We show analytically that the number of reflecting elements along with the relative source - reflector
dimensions determine the system power focusing capability. Moreover, we quantify analytically the received power gain compared
with reflector-free systems. In addition, we introduce a new simple metric to assess the relative reflectors’ performance for a given
source, detector, reflector layout. Finally, we verify the analytical findings regarding absolute and relative reflectors’ performance
via numerical simulations.

Index Terms—Channel modeling, Intelligent reflecting surfaces, Metasurfaces, Mirror arrays, Visible Light Communications.

I. INTRODUCTION

IN the past decade, the wireless communications world
has experienced not only a quantitative growth but also

a qualitative one. As the number of the connected devices
increases exponentially, the network capacity and coverage
should meet such an expected tremendous growth. Moreover,
communication networks have to deliver enhanced mobile ser-
vices with ultra-reliable low latency communications. Under
the 5G umbrella, many research efforts have been dedicated
to realizing these ambitions, which was successfully translated
into the first 5G standard in June 2018. Nevertheless, the
rise of new services as extended reality, holographic commu-
nication, connected autonomous systems, tactile interactions
motivates researchers to propose unconventional communi-
cation networks. Recently, improved thrust research efforts
are adopted to formulate visions for 6G networks and their
enabling candidate technologies [1], [2].

The main research focus of communications link design has
been on optimizing transmitter and receiver structures and
operations based on imposed channel conditions. Recently,
adding design degrees of freedom to the channels by in-
corporating tunable intelligent reflecting surfaces (IRSs), has
received significant research attention in radio frequency (RF)
systems [3]–[5]. Many efforts have been dedicated to model
and study the potential gains of using such devices in RF
networks performance enhancement [6], [7]. As for the VLC
systems, IRSs are expected to participate effectively in boost-
ing their performance, especially that most of the VLC systems
rely on the existence of a line of sight (LoS) [8]–[10]. The
incorporation of IRSs in indoor VLC systems can provide sig-
nificant gains in terms of resilience to LoS blockages between
the transmitter and the receiver, an improved tradeoff between
lighting and communications quality of service, interference
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mitigation, more efficient energy harvesting capabilities, and
enhanced localization services.

Recently, few efforts are spent on studying intelligent sur-
faces for optical communication systems [11]–[15]. Najafi et
al. studied using smart mirrors to relax the LoS requirement
for FSO links in [11]. Moreover, in [12], Valagiannopoulos
et al. added programmable directivity to the transmitter by
covering it with a metasurface. In addition, in [13], Cao et
al. proposed a beam-shaping system at the transmitter to
enable non-line of sight VLC using coherent optical trans-
mitter array. In [14], Deng et al. proposed and demonstrated
a reconfigurable mirco-mirrors based beam-steering system
for FSO inter-rack networks of data centers. Furthermore, in
[15], Zou et al. proposed the use of tunable metasurfaces for
inter/intra optical wireless chip communications. In the afore-
mentioned studies, IRSs were realized by either metasurfaces
or controllable mirrors. Metasurfaces are synthesized materials
composed of arrangements of sub-wavelength metallic or di-
electric structures that are used to manipulate light propagation
in unusual ways compared to classical optical devices. These
surfaces are capable of manipulating wavelength, polarization,
and phase of incident waves. Hence, they can be used to realize
the functionality of many classical optical devices as lenses,
diffraction gratings, polarizers, and beam-splitters [16], [17].
Eventually, metasurfaces can provide combined conventional
optical functions in addition to providing new functionalities
as anomalous reflection governed by the generalized Snell’s
law of reflection, which is of particular interest in this work.
A particularly interesting application of metasurfaces is the
realization of flat focusing mirrors that are not attainable using
conventional optics [18], [19]. To the best of our knowledge,
this is the first study to consider utilizing IRSs for non-
coherent VLC systems employing intensity- modulation/direct
detection.

In this paper, we propose an analytical framework to study
the capabilities of both the adaptive metasurface and mirror
array-based reflectors in focusing and aiming radiated power
towards a specific detector. Towards this aim, we first derive
the phase gradients to be applied to the metasurface array
and the mirror array elements orientation needed to direct
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the incident power towards the detector center. Next, we
derive expressions for the irradiance (power density) in the
detector plane for both types of reflectors. After that, we derive
simplified irradiance expressions under some relative locations
and dimensions assumptions in addition corresponding to
some practical special cases. Moreover, we introduce a new
simple metric to judge the reflectors’ relative performance
from a received power perspective. Then, we quantify the
received power gain compared with the power received from
LoS. Finally, we study via simulation examples the impact of
the number of reflecting elements, and detector location on
the received power.

The rest of this paper is organized as follows: firstly we
provide a necessary background on light transportation in
section II. After that, we describe the adopted system model in
section III. Next, we derive the irradiance expressions for both
setups in sections IV and V. After that, we derive the irradiance
at the detector center for several common practical special
cases in section VI. Then, we present analytic studies and
insights in section VII. Finally, we present several simulations
in section VIII followed by the conclusion in section IX

Notation: In this paper, vectors are denoted by two cap-
italized bold letters such as AB, where it starts from A
and ends at B. A starts at origin and ends at A. AB =
[ABx ABy ABz]

T
= B − A, where ABx, ABy , and ABz

representing its x, y and z coordinates, respectively, and (.)T

represents the transpose operator. ÂB is the unit vector of
AB. We denote the unit vector representing the direction
of a vector starting at point A and ending at point B by
ÂB. AB represents a line segment between the points A
and B. Moreover, we use J(a,bc,d ) to denote the determinant of
the Jacobian matrix J̄(a, b, c, d), associated with the mapping
of c and d variables into a and b variables, where J̄ ,[[
∂a
∂c

∂b
∂c

]T [
∂a
∂d

∂b
∂d

]T ]
. Furthermore, we use ||.||2 to denote

the `2-norm, and I(C) as an indicator function where I(C) = 1
if the condition C is satisfied and I(C) = 0, otherwise. As
for symbols representing sets and matrices, the calligraphic
and blackboard fonts are used, respectively. Finally, we use |.|
to represent the absolute value of a scalar and the Lebesgue
measure of a set, while ek denotes the k-th column in the
3× 3 identity matrix.

II. BACKGROUND

Throughout this work, we consider the non-coherent anal-
ysis of light propagation motivated by several reasons. The
first reason is the random-phase nature of the radiation source.
Also, the insignificance of interference and diffraction in the
considered setups, where such effects need special arrange-
ments for interference to appear for non-coherent sources
[20, Ch. 7.3.4]. Finally, the mathematical intractability in-
curred in dealing with electromagnetic field expressions when
considering metasurfaces and multi-element reflectors. In the
following, we define light energy-based metrics and describe
the light reflection patterns before delving into the analysis.

A. Fundamental Radiometric and Photometric Metrics

In this section, we explain some fundamental metrics that
describe light energy transportation in space. Radiometry
studies the properties of radiation energy distribution in space,
which is crucial for the communications service assessment
of VLC systems. On the other hand, photometry is concerned
with studying the human eye perception of light, which is
crucial for the assessment and design of lighting systems [21].

Among the radiometric quantities, the following metrics are
of particular relevance [22, Ch. 1.6] [23, Ch. 2.3] [24, Ch. 13]:
• Radiant Flux (Φ) represents the rate of energy flow

(radiated power) from/into a certain spatial region, and
can be expressed as

Φ =

∫ 740nm

λ=380nm

P (λ)dλ (watt), (1)

where P (λ) represents the power spectral density of the
radiated flux measured in watts per meter and λ denotes
the radiation wavelength.

• Irradiance of a point on a surface (E) is the amount of
radiant flux incident on a unit area lying on that surface
from all directions in the half-space above or below it. In
other words, it represents areal radiant flux density (power
density). It is worth noting that E does not depend on the
surface properties, where is defined as

E =
dΦ

dA
(watt/m2), (2)

where dA is a differential area element containing the
point at which irradiance is to be computed. Emittance
follows the same definition of irradiance except that flux
exits the surface of interest. Hence, the total incident
flux on a given surface/detector represented by the set
of points Q can be expressed as∫

Q
E(P)dAP, (3)

where dAP represents a differential area element tangen-
tial to the considered surface at P.

• Radiant intensity of a point source (I) in a given
direction is the amount of radiated flux by a point source
per unit solid angle and is defined as,

I =
dΦ

dω
(watt/steradian), (4)

where dω is a differential solid angle element around
the desired measurement direction. I represents also the
angular radiant flux density. For a point isotropic source,
I = Φ

4π .
• Radiance (L) is defined as the amount of radiant flux

per unit solid angle per unit area perpendicular to the
direction of radiance measurement. Three constituents are
needed to specify radiance, namely, a point, infinitesimal
area containing this point, and a solid angle subtending
the direction of measurement. Radiance can be attributed
to any arbitrary point in space, with a possibly virtual area
containing that point, nonetheless, computing radiance for
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Fig. 1: Radiance illustration

a point on an extended source or a reflecting surface is
of particular interest. Finally, it can be evaluated as

L =
d2Φ

dA⊥dω
=

d2Φ

dAdω cos (θs)

, lim
∆A→0,∆ω→0

∆Φ

∆A∆ω cos (θs)
, (5)

where dA⊥ represents the projection of the differential
area element containing the measurement point onto a
plane that is orthogonal to the measurement direction, and
θs is the angle between the normal to the area element
and the direction around which the solid angle is defined
as can be seen in Fig. 1. Equivalently, radiance can
be defined by expressing its relationship with irradiance
through the following integral,

E =

∫
Ω

L cos (θs) dω, (6)

where Ω is a hemispherical solid angle. It is worth noting
that radiance is constant for all points lying on the ray
representing direction of radiance measurement.

