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Abstract—Viral spread has been intermittently threatening
human life over time. Characterizing the viral concentration and
modelling the viral transmission are, therefore, considered major
milestones for enhancing viral detection capabilities. This paper
addresses the problem of viral aerosol detection from the exhaled
breath in a bounded environment, e.g., a bounded room. The
paper models the exhaled breath as a cloud which is emitted
through the room, and analyzes the temporal-spatial virus-laden
aerosol concentration by accounting for partial absorption and
reflection at each side of the room. The paper first derives
a closed form expression of the temporal-spatial virus-laden
aerosol concentration. It then considers the deployment of a
receiver composed of an air sampler and a bio-sensor to detect
the viral existence of a specific virus. We, therefore, assess the
detection capabilities of the proposed system via evaluating the
viral miss-detection probability as a function of the sampling
volume and the detection time-instance at the receiver side.
Our numerical simulations verify the validity of the analytical
results, and illustrate the ability of the proposed system to detect
viruses in indoor environments. The results further characterize
the impacts of several system parameters on the miss-detection
probability.

Index Terms—virus-laden aerosol concentration, viral aerosol
detection, concentration characterization, spatial-temporal virus
spread, aerosol channel, communication through breath, channel
modeling, bounded environment, molecular communication.

I. INTRODUCTION

IRAL spread into the respiratory system often leads to

life-threatening infections, the escalation of which could
reach epidemic or pandemic levels. Airborne transmission of
pathogens has recently received considerable attention across
different research boards because of their epidemic impacts
on human life. The world has indeed suffered from various
viral pandemic waves over the past century, such as 1918-
1920 influenza, 1957-1958 H2N2 virus, 1968 H3N2 virus,
2009 HINI1 [1], and the most recent coronavirus disease
2019 (COVID-19) which is caused by severe acute respiratory
syndrome coronavirus 2 (SARS-COV-2)) [2], [3]. The 1918
flu, which was first detected in the United States in March
1918, went through three different waves before fading out
in Summer 1919. It was estimated that about one-third of
the world population was infected with the 1918 flu, with
at least 50 million fatalities [1]. H2N2, also known as the
new influenza A virus, appeared in February 1957 in East
Asia and reached the United States in Summer 1957, result-
ing in about 1.1 million deaths worldwide. H3N2 was first
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observed in the United States in September 1968. It then
spread worldwide, leading to around 1 million deaths. The
2009 HIN1 pandemic has the first reported case on April 2009.
It went afterwards through different waves until it disappeared
in August 2010 [1]. Nowadays, the world is facing another
severe viral pandemic, i.e., COVID-19, whose first reported
cases were in China in December 2019 [2]. As of June 2020,
the statistics show that COVID-19 already infected 10 million
people worldwide, with around 500 thousand fatalities. Such
numbers are expected to grow further in the near future,
especially given the absence of vaccines and the projected
potential waves of the virus. It is, therefore, necessary to steer
parts of the scientific research towards combatting similar viral
crises by means of properly reducing pandemic fierceness.
This paper addresses one particular aspect of viral transmis-
sion in bounded