As for the relevant photometric quantities, they follow
very similar definitions to their radiometric counterparts with
the exception that luminous flux is considered instead of
radiant flux:
• Luminous Flux (Φv) represents the optical power

weighted by the eye sensitivity function (V (λ)), and can
be expressed as

Φv =

∫ 740nm

λ=380nm

P (λ)V (λ)dλ lumens, (7)

where V (λ) is the spectral efficacy function that specifies
the relative response of human eye to different wave-
lengths. Illuminance, luminous intensity and luminance
are the photometric counterparts of irradiance, radiant
intensity, and radiance, respectively [22, Ch 2.2].

B. Light Reflection Patterns

Reflection response of a surface is highly determined by its
constituting material and its geometric imperfections. Surface
reflection response can be classified into: specular, diffuse, or
glossy based on the roughness degree of the surface (deter-
mined by fluctuation in the height profile). Perfectly smooth
surfaces act as mirrors and reflect light in a specular direction

according to Snell’s law of reflection while rough surfaces
scatter incident light in all directions. Generally, surfaces have
glossy nature where the reflected power consists of a specular
component and a diffuse component. In this work, we are
particularly interested in specular reflections.

III. SYSTEM MODEL

In this work, we consider two different setups for intelligent
reflecting surfaces in the context of VLC systems, namely,
intelligent metasurface reflector (IMR) and intelligent mirror
array (IMA). In both setups, we assume a non-coherent
LED transmitter [25, Ch. 2] that is horizontally-oriented and
mounted to the room ceiling at a vertical clearance hd from the
horizontal plane containing the receiver as depicted in Fig. 21

and Fig. 3. The x, y, and z axes positive directions are oriented
such that the z-axis is orthogonal to the ceiling and points
towards the floor of the room, while the y-axis is normal to
one of the walls and points at the source side, and the x-axis is
oriented such that the three axes form a right-handed coordi-
nate system. Moreover, we assume an extended planar source
having uniform radiant emittance over its area As = wsls with
ws and ls being the source span along the x-direction and y-
direction, respectively. Each point on the transmitter aperture
is assumed to have a generalized Lambertian radiation pattern
with Lambertian order m. Hence, the radiance of a general
point on the transmitter in a direction making an angle θs with
the positive z−axis can be expressed based on [26, Eqn. (1)]
as (for the proof c.f. Appendix A)

L(θs) =
(m+ 1)p

2πAs
cosm−1 (θs) , (8)

where m = − ln(cos
(
φ1/2

)
), φ1/2 represents the half power

beamwidth, and p is the transmitter optical radiated power. We
denote the set of points representing the source aperture by S.

Moreover, we assume a horizontally-oriented receiver
(photo detector), where its center (D) is offset from the source
center (S) by xd in the x-direction and by yd from the
reflector in the y-direction. The detector extent along the x-
direction is wd, while its extent along the y-direction is ld.
Furthermore, the detection pattern is assumed to be Lambertian
having a field-of-view of 90◦, which can be realized using a
hemispherical lens [27]. As for the reflectors, we detail their
structure in the following subsections.

A. Intelligent metasurface reflector

In the first system setup, we consider an np × np array of
identical rectangular optical metasurface patches, with patch
width wp and patch height hp placed on a vertical surface
with a normal vector parallel to the y-axis as depicted in
Fig. 2. The edge-to-edge inter-patch separation distances are
∆hp and ∆wp along the z-axis and the x-axis, respectively.
The reflector location is defined by a vertical offset zs, with
a minimum offset along the x-direction of xs and constant
offset along the negative y-direction of ys for all the reflector
points with all offsets being measured from the source center.

1Parallel projection is used to plot all the figures hereafter. (i.e., parallel
lines in the plot are physically parallel.)
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Moreover, we assume that the phase discontinuity (Θ) of each
metasurface patch can be controlled independently of the other
patches. It is further assumed that the phase gradient is kept
constant over each metasurface patch (i.e. ∂Θ

∂x = Cxk,` and
∂Θ
∂z = Czk,` ∀(x, z) ∈ RMS

k,l , where RMS
k,l ∀k, l represents the

set of points lying on an arbitrarily chosen metasurface patch
in the k-th row and l-th column of the reflector array).

Fig. 2: Metasurface-based IRS Model

B. Intelligent mirror array

In the second system, we consider an nm × nm two-
dimensional array of identical rectangular mirrors whose
centers lie in the x − z-plane as depicted in Fig. 3. We
assume that the orientation of each mirror can be adjusted
independently via two rotational degrees of freedom. In Fig.
4, we focus on the mirror whose center is positioned in the
k−th row and `−th column of the array, and represent it
mathematically by the set of points RMi

k,`. The final mirror
orientation is set via two successive clockwise rotations; the
first is about the mirror local z-axis with an angle βk,` and the
second is about the negative x′−axis (the mirror local negative
x−axis after the first rotation)2. At the mirrors default position
(αk,` = 0 ∀k, `, βk,` = 0 ∀k, ` ), they span wm and hm

along the x-direction and the z-direction, respectively. Finally,
the separation distances between adjacent mirrors centers are
wm + ∆wm

and hm + ∆hm
along the x-axis and the z-axis,

respectively.
In order to minimize the transmittance for both reflector

types, the reflecting elements are chosen with much larger
thicknesses than the penetration depths of the employed metal.
The skin depths for different metals are easily computable
using the presented tables in [28, Ch. 2]. Unlike the adopted
structure in [29], to avoid polarization sensitivity, both reflec-
tors are built using neither birefringent nor dichroic materials.

Before delving into the derivation details presented in
the following sections, it is important to highlight that the
conducted analysis is based on radiometry, which stands on ge-
ometric optics grounds. The validity of this approach requires
that the reflecting element’s dimensions are much larger than
the visible light wavelength [30, 15.2], [31, Ch. 2]. In this

2It should be noticed from Fig. 4 that x′, y′, and z′ axes represent the x,
y, and z axes, respectively, after the first rotation around z, where z, z′ axes
coincide. On the other hand, x′′, y′′, and z′′ axes represent the x, y, z axes,
respectively, after the second rotation around x′, where x′, x′′ axes coincide.

Fig. 3: Mirror Array-based IRS Model

Fig. 4: Rotational Degrees of Freedom of each Mirror

regard, we adopt a macroscopic model for the metasurface
patches to abstract them as anomalous reflective rectangular
blocks, which directs most of the incident power in a direction
imposed by the generalized law of reflection depending on the
incidence direction and the phase discontinuity profile of the
metasurface [32].

IV. IRRADIANCE PERFORMANCE OF INTELLIGENT
METASURFACE REFLECTOR

In this section, we are interested in quantifying the potential
gains of incorporating controllable metasurface-based IRs in
VLC systems from a communication service perspective. To-
wards this end, we derive the irradiance generated at a certain
point in the detector plane due to the first-order reflection from
the metasurface-based reflector. Throughout this derivation, we
assume

• the phase discontinuity function of each metasurface
patch is tuned such that the incident ray from the source’s
center hitting the reflector’s center reflects at the detec-
tor’s center.

• the transmitter adjusts the symbol duration to avoid inter-
symbol interference.

• the surfaces of the reflector elements are perfectly smooth
to avoid the intricacies incurred in non-specular reflection
analysis.
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• the reflection coefficient magnitude does not depend on
the direction of incidence.

• the controllable introduced phase-gradient on the meta-
surface is smooth for all directions lying on the surface.

• the data is carried on a monochromatic light to avoid
reflection spectral dependencies.

A. Generalized Law of Reflection

Before proceeding with the irradiance derivation details, it
is essential to highlight some properties of the generalized
law of reflection (generalized Snell’s law). In [33], the authors
provided a relativistic description of the reflected ray direction
with respect to the incident ray and the normal to the surface
depending on the introduced phase-discontinuity on the meta-
surface. By applying their derived expressions while assuming
the incident ray projection on the metasurface (lying in the
x − z plane) making an angle φi with the negative z−axis
as shown in Fig. 5, the generalized law of reflection can be
written as

Fig. 5: Generalized law of reflection

cos (θr) sin (φr) =
λ

2πni

∂Θ

∂r′
, (9)

sin (θr)− sin
(
θi
)

=
λ

2πni

∂Θ

∂i′
, (10)

where θr is the angle between the reflected ray and its
projection on the plane orthogonal to the incidence plane
and the metasurface, φr is the angle between the normal to
the metasurface and the reflected ray projection on the plane
orthogonal to both the incidence plane and the metasurface,
Θ represents the reflector phase discontinuity and ni is the
refractive index of the medium of incidence and λ represents
the wavelength, θi is the angle of incidence (angle between
the incident ray and the normal to the metasurface), i′ and
r′ represent the counter-clockwise rotated version of the z−
and x− axes about the y−axis by an angle φi, respectively,
as can be seen in Fig. 5.

The previous relativistic formulation of the generalized
Snell’s law can be expressed in an absolute representation as
( for proof c.f. Appendix B)

sin (θ′) sin (φ′)− sin
(
θi
)

sin
(
φi
)

=
λ

2πni

∂Θ

∂x
, (11)

sin (θ′) cos (φ′)− sin
(
θi
)

cos
(
φi
)

=
λ

2πni

∂Θ

∂z
, (12)

or, equivalently,

θi = sin−1

(((
sin (θ′) sin (φ′)− λ

2πni

∂Θ

∂x

)2

+

(
sin (θ′) cos (φ′)− λ

2πni

∂Θ

∂z

)2
) 1

2
)
, (13)

φi = tan−1

(
sin (θ′) sin (φ′)− λ

2πni

∂Θ
∂x

sin (θ′) cos (φ′)− λ
2πni

∂Θ
∂z

)

+ πI
(

sin (θ′) cos (φ′)− λ

2πni

∂Θ

∂z
< 0

)
. (14)

where θ′ represents the angle between the normal to the
metasurface and the reflected ray, and φ′ denotes the angle
between the projection of the reflected ray on the metasurface
and a ray parallel to the z-axis lying in that plane. It can be
noticed that when ∂Θ

∂x = 0 and ∂Θ
∂z = 0, (13), (14) represent

the ordinary Snell’s law of reflection.
A fundamental consequence of the generalized Snell’s law

is that it prohibits certain regions in the space of reflected
rays directions. One can see clearly from (13) that there is no
feasible θi corresponding to θ′ and φ′ values that violates

(
sin (θ′) sin (φ′)− λ

2πni

∂Θ

∂x

)2

+

(
sin (θ′) cos (φ′)− λ

2πni

∂Θ

∂z

)2

≤ 1. (15)

B. Irradiance Derivation

To lay the foundations for deriving the irradiance generated
by the metasurface reflector, we introduce a thorough defi-
nition of the adopted geometry in the upcoming ray-tracing
analysis.

In Fig. 6, we layout a geometric description of the main
contributors to the reflection scene, and in Table I we provide
their description. In the following analysis, Γ, γ, and χ will
take the values from the sets {IR,P, IRk,`,P,S}, {D,P}, and
{R,Rk,`}, respectively.3

It can be deduced that the overall irradiance generated by
the whole reflector array is the superposition of its individual
elements irradiance contributions. Hence, we focus on the
irradiance generated by the metasurface patch in the k-th row
and the `-th column of the array, where row and column
array indexing directions match the positive z- and x−axes,
respectively, as indicated in Fig. 2. For each reflecting patch,
we study the irradiance contribution (dEMS

P ) of a differential

3Unless otherwise stated, we use the presented angles definitions hereafter
in the rest of the paper.
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Fig. 6: General ray tracing for metasurface-based IRS

TABLE I: Ray tracing parameters definitions

S the source center

S̄ the projection of S on the x− z plane and represents the origin

P the point of irradiance measurement in the detector plane (z = hd)

Iκ,µ a point in the source plane (x−y plane) such that the incident ray
originating at Iκ,µ, hitting the reflector at κ is reflected towards
µ in the detector plane. Equivalently, Iκ,µ represents the pre-
reflection image, in the source plane (x− y plane), of µ when κ
is the reflection point.

R an arbitrarily chosen point on the considered reflecting element

Γ a general point in the source plane

γ a general point in the detector plane

χ a general point in the x− z plane

θΓ
χ the angle between the positive z−axis and Γχ

φΓ
χ the angle between the positive x−axis and the projection of Γχ

in the source plane

θγχ the angle between the negative z−axis and γχ

θi
χ,Γ the angle between Γχ and the positive y−axis

φi
χ,Γ the angle between the projection of Γχ in the x − z plane and

the negative z−axis

θ′χ,γ the angle between the positive y−axis and χγ

φ′χ,γ the angle between the projection of χγ in the x−z plane and the
positive z−axis

area element (dAR), then exploit the superposition principle
to find the overall performance. To find the dEMS

P at P due
to dAR, we apply these steps:

• Find the tuned phase gradient,
(
Cxk,` and Czk,`

)
, of the

considered patch.
• Find the location of IR,P given Cxk,`, Czk,` and the

locations of P and R.

We use θS
R and φS

R hereafter to specify the position of
the reflector differential area element, and to describe all the
required vectors to compute dEMS

P . Consequently, the vector
definitions of the key five points forming the ray tracing

problem follow as

S = [0 ys 0]
T
, (16)

D = [xd yd hd]
T
, (17)

P = [xp yp hd]
T
, (18)

Rk,` =


xs +

wp

2 + (`− 1) (wp + ∆wp)

0

zs +
hp

2 + (k − 1) (hp + ∆hp)

 , (19)

R =
[
ys cot

(
φS

R

)
0 ys csc

(
φS

R

)
cot
(
θS

R

)]T
. (20)

The phase gradient over the metasurface patch can be ex-
pressed using (11) and (12) as

∂Θ

∂Rx

∣∣∣∣
R∈RMS

k,`

= Cxk,` =
2πni

λ

(
sin(θ′Rk,`,D) sin(φ′Rk,`,D)

− sin(θi
Rk,`,S

) sin(φi
Rk,`,S

)

)

=
2πni

λ

(
Rk,`D

Te1

||Rk,`D||2
−

SRT
k,`e1

||Rk,`S||2

)
, (21)

∂Θ

∂Rz

∣∣∣∣
R∈RMS

k,`

= Czk,` =
2πni

λ

(
sin(θ′Rk,`,D) cos(φ′Rk,`,D)

− sin(θi
Rk,`,S

) cos(φi
Rk,`,S

)

)

=
2πni

λ

(
Rk,`D

Te3

||Rk,`D||2
−

SRT
k,`e3

||Rk,`S||2

)
. (22)

The second crucial step of this derivation is to find the location
of IR,P, which can be done by exploiting the generalized
Snell’s law, (13) and (14), to identify the corresponding
incident ray to the reflected ray RP via θi

R and φi
R as4

θi
R,IR,P = sin−1

(((
xp − ys cot (φs

R)

`RP
− cxk,`

)2

+

(
hd − ys csc

(
φS

R

)
cot
(
θS

R

)
`RP

− czk,`

)2) 1
2
)
, (23)

φi
R,IR,P = tan−1

 xp−ys cot(φs
R)

`RP
− cxk,`

hd−ys csc(φS
R) cot(θS

R)
`RP

− czk,`

 , (24)

where `RP = ||RP||2, cxk,` = λ
2πni

Cxk,` and czk,` = λ
2πni

Czk,`.
Consequently, IR,P can be expressed as

IR,P =


ys cot

(
φS

R

)
− ys csc

(
φS

R

)
cot
(
θS

R

)
tan

(
θi

R,IR,P

)
ys csc

(
φS

R

)
cot
(
θS

R

)
sec
(
φi

R,IR,P

)
cot
(
θi

R,IR,P

)
0

 .
(25)

4It can be seen that the indicator term in (12) disappears in the φiR
expression, as we do not consider backscattering scenarios in this work, i.e.,
the z−component of the incident ray is always positive.
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At this point, we express dEMS
P of dAR using the differen-

tial form of (5) as

dEMS
p = LP←R cos

(
θP

R

)
dωp←R, (26)

where Lx←y denotes the radiance of the point y measured at
the point x, and dωP←R represents the differential solid angle
subtended by dAR measured at P. Using radiance invariance
along the same ray [22, Ch. 1.6] and the differential solid
angle definition, dEMS

P can be rewritten as

dEMS
p = ρMSLR←IR,P cos

(
θP

R

)
dAR cos

(
θ′R,P

)
/||RP||22,

(27)

where ρMS represents the reflection efficiency. It is worth
mentioning that LR←IR,P = 0 if IR,P does not lie inside the
source. We express dAR in terms of dθS

R and dφS
R as

dAR =

∣∣∣∣J (Rx,Rz

θS
R, φ

S
R

)∣∣∣∣ dθS
Rdφ

S
R

= y2
s csc2

(
θS

R

) ∣∣csc3
(
φS

R

)∣∣ dθS
Rdφ

S
R. (28)

From the setup geometry, it can be deduced easily that,

cos
(
θP

R

)
=
hd − ys csc

(
φS

R

)
cot
(
θS

R

)
`RP

(
φS

R, θ
S
R

) (29)

and

cos
(
θ′R,P

)
=

yp

`RP

(
φS

R, θ
S
R

) . (30)

The radiance term LR←IR,P can be expressed as

LR←IR,P =
ρMS(m+ 1)p

2πwsls
cosm−1(θ

IR,P
R )×

I
(∣∣∣IT

R,Pe1

∣∣∣ ≤ ws

2
,
∣∣∣IT

R,Pe2

∣∣∣ ≤ `s
2

)
I

((
sin
(
θ′R,P

)
sin
(
φ′R,IR,P

)
− cxk,`

)2

+
(

sin
(
θ′R,P

)
cos
(
φ′R,IR,P

)
− czk,`

)2

≤ 1

)
, (31)

where

cos(θ
IR,P
R ) =

csc
(
φS

R

)
cot
(
θS

R

)√
tan2(θi

R,IR,P
) +

(
sec(φi

R,IR,P
) cot(θi

R,IR,P
)
)2
,

(32)

and we used the first indicator term to ensure that IR,P does
not contribute to the computed irradiance if it lies outside the
source boundaries. We use the second indicator to ensure a
correct angle of incidence that can result in a reflection from
R to P based on the set phase gradient. Finally, we evaluate
the total irradiance at P due to the first-order reflections by
integrating over the considered metasurface patch area and
summing up all patches contributions as

EMS
P =

ρMS(m+ 1)p

2πwsls

np∑
k=1

np∑
`=1

∫ φmax
k,`

φmin
k,`

∫ θmax
k,`

θmin
k,`

cosm−1(θ
IR,P
R )×

I
(∣∣∣eT

1 IR,P

∣∣∣ ≤ ws

2
,
∣∣∣eT

2 IR,P

∣∣∣ ≤ `s
2

)
I

((
ys cot (φs

R)− xp

`RP
− cxk,

)̀2

+

(
hd − ys csc

(
φS

R

)
cot
(
θS

R

)
`RP

− czk,`

)2

≤ 1

)
×

yp

(
hd − ys csc

(
φS

R

)
cot
(
θS

R

))
`4RP (φS

R, θ
S
R)

y2
s csc2

(
θS

R

) ∣∣∣csc3
(
φS

R

)∣∣∣ dθS
Rdφ

S
R,

(33)

where

φmin
k,` = tan−1

(
ys

xs + (`− 1) (wp + ∆wp)

)
, (34)

φmax
k,` = tan−1

(
ys

xs + wp + (`− 1) (wp + ∆wp)

)
, (35)

θmin
k,` = max

(
tan−1

(
ys csc

(
φS

R

)
zs + hp + (k − 1) (hp + ∆hp)

)
, 0

)
,

(36)

θmax
k,` = min

(
tan−1

(
ys csc

(
φS

R

)
zs + (k − 1) (hp + ∆hp)

)
,

tan−1

(
ys csc

(
φS

R

)
hd

))
. (37)

One can notice that φmin
k,` and φmax

k,` defines the horizontal
boundaries, and θmin

k,` and θmax
k,` define the vertical boundaries

of the metasurface patch in the k-th row and `-th column. The
values of θmin

k,` and θmax
k,` are set to ensure that only the active

portion of the metasurface patch (the part which is below
the source and above the detector surface) contributes to the
computed irradiance.

V. IRRADIANCE PERFORMANCE OF INTELLIGENT MIRROR
ARRAY REFLECTOR

In this section, we aim at assessing the advantages provided
by mirror array reflectors when employed within VLC systems
by analyzing their power focusing capability. To this end, we
derive an expression for the irradiance at a general point in the
detector plane whilst considering only first-order reflections
from the mirrors array. We assume that the two rotational
degrees of freedom of the reflecting element located at the
k-th row and the `-th column in the array, namely, αk,`
and βk,` range within [−π/2, π/2]. The reflecting elements
orientation represented by αk,` and βk,` ∀k, ` is set such
that the incident ray from the source center on the reflecting
element center hits the detector center. In addition, we follow
similar assumptions to those of the intelligent metasurface
reflector regarding light rays path difference delays, surface
smoothness, perfect conductance (negligible effect of inci-
dence angle on the magnitude of reflection coefficient) besides
the monochromaticity of the light carrying the data stream.

Similar to the metasurface case, we analyze the mirror
centered at the k-th row and `-th column of the array, then
sum up all the contributions for all k, `. Firstly, we define
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a local Cartesian coordinate system having its origin at the
mirror center Rk,` and its axes orientation as shown in Fig. 3.
Consequently, the main points vector definitions are given as5

S =


−
(
xs + wm

2 + (`− 1) (wm + ∆wm)
)

ys

−
(
zs + hm

2 + (k − 1) (hm + ∆hm)
)
 , (38)

D =


xd −

(
xs + wm

2 + (`− 1) (wm + ∆wm)
)

yd

hd −
(
zs + hm

2 + (k − 1) (hm + ∆hm)
)
 , (39)

P =


xp −

(
xs + wm

2 + (`− 1) (wm + ∆wm)
)

yp

hd −
(
zs + hm

2 + (k − 1) (hm + ∆hm)
)
 , (40)

where xp, yp represent the x− and y− coordinates of P as
measured from S̄.

Before proceeding further, the mirror orientation is de-
termined by finding a unit vector normal to its surface,
namely, N̂k,`. In this setup, the mirror orientation is ad-
justed such that ŜRk,` represents the corresponding inci-
dence direction for the reflection direction R̂k,`D. Hence, by
the virtue of Snell’s law of reflection, we solve [23, Eqn.
(2.24)] for the normal vector direction and express N̂k,` as(
R̂k,`S + R̂k,`D

)
/

√
2 + 2R̂k,`S

T
R̂k,`D. The angles defin-

ing the considered mirror orientation can be expressed in terms
of N̂k,` as

βk,` = sin−1
(
N̂

T

k,`e3

)
(41)

and

αk,` = sin−1
(
N̂

T

k,`e1/cos (βk,`)
)
. (42)

We define another Cartesian coordinate system that is local
to the considered mirror having Rk,` as the origin. The axes
of the new system are x′′, y′′, and z′′ represent the rotated
versions of the original x, y, and z axes, respectively, as can
be seen in Fig. 4 and Fig. 7. The switching between the two
coordinate systems can be expressed as follows [34, Ch. 6][
Ax′′ Ay′′ Az′′

]T
=
(
Rx
′

k,`Rzk,`
)T [

Ax Ay Az

]T
,

(43)

where Ax′′ , Ay′′ , and Az′′ are the coordinates of an arbitrarily
chosen point A with respect to the axes x′′, y′′, and z′′,
respectively, while its coordinates with respect to the axes
x, y, and z are Ax, Ay and Az , respectively, Rx′k,` represents a
counter-clockwise rotation matrix about the x′ axis with angle
αk,` and expressed as in (44) appearing at the top of the next
page.

5The physical definitions of the six main points in the ray tracing problem
(S, IR,P,D,P,R, and Rk,`) in this section are identical to their counterparts
in Section IV. They are only represented with respect to different coordinate
systems.

Rzk,` represents a clockwise rotation matrix about the z axis
with angle βk,` and is expressed as

Rzk,` =


cos (βk,`) sin (βk,`) 0

− sin (βk,`) cos (βk,`) 0

0 0 1

 . (45)

At this stage, we divide the considered mirror into in-
finitesimally small differential area elements and add up their
irradiance contribution to find the mirror total irradiance.
We focus on studying the irradiance contribution dEMi

P of
the differential area element dAR lying on the considered
mirror at R as shown in Fig. 3. We define the location of

R using (43)-(45), as R = Rx
′

k,`Rzk,`
[
Rx′′ 0 Rz′′

]T
, where

Rx′′ and Rz′′ , respectively, represent the x and z coordinates
of the point R with respect to the rotated coordinate system
(represented by the x′′, y′′, and z′′ axes).

In similarity to (27), dEMi
p is expressed as

dEMi
p = ρMiLR←IR,P cos

(
θP

R

)
dRx′′dRz′′ cos

(
θ′R,P

)
/||RP||22,

(46)

where ρMi represents the mirror reflection efficiency, θ′R,P
denotes the angle between N̂k,` and RP, cos

(
θP

R

)
= eT

3 P̂R,

and cos
(
θ′R,P

)
= N̂

T

k,`R̂P.
To find the location of IR,P, we first express the

incidence direction ÎR,PR corresponding to the reflec-
tion direction R̂P using [23, (2.24)] as ÎR,PR =

−
(

2
(
N̂

T

k,`R̂P
)

N̂k,` − R̂P
)
. The position vector describ-

ing a point ĨR,P lying on the ray starting from R and pointing
towards IR,P can be expressed as ĨR,P = R+tR̂IR,P, t ≥ 0.
It can be deduced easily that ĨR,P coincides with IR,P when
the z component of ĨR,P equals its counterpart of S. Hence,
IR,P can be expressed as

IR,P =


eT

1

(
R +

eT
3 RS

eT
3 R̂IR,P

R̂IR,P

)
eT

2

(
R +

eT
3 RS

eT
3 R̂IR,P

R̂IR,P

)
eT

3 S

 . (47)

Finally, to evaluate dEMi
p from (46), we need to check

whether the path between R and P and that between R and
IR,P are blocked by any other mirror in the array. We consider
another arbitrarily chosen mirror, represented by RMi

q,b, (not
containing the differential area element being studied) indexed
by row and column indices q and b, respectively. Then, we
study whether RP intersects RMi

q,b or not. On the one hand,
the vector representation of a point U on the line segment RP
can be expressed as U(γ) = γR + (1− γ) P, γ ∈ [0, 1]. On
the other hand, a general point V lying in the plane containing
RMi
q,b should satisfy

N̂
T

q,bV = N̂
T

q,bRq,b = N̂
T

q,b


(b− `) (wm + ∆wm)

0

(q − k) (hm + ∆hm)

 , (48)
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Rx
′

k,`=


cos2 (βk,`) (1− cos (αk,`)) + cos (αk,`) − cos (βk,`) sin (βk,`) (1− cos (αk,`)) − sin (βk,`) sin (αk,`)

− cos (βk,`) sin (βk,`) (1− cos (αk,`)) sin2 (βk,`) (1− cos (αk,`)) + cos (αk,`) − cos (βk,`) sin (αk,`)

sin (βk,`) sin (αk,`) cos (βk,`) sin (αk,`) cos (αk,`)

, (44)

Fig. 7: Ray tracing for mirror array-based IRS

where N̂q,b represents a unit vector normal to RMi
q,b. At the

intersection of RP and RMi
q,b, Uq,b , U (γq,b,1) = V. Hence,

γq,b,1 can be expressed as N̂
T

q,bPRq,b/
(
N̂

T

q,bPR
)

, which
reduces to

γq,b,1 = N̂
T

q,b




(b− `) (wm + ∆wm)

0

(q − k) (hm + ∆hm)

−P

/(N̂
T

q,bPR
)
.

(49)

It is clear that γq,b,1 > 1, or γq,b,1 < 0 is sufficient to
declare that RMi

q,b does not block the path RP. To assert the
existence of Uq,b within RMi

q,b boundaries, we compute the
vector representation of Uq,b with respect to the local rotated

axes of the RMi
q,b as Ur

q,b,1 =
(
Rx′k,`Rzk,`

)T

Rq,bUq,b,1. In a
similar way to the definitions of γq,b,1,Uq,b,1, and Ur

q,b,1, we
define γq,b,2,Uq,b,2, and Ur

q,b,2 to study the potential blockage
of the path between R and IR,P. Hence, the blockage event
occurs if

∣∣eT
1 Ur

q,b,1

∣∣ ≤ wm/2 and
∣∣eT

3 Ur
q,b,1

∣∣ ≤ hm/2, or∣∣eT
1 Ur

q,b,2

∣∣ ≤ wm/2 and
∣∣eT

3 Ur
q,b,2

∣∣ ≤ hm/2. Consequently,

the radiance term LR←IR,P can be expressed as

LR←IR,P = ρMi
(m+ 1)

2πwsls
p cosm−1

(
θ

IR,P
R

)
×

(
1−

∏
(q,b)6=(k,`)

I
(∣∣eT

1 Ur
q,b,1

∣∣ ≤ wm

2
,
∣∣eT

3 Ur
q,b,1

∣∣ ≤ hm

2

)

× I (0 ≤ γq,b,1 ≤ 1)

)
I
(∣∣eT

1 SIR,P

∣∣ ≤ ws

2
,
∣∣eT

2 SIR,P

∣∣ ≤ hs

2

)
× I
(
eT

3 S ≤ eT
3

(
Rx
′

k,`Rzk,`
) [

Rx′′ 0 Rz′′

]T
≤ eT

3 P

)
,

(50)

where θIR,P
R denotes the angle between IR,PR and the positive

z-axis, and cos
(
θ

IR,P
R

)
= eT

3 ÎR,PR.

Finally, we can express EMi
P on a horizontal surface with

an infinitesimal area around P as in (51) appearing at the top
of the next page.

where T1 nullifies the contributions of reflector points not
lying vertically between S and P, while T2 voids the effect
of reflector portions hit by rays originating outside the source
boundaries. The last term T3 ensures that self blocked rays are
not counted.

VI. IRRADIANCE PERFORMANCE FOR DIFFERENT SPECIAL
CASES

In this section, we derive simplified irradiance expressions
based on different geometrical assumptions. Firstly, neglecting
the inter-element blockage effect for the mirror array reflector,



10

EMi
P =

(m+ 1)p

2πwsls

nm∑
k=1

nm∑
`=1

∫ hm/2

−hm/2

∫ wm/2

−wm/2

(
eT

3 ÎR,PR
)m−1

(
eT

3 R̂P
)(

N̂
T

k,`R̂P
)

||RP||22
I

eT
3 S ≤ eT

3

(
Rx
′
k,`Rzk,`

)
Rx′′

0

Rz′′

≤ eT
3 P


︸ ︷︷ ︸

T1

× I
(∣∣∣eT

1 SIR,P

∣∣∣ ≤ ws

2
,
∣∣∣eT

2 SIR,P

∣∣∣ ≤ hs

2

)
︸ ︷︷ ︸

T2

2∏
j=1

1−
∏
(q, b)
6=
(k, `)

I
(∣∣∣eT

1 Ur
q,b,j

∣∣∣ ≤ wm

2
,
∣∣∣eT

3 Ur
q,b,j

∣∣∣ ≤ hm

2
, 0 ≤ γq,b,j ≤ 1

)
︸ ︷︷ ︸

T3

dRx′′dRz′′ , (51)

we can express the irradiance at the detector center for both
reflector types as

EtD = ρt

nt∑
k=1

nt∑
`=1

∫∫
Rtk,`

(m+ 1)p cosm−1

(
θ

ItR,D
R

)
2πAs||RD||22

×

cos
(
θD

R

)
cos
(
θtR,D

)
I
(
ItR,D ∈ S

)
dAtR, (52)

where we use the t subscript/superscript, hereafter, to asso-
ciate terms with the considered reflector type. Hence, t ∈
{MS,Mi}, represents metasurface, mirror array reflectors, re-
spectively, for all the variable definitions except for nt, wt, ht,
for which t ∈ {p,m}. Finally, θtR,D, represents θ′R,D, ItR,γ
represents IR,γ with the considered reflector represented by
t. Then, we assume, hereafter, a small detector regime (the
detector largest dimension is much smaller than the minimum
distance between a point on the reflector and a point on the
detector). Hence, the irradiance variations over the detector
surface are negligible and we can focus on the irradiance at
the detector center. In the following subsections, we consider
two major special cases, namely, the point source case and the
large source small reflector case.

A. Point source case

In this case, the source dimensions are considered negligible
compared with the distances between the reflector points and
the source. Thus, any observation point on the reflector surface
will perceive all source points with the same location, which
allows us to deal with the source as a point. Consequently, the
irradiance expression can be expressed based on (52) as

EtD,PS = lim
ws→0,
`s→0

nt∑
k=1

nt∑
`=1

∫∫
Rtk,`

ρt(m+ 1)p cosm−1

(
θ

ItR,D
R

)
2πAs||RD||22

× cos
(
θD

R

)
cos
(
θtR,D

)
I
(
ItR,D ∈ S

)
dAtR. (53)

By exploiting the infinitesimally small source area, all the
quantities depending on R can be considered constant and

replaced by their corresponding values at Rk,`. Hence, the
irradiance expression reduces to

EtD,PS =

nt∑
k=1

nt∑
`=1

ρt(m+ 1)p

2π||Rk,`D||22
cosm

(
θS

Rk,`

)
cos
(
θD

Rk,`

)

×
cos
(
θtRk,`,D

)
cos
(
θS

Rk,`

) lim
ws→0,`s→0

Ātk,`
As

, (54)

where Ātk,` is the area of the portion of Rtk,` that have a
non-zero contribution to the irradiance at D. The limit term
appearing at the end of the previous expression can be re-

written as lim
ws→0,`s→0

Ātk,`
As

= dAR

dAIt
R,D

∣∣∣∣
R=Rk,`

, where dAItR,D

represents the differential area around ItR,D from which the
incident rays hit dAR and get reflected to D as can be seen in
Fig. 8a and Fig. 8b. In the following subsections, we derive
more particular expressions for the metasurface and mirror
array based reflectors.

1) Mirror array reflector

We first evaluate dAMi
R

dA
IMi
R,D

∣∣∣∣
R=Rk,`

as

dAMi
R

dAIMi
R,D

∣∣∣∣∣
R=Rk,`

=
dRx′′dRz′′

dIMi
R,D,xdIMi

R,D,y

∣∣∣∣∣
R=Rk,`

=

∣∣∣∣∣∣J
(

IMi
R,D,x, I

Mi
R,D,y

Rx′′ ,Rz′′

)∣∣∣∣∣
R=Rk,`

∣∣∣∣∣∣
−1

, (55)

where IMi
R,D,x = eT

1 IMi
R,D and IMi

R,D,y = eT
2 IMi

R,D. Using the chain
rule of Jacobians, the previous equation can be re-written as

dAMi
R

dAIMi
R,D

∣∣∣∣∣
R=Rk,`

=

(
dAMi

R

dĀR

dĀR

dAIMi
R,D

)∣∣∣∣∣
R=Rk,`

=

∣∣∣∣∣∣J
(

IMi
R,D,x, I

Mi
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

/ J

(
Rx′′ ,Rz′′

Rx,Rz

)∣∣∣∣
R=Rk,`

∣∣∣∣∣∣
−1

, (56)

where dĀR represents the projection of dAMi
R onto a plane

parallel to the x− z plane as depicted in Fig. 8a. The second
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(a) Mirror array reflecting element

(b) Metasurface reflecting element

Fig. 8: Ratio between differential area elements in reflector and source
planes

Jacobian appearing in the previous expression represents a
projection onto the x− z plane. Hence, it can be expressed as

J

(
Rx′′ ,Rz′′

Rx,Rz

)
=

1

N̂
T

k,`e2

. (57)

Using (47), IMi
R,D,x and IMi

R,D,y are expressed as

IMi
R,D,x = Rx +

Sz − Rz

eT
3

((
2N̂

T

k,`R̂D
)

N̂k,` − R̂D
)

× eT
1

((
2N̂

T

k,`R̂D
)

N̂k,` − R̂D
)
, (58)

IMi
R,D,y = Ry +

Sz − Rz

eT
3

((
2N̂

T

k,`R̂D
)

N̂k,` − R̂D
)

eT
2

((
2N̂

T

k,`R̂D
)

N̂k,` − R̂D
)
. (59)

Therefore, we can write the Jacobian as

J

(
IMi
R,D,x, I

Mi
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

= −
N̂

T

k,`RD
(

2N̂
T

k,`e3N̂
T

k,`RD + Sz −Dz

)2

N̂
T

k,`e2

(
2N̂

T

k,`e3N̂
T

k,`RD + Rz −Dz

)3

∣∣∣∣∣∣∣
R=Rk,`

= −
N̂

T

k,`Rk,`D (||Rk,`D||2 + ||Rk,`S||2)
2 ||Rk,`S||2

N̂
T

k,`e2||Rk,`D||32 (Sz − Rk,`,z)
,

(60)

where Rk,`,z = Rk,`
Te3.

To simplify (54), the ratio cos(θMi
Rk,`,D

)/cos(θS
Rk,`

) is eval-
uated as follows

cos(θMi
Rk,`,D

)

cos(θS
Rk,`

)
=

N̂
T

k,`Rk,`D

||Rk,`D||2
||Rk,`S||2
|Sz − Rk,`,z|

, (61)

By substituting (57), (60), and (61) in (54), the mirror array
irradiance at D due to point source can be upper bounded by

ĒMi
D,PS =

nm∑
k=1

nm∑
`=1

ρMi(m+ 1)p cosm
(
θS

Rk,`

)
2π (||Rk,`D||2 + ||Rk,`S||2)

2 cos
(
θD

Rk,`

)
.

(62)

Now, we impose small reflector assumptions, where the
reflector surface has relatively small solid angles measured
at S and D, i.e., Rk,` ∀k, ` is almost constant; thus, ĒMi

D,PS

can be approximated by ẼMi
D,PS as

ẼMi
D = n2

m

ρMi(m+ 1)p cosm
(
θS

R̄Mi

)
2π
(
||R̄MiD||2 + ||R̄MiS||2

)2 cos
(
θD

R̄Mi

)
, (63)

where R̄Mi is the centroid of mirror array reflecting elements
centers, and R̄Mi=

∑nm
k=1

∑nm
`=1Rk,`/n

2
m.

2) Metasurface reflector
In a similar approach to the irradiance derivation for the

mirror array setup, we first evaluate dAMS
R

dAMS
IR,D

∣∣∣∣
R=Rk,`

as

dAMS
R

dAMS
IR,D

∣∣∣∣∣
R=Rk,`

=

∣∣∣∣∣∣J
(

IMS
x , IMS

R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

∣∣∣∣∣∣
−1

, (64)

where

IMS
R,D,y = −Dy +

(hd−∆z)
√
`2RD−(∆x−cxk,``RD)

2−(∆z−czk,``RD)
2

∆z−czk,``RD
,

IMS
R,D,x = ∆x +

(hd−∆z)(∆x−cxk,``RD)
∆z−czk,``RD

,
such that ∆x = Rx − Dx, ∆z = Rz − Dz , and `RD =√

(Rx −Dx)
2

+ D2
y + (Rz −Dz)

2. Finally, the irradiance of
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the metasurface reflector at D due to point source is found to
be

EMS
D,PS =

np∑
k=1

np∑
`=1

ρMS(m+ 1)p cosm−1
(
θS

Rk,`

)
2π||Rk,`D||22

cos
(
θMS

Rk,`,D

)

× cos
(
θD

Rk,`

)
/

∣∣∣∣∣∣J
(

IMS
R,D,x, I

MS
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

∣∣∣∣∣∣. (65)

By approximating the Jacobian term in (65) with its mirror
array counter part, EMS

D,PS can be approximated by ĒMS
D,PS given

by

ĒMS
D,PS =

np∑
k=1

np∑
`=1

ρMS(m+ 1)p cosm
(
θS

Rk,`

)
2π (||Rk,`D||2 + ||Rk,`S||2)

2

×
cos
(
θD

Rk,`

)
cos
(
θMS

Rk,`,D

)
N̂

T

k,`R̂k,`D
. (66)

Using the small reflector assumption brings a further simpli-
fication by approximating ĒMS

D,PS with ẼMS
D,PS expressed as

ẼMS
D,PS =

ρMS(m+ 1)p cosm
(
θS

R̄MS

)
2π
(
||R̄MSD||2 + ||R̄MSS||2

)2
×

cos
(
θD

R̄MS

)
cos
(
θMS

R̄MS,D

)
N̄

T ̂̄RMSD
np

2, (67)

where R̄MS represents the centroid of the metasurface
reflector, R̄MS =

∑np

k=1

∑np

`=1 Rk,`/n
2
p, and N̄ =(

R̄MSS
||R̄MSS||2

+ R̄MSD
||R̄MSD||2

)
/
√

2 + 2 R̄MSDTR̄MSS
||R̄MSD||2||R̄MSS||2

.

B. Large source small reflector case
In this case, we assume the reflector largest dimension to

be much smaller than the minimum distance between a point
on the reflector and a point on the source, and the minimum
distance between a point on the reflector and D. Also, we
presume a large enough source such that all the incident rays
on the reflector reaching D originate within S. Based on the
previous assumptions, θ

ItR,D
R , θD

R , and θtR,D ∀R ∈ Rtk,` can
be approximated by θS

Rk,`
, θP

Rk,`
, and θtRk,`,D, respectively, and

RD ∀R ∈ Rtk,` can be approximated by Rk,`D. Furthermore,∫∫
Rtk,`

I (IR,D ∈ S) dAR = wtht. Consequently, EtD in (52)
reduces to

EtD,LSSR = ρtwtht

nt∑
k=1

nt∑
`=1

(m+ 1)p cosm−1
(
θS

Rk,`

)
2πAs||Rk,`D||22

× cos
(
θP

Rk,`

)
cos
(
θtRk,`,D

)
. (68)

If the setup geometry strongly satisfies the small reflector as-
sumption, EtD,LSSR can be further approximated by ĒtD,LSSR,
expressed as

ĒtD,LSSR = ρtwthtn
2
t

(m+ 1)p cosm−1
(
θS

R̄t

)
2πAs||R̄tD||22
× cos

(
θP

R̄t

)
cos
(
θtR̄t,D

)
. (69)

VII. ANALYTICAL INSIGHTS

In this section, we consider the small reflector regime and
manifest the power focusing capability for both reflectors.
Moreover, we provide design guidelines regarding the proper
selection of reflector type based on the setup geometry.

A. Power concentration capability analysis

The small reflector regime allows us to express ED in (52)
at the detector center as

ĒtD,SR = ρtn
2
t

(m+ 1)p cosm−1
(
θS

R̄t

)
2πAs||R̄tD||22
× cos

(
θP

R̄t

)
cos
(
θtR̄t,D

)
AR̄t , (70)

where R̄t represents the set of points of a virtual reflecting
element centered at R̄, where

∣∣R̄t∣∣ = wtht, and AR̄t =∫∫
R̄t I (IR,D ∈ S) dAR represents the effective reflection area

contributing to the irradiance at D. By assuming tightly packed
reflectors (∆wp = ∆wm = ∆hp = ∆hm = 0), the total
width and height become, respectively, WT = ntwt and
HT = ntht. By defining the set SR̄t,D as {R : R ∈
the plane containing R̄t, ItR,D ∈ S}, it is evident that AR̄t =∣∣SR̄,D ∩ R̄t

∣∣. It is clear that for a fixed detector location, nt,
As, and AR̄t are the main controllers of ĒD,SR. By considering
a relatively small source, where

∣∣SR̄,D

∣∣ <<
∣∣∣⋃k,`Rtk,`∣∣∣,∣∣SR̄,D

∣∣ ≈ As/
dAIt

R,D

dAtR

∣∣∣∣
R=R̄t

. The following can be deduced:

• For small enough nt, SR̄,D ⊆ R̄t, AR̄t =
∣∣SR̄,D

∣∣ ≈
As/

dAIt
R,D

dAtR

∣∣∣∣
R=R̄t

(independent on nt), and hence ĒD,SR

increases linearly with n2
t . (Similar results are deduced

for very small As)
• For asymptotically large nt, R̄t ⊆ SR̄,D, hence, AR̄t =∣∣R̄t∣∣ = WTHT/n

2
t and ĒD,SR becomes independent on

nt. (Similar results are deduced for very large As)
The irradiance increase at D confirms the power focus-

ing capability of the proposed reflectors. This owes to the
constancy of the total reflected power, as the reflectors areas
are kept constant when nt increases. Based on the previous
discussion, the smaller the source area with respect to the
total reflector area, the better power focusing performance, i.e.,
if the source area is large enough, regardless of the number
of reflecting elements, the received power will be almost the
same. It is worth mentioning that only in the point source
regime, the power can be focused without limits; in this case,
the irradiance at D becomes infinite, and zero everywhere else
such that the received power equals the total reflected power.

B. Power analysis

The source radiates a total of p watts, pinc of which is
incident on the reflector. Then only ρtpinc is reflected towards
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the detection plane. Finally, the total received power by the
detector denoted by pt

rx can be expressed using (3) as

pt
rx =

∫ xd+
wd
2

xd−
wd
2

∫ yd+
`d
2

yd−
`d
2

Et
P (xp, yp) dxpdyp. (71)

If the detector area is small with respect to the source
image in the detector plane S ′ = {P : eT

3 P = hd,∃R ∈⋃
k,`

Rtk,` where IR,P ∈ S}, pt
rx can be approximated by

p̃t
rx = Et

P (xd, yd)wd`d. (72)

For a small source, small reflector scenario pinc can be
approximated as

p̃inc =

(m+ 1)p cosm
(
θS

R̄t

)
n2
twtht cos

(
θi

R̄t,ItR̄t,D

)
2π||SR̄t||22

. (73)

The received power from the direct LoS path assuming point
source, can be approximated by

pLoS =
(m+ 1)p cosm+1 (θD)

2π||SD||22
wd`d, (74)

where θD represents the angle between e2 and SD. In the very
ideal asymptotic case, where a point source is considered and
nt → ∞, the total reflected power is focused at D and the
total received power from reflection pt

rx,PS = ρtpinc.

C. Reflectors relative performance analysis

The fundamental difference between metasurfaces and or-
dinary mirrors is the relationship between the reflected rays
and their corresponding incident rays directions. For ordinary
mirrors, the volume occupied in the space of directions by a
bundle of rays incident at the same point, is the same as that
occupied by their corresponding reflected rays. Nonetheless,
the non-linear relationship between the polar and the azimuth
angles of reflection θ′, φ′ and their corresponding incidence
angles θi, φi, respectively, enforced by the generalized law of
reflection governing metasurfaces response, alters this fact. To
account for this effect, we define the beam spread ratio (BSR)
metric as

BSR ,
dω′

dωi
, (75)

where dω′ is the differential solid angle occupied by the
reflected ray bundle at the reflection direction defined by θ′,
φ′ and their corresponding incident ray bundle occupying dωi

at the direction defined by θi,φi. So, we write the metasurface
reflector as (for proof c.f. Appendix C)

BSRMS =
cos
(
θi
)

cos (θ′)
. (76)

One can show easily that dω
′

dωi
= 1 for all reflector points of the

mirror array. Intuitively, the irradiance and thus the received
power at the detector (for a small detector) are proportional
to the reflected beam intensity (RBI), defined as the amount
of reflected power per-solid angle measured along the line

connecting the reflector and the detector centers, which is
expressed as

RBIt =
ptref

ω′t
= ρtp

t
inc

AR̄t

wtht

ω′t
≈

ρt(m+ 1)p cosm
(
θS

R̄t

)
n2
t cos

(
θi

It
R̄t,D

)
2π||SR̄t||22

AR̄t

ω′t
, (77)

where ω′t represents the solid angle subtended by the detector
measured at R̄t. To assess the relative systems performance,
we consider two reflectors having the same area, number of
reflecting elements, and reflection efficiency and compute the
RBI ratio (RBIR) of the two systems as

RBIR =
pMS

ref

ω′MS

/
pMi

ref

ω′Mi

≈
cos

(
θi

R̄MS,IMS
R̄MS,D

)
cos

(
θi

R̄Mi,IMi
R̄Mi,D

) AR̄MS

AR̄Mi

ω′Mi

ωi
MS

ωi
MS

ω′MS

=

cos

(
θi

R̄MS,IMS
R̄MS,D

)
cos

(
θi

R̄Mi,IMi
R̄Mi,D

) AR̄MS

AR̄Mi

1

BSRMS
. (78)

For large np, nm the RBIR reduces to

RBIR =

cos

(
θi

R̄MS,IMS
R̄MS,D

)
cos

(
θi

R̄Mi,IMi
R̄Mi,D

) 1

BSRMS
=

cos
(
θMS

R̄MS,D

)
cos

(
θi

R̄Mi,IMi
R̄Mi,D

) .
(79)

As for the performance merit of employing the proposed
reflectors, we define GMS , p̃MS

rx /pLoS and GMi , p̃Mi
rx /pLoS

to represent the received power gain of metasurface and
mirror array, respectively, compared with an IRS-free system
depending on the received LoS power. For the small reflector
regime, the gain can be expressed as

Gt =
ρtn

2
t cosm−1

(
θS

R̄t

)
cos
(
θP

R̄t

)
cos
(
θt

R̄t,D

)
||SD||22AR̄t

As cosm+1 (θD) ||R̄tD||22
.

(80)

For large nt, Gt can be approximated by G̃t as

G̃t = ρtn
2
t

cosm−1
(
θS

R̄t

)
cos
(
θP

R̄t

)
cos(θtR̄t,D)||SD||22

As cosm+1 (θD) ||R̄tD||22
wtht

= ρtn
2
t

cosm−1
(
θS

R̄t

)(
hd − R̄z

)
cos(θtR̄t,D)||SD||m+3

2

As||R̄tD||32h
m+1
d

wtht. (81)

It can be noticed that,
θi

R̄MS,I
MS
R̄MS,D

2 ≤ θMi
R̄Mi,D

≤ π
4 +

θi

R̄MS,I
MS
R̄MS,D

2 . Moreover, hd ≤ ||SD||2 ≤ ||R̄tD||2 + ||R̄tS||2.
Hence, the achievable gain using the proposed reflectors can
be bounded as

ρtn2
twtht cosm−1

(
θS
R̄t

)(
hd−R̄z

)
cos

(
θt
R̄t,D

)
h2

d

As||R̄tD||32
≤ G̃t ≤

ρtn2
twtht cosm−1

(
θS
R̄t

)(
hd−R̄z

)
cos

(
θt
R̄t,D

)(
||R̄tD||2+||R̄tS||2

)m+3

As||R̄tD||32h
m+1
d

.
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The upper bound in the previous inequality becomes exact as
rtd increases asymptotically. In such regime, that upper bound
reduces to

G̃t ≈

(
ρtn

2
twtht cosm−1

(
θS

R̄t

) (
hd − R̄z

)
cos
(
θtR̄t,D

)
×
((
rtd
)2

+
(
hd − R̄z

))m2 )
/
(
Ash

m+1
d

)
. (82)

Based on the previous equation, it can be deduced that G̃Mi

grows unboundedly with rMi
d . This attributes to the indepen-

dence of the θMi
R̄Mi,D

bounds on rMi
d . As for the metasurface

reflector, G̃MS can be expressed for large rMS
d as

G̃MS≈

(
ρMSn

2
pwphp cosm−1

(
θS

R̄MS

) (
hd − R̄z

)
rMS
d sin

(
φMS

d

)
×
((
rMS
d

)2
+
(
hd − R̄z

))m−1
2

)
/
(
Ash

m+1
d

)
. (83)

Consequently, G̃MS grows unboundedly as rMS
d increases

asymptotically.
Before moving to the simulations discussion, it is worth

highlighting some possible challenges that might arise as a
result of incorporating IRSs in VLC setups and presenting
some possible solutions. For instance, the focused power
reaching the photodetector might lead to saturation, and the
communication link failure consequently. Two ways can ad-
dress this issue; pre-deployment and post-deployment solu-
tions. The former involves selecting the IRS location and
dimensions properly; thus, the maximum level received power
at the points of interest does not exceed the photodetector
saturation level. In the post-deployment solution, the reflecting
elements are divided into two complementary sets, namely,
the active set and the inactive set. The former represents the
reflecting elements participating in focusing the incident power
towards the photodetector. On the other hand, the inactive set
represents the rest of the reflecting elements that are tuned
to direct the incident power away from the photodetector. By
proper selection of elements of the two sets, photodetector
saturation can be avoided easily. Moreover, the unintentionally
received power in an indoor IRS-aided VLC scenario at the
detector from the ceiling (outside the source boundaries)
diffused reflections through the IRS might result in inter-
symbol interference. Nonetheless, this portion of power is
negligible for small IRSs where the area of the set of ceiling
points contributing to the unintentionally received power is
small. Also, these points distribute the reflected power evenly
over all the directions. Hence, the photodetector share of this
reflected power is minimal.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the two
proposed reflectors through several simulations. Specifically,
we study the impact of the detector location and the number of
reflecting elements (metasurface patches/mirrors) on the total
received optical power. We use the global coordinate system
assumed in section IV.B (where S̄ represents the origin as

(a) Metasurface to LoS received power ratio at the detector

(b) Mirror array to LoS received power ratio at the detector

(c) Relative error between G̃Mi and
pMi
rx,U

pLoS

(d) Relative error between G̃MS and pMS
rx
pLoS

(e) Relative error between pMi
rx and pMi

rx,U

Fig. 9: Received power distribution vs detector location
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TABLE II: Default simulation parameters.

p = 20 W ls = 1 cm ws = 1 cm m = 2

xd = 0 m yd = 2 m hd = 3 m ld = 1 cm

np = 10 wp = 2.5 cm hp = 1.5 cm nm = 10

∆hp = 0 cm ∆wp = 0 cm ∆hm = 0 cm ∆wm = 0 cm

xs = −0.125 m ys = 2 m wd = 1 cm zs = 1.0212 m

wm = 2.5 cm hm = 1.5 cm ρt = 0.8 φtd = π/2

(a) Relative Metasurface to mirror array received power

(b) Relative RBIR error

Fig. 10: The relative reflectors performance vs detector location

shown in Fig. 6), and assume the system parameter values
provided in Table II; unless otherwise stated. We assume
a small detector regime for most of the presented received
optical power results. Hence, (72) is the default equation used
in evaluating the received power.

In the first simulation, we study the impact of detector
location on the received optical power by comparing the
reflectors’ gain performance with the LoS link. To this end,
we focus on small reflectors with a large number of elements
(nm = np = 25) scenario and plot G̃MS, G̃Mi, respectively,
computed using (81) in Fig. 9a, Fig. 9b. In this simulation,

we set ys = 0.5 to highlight the setup geometry effect on the
RBIR. Moreover, we set wp = wm = 1cm and hp = hm =
0.6 cm to keep the total compact reflector width and height
25 cm and 15 cm, respectively. In addition, ∆wm

= 2wm,
and ∆hm

= 2hm to reduce the inter-element blockage effect.
One can see from Fig. 9a that G̃MS is very small for the
detector locations that are very close to the reflector plane,
i.e., rMS

d ≈ 0. This attributes to the large θMS
R̄MS,D

, leading
to large BSRMS and consequently small irradiance at the
detector, which can be also seen in the cos(θMS

R̄MS,D
) term

appearing in (81). Moreover, the proved unbounded received
power gains for large rMS

d and rMi
d are numerically verified

for both reflectors in Fig. 9a and Fig. 9b. Interestingly, in
contrast to the metasurface reflector, G̃Mi does not vanish
as rMi

d becomes very small. This owes to the principle of
operation of the mirror array reflector which prohibits θ′

R̄,Mi

from getting close to π/2, when the source is not very close to
the x−z plane, and keeps it bounded as mentioned previously
in section VII.c. Another important study is to investigate an
assessment for the simple analytic formula of (81). Hence,
we assess the gain accuracy by studying the relative error
metric, G̃t,error ,

∣∣∣G̃t − p̃trx
pLoS

∣∣∣ / p̃trx
pLoS

, depicted in Fig. 9d,

Fig. 9c. The relatively small G̃MS,error and G̃Mi,error values,
supports the use of G̃t as a good representative for the more
computationally expensive p̃trx

pLoS
in the assumed regime. To

measure the mirror array inter-element blockage effect, in Fig.
9e we plot p̃Mi

rx,error ,
(
p̃Mi

rx,U − p̃Mi
rx

)
/p̃Mi

rx . It can be seen
that, the inter-element blockage effect is significant only when∣∣π/2− φMi

d

∣∣, or/and rMi
d is small.

In the second example, we visualize the relative perfor-
mance of the two reflectors in Fig. 10a, where we plot the
RBIR computed by (79), which we use to understand p̃rx,MS

p̃Mi
rx,U

.
Firstly, we observe from Fig. 10a, that the mirror array reflec-
tor outperforms the metasurface reflector as the projections
of R̄MiD, and SR̄Mi in the detector plane deviates angularly
from each other. Moreover, the superiority of the mirror
array over the metasurface reflector degrades as rMi

d increases.
These findings are in agreement with the analytical predictions
of the RBIR expression (79). Secondly, the validity of the
adopted approximation is highly contingent on the small
reflector, large nt assumptions. In Fig. 10b, we plot the rela-
tive discrepancy between the RBIR and p̃rx,MS

p̃Mi
rx,U

, represented

by RBIRerror ,
∣∣∣RBIR− p̃rx,MS

p̃Mi
rx,U

∣∣∣ /( p̃rx,MS

p̃Mi
rx,U

)
. The exhibited

relatively small RBIRerror values in Fig. 10b, justifies using
RBIR as a substitute for p̃rx,MS

p̃Mi
rx

for small reflector regime and
large nm and np, when mirror array inter-element blockage is
negligible.

In the rest of simulations, we study the performance of
the exact receievd power computed using (71), (33) and
(51), approximated received power based on small detector
assumption, using (72), (33) and (51), for As = 10.125 cm2

and 36.125 cm2. Moreover, we plot the received power from a
point source computed using (72), (65), (62). In addition, we
plot the point source approximated Jacobian received power
expression for the metasurface reflector computed using (72),
(66), and its small reflector simplified counterpart (PSSR)
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(a) Received power from metasurface reflector vs rMS
d

(b) Received power from mirror reflector vs rMi
d

Fig. 11: Received power vs horizontal distance from the reflector
center

using (72), (67). Also, we plot the received power from point
source assuming small mirror array reflector using (72), (63).
And finally, we plot the received power for a large source
small reflector regime using (72), (69).

In the third simulation, we study the impact of the detector
position on the received power from both reflector types.
We consider a detector located along the line containing R̃t

and making a counter-clockwise angle φtd with the positive
x− axis as shown in Fig. 2 and Fig. 3. We observe that
the received power from the metasurface reflector follows a
unimodal trend, as shown in Fig. 11a. This unimodal behavior
is well explained by the dominant large BSRMS for small rMS

d

and the dominant small solid angle subtended by the detector
for large rMS

d . Also, it matches the analytical results presented
in (70), for large np (proof is omitted for brevity). The
asymptotic decreasing received power from the mirror array
reflector versus rMi

d can be seen clearly from (70) by bounding
θMi

R̄Mi,D
, and considering large nm, where all the remaining

terms are inversely proportional to rMi
d and ĀR̄Mi

= wmhm.

(a) Received power from metasurface reflector vs np

(b) Received power from mirror array reflector vs nm

Fig. 12: Number of reflecting elements impact

Moreover, It can be seen in both Fig. 11a and Fig. 11b that the
received power when small and large sources are considered,
approach the received powers in the point source and the large
source regimes, respectively. Furthermore, it can be seen that
the approximated Jacobian point source expression matches
the point source curve asymptotically. It is worth mentioning
that at rMS

d = rMi
d = ys, φ

MS
d = φMi

d = 90◦, the received
power from both reflectors is almost the same due to the
highly symmetric, source, detector, reflector layout. On this
occasion, the reflector becomes centered vertically with respect
to both the source and the detector and their centers have the
same x− coordinate. Also, the detector lies right beneath the
source; hence, the required phase gradient/tilting angles are
approximately zero for all the reflecting elements, and both
reflectors perform almost identically.

Finally, we study the impact of the number of reflecting
elements on the received power for different source areas,
considering a relatively small reflector. Hence, we plot the
received power from the metasurface, and the mirror array re-
flector, respectively, in Fig. 12a, Fig. 12b. One can observe that
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the received power from both reflector types increases with nm

and np until a saturation limit. By design, the chief rays hitting
the reflectors centers are reflected at the detector center. The
coverage area of the source in the detector plane is determined
by the set of points in the detector plane intersecting with
the reflected rays. This area is the union of the individual
reflecting elements coverage areas. For a small reflector, this
union can be approximated with any individual coverage area.
Individual coverage areas are monotonically increasing with
the reflecting elements areas and the source area. As nm and
np increase, the reflecting elements areas become smaller,
decreasing coverage area and increasing irradiance around
the detector center. Consequently, in the asymptotically large
nm, np regime, the coverage area is determined by As. The
saturation of the received power for large nt complies with the
received power in the LSSR regime where n2

twtht represent
the total reflector area (assumed constant). It is observed that
the received power from both reflectors in the LSSR regime
decreases with As, which can be noticed from (69). Moreover,
the received power from the point source is observed to be
monotonically increasing, this is true under the assumption
that nt is not large enough to have significant irradiance
variations over the detector surface ((72) will be invalid then).
In summary, the received power from both reflectors behaves
similar to the point source regime counterpart for small nt
values, and matches its LSSR counterpart for large nt values.

IX. CONCLUSION

In this paper, we proposed intelligent reflecting surfaces-
based VLC systems built using metasurface and mirror array-
based reflectors. Throughout our study, we derived irradiance
expressions for both reflectors under general relative source,
reflectors, detector dimensions, and locations assumptions.
Moreover, we derived tractable simplified irradiance expres-
sions for practical special cases, namely, point source, small
reflectors, large source small reflector setups at the detector
center. Besides, we defined the RBIR metric to evaluate
the relative performance of reflectors in terms of received
optical power. The proposed metric is a reliable design guide
that determines the superior reflector for a particular source,
detector, and geometric setup. Furthermore, we derived the
received power gain of the reflector-based to the reflector-
free LoS based setup, and provided simple upper and lower
bound for this gain. As for the focusing capability, we showed
analytically it is proportional to the number of the constituting
elements till a specific limit; for the small reflector regime.
Finally, we quantified the benefits of intelligent surfaces
through several numerical examples. Specifically, we found
that a 25 cm× 15 cm reflector can increase the power to five
folds or even more than LoS on average.

APPENDIX A
RADIANCE OF UNIFORM GENERALIZED LAMBERTIAN

EXTENDED SOURCE

Each point on the considered extended source can be
thought of as a point source having total radiated power of
dΦ
dAs

. By the virtue of the source uniformity assumption, dΦ
dAs

=

p/As. We assume generalized Lambertian radiation pattern
for all the source points with Lambertian order m. Hence,
the radiated power by each point in a direction defined by a
differential solid angle dω making an angle θs with the normal
to the source can be expressed using [26, Eqn. (1)] as d2Φ

dAsdω
=

(m+1) p
2πAs

cosm (θs). Using (5) the required radiance can be
expressed as d2Φ

dAsdω cos(θs)
= (m+ 1) p

2πAs
cosm−1 (θs), which

completes the proof.

APPENDIX B
ABSOLUTE REPRESENTATION OF GENERALIZED SNELL’S

LAW PROOF

The relation between i′, r′ and x, z can be deduced from
the geometry presented in Fig. 5 as

z = i′ cos
(
φi
)
− r′ sin

(
φi
)
, (84)

x = i′ sin
(
φi
)

+ r′ cos
(
φi
)
. (85)

Hence, ∂Θ
∂i′ and ∂Θ

∂r′ can be expressed in terms of ∂Θ
∂z and ∂Θ

∂x
as
∂Θ

∂r′
= − sin

(
φi
) ∂Θ

∂z
+ cos

(
φi
) ∂Θ

∂x
, (86)

∂Θ

∂i′
= cos

(
φi
) ∂Θ

∂z
+ sin

(
φi
) ∂Θ

∂x
. (87)

It can be shown with some geometric and trigonometric
manipulations that:

sin (θr) = sin (θ′) cos (φ′′) , (88)

cos (θr) = cos (θ′)

√
1 + tan2 (θ′) sin2 (φ′′), (89)

sin (φr) = tan (θ′) sin (φ′′)/

√
1 + tan2 (θ′) sin2 (φ′′),

(90)

where φ′′ = φ′−φi. By substituting (86), (87), (88) , (89) and
(90) in (9) and (10), the generalized law of reflection can be
re-written as

sin
(
θ′
)

sin
(
φ′′
)

=
λ

2πni

(
− sin

(
φi
) ∂Θ

∂z
+ cos

(
φi
) ∂Θ

∂x

)
,

(91)

sin(θ′) cos(φ′′)− sin(θi) =
λ

2πni

(
cos(φi)

∂Θ

∂z
+ sin(φi)

∂Θ

∂x

)
.

(92)

By multiplying (91) by cos
(
φi
)
, (92) by sin

(
φi
)
, then adding

them, we get

sin (θ′) sin (φ′′) cos
(
φi
)

+ sin (θ′) cos (φ′′) sin
(
φi
)

− sin
(
θi
)

sin
(
φi
)

=
λ

2πni

∂Θ

∂x
, (93)

which can be re-written as sin (θ′) sin (φ′)−sin
(
θi
)

sin
(
φi
)

=
λ

2πni

∂Θ
∂x . Similarly, by multiplying (91) by − sin

(
φi
)
, (92) by

cos
(
φi
)

then adding them, we obtain

− sin (θ′) sin (φ′′) sin
(
φi
)

+ sin (θ′) cos (φ′′) cos
(
φi
)

− sin
(
θi
)

cos
(
φi
)

=
λ

2πni

∂Θ

∂z
, (94)

which reduces to sin (θ′) cos (φ′) − sin
(
θi
)

cos
(
φi
)

=
λ

2πni

∂Θ
∂z , which completes the proof.
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APPENDIX C
METASURFACE BSR PROOF

The considered differential solid angles elements in
the spherical coordinate system can be expressed as
dω′ = sin (θ′) dθ′dφ′, dωi = sin (θi) dθidφi. By considering
the reflection process as a transformation of variables, the
differential area element in the θ′ − φ′ plane (dθ′dφ′)

can be expressed as dθ′dφ′ =
∣∣∣J ( θ′,φ′θi,φi

)∣∣∣ dθidφi.
Therefore, BSRMS at the center of the reflecting
element can be expressed as BSRMS = dω′

dωi

∣∣∣
R=R̄MS

=

cos(θi)√
1−
((

sin(θi) sin(φi)+
λ

2πni

∂Θ
∂x

)2
+
(

sin(θi) cos(φi)+
λ

2πni

∂Θ
∂z

)2
)

where IR̄MS,D = S. Substituting (11),(12) in the previous
equation completes the proof.
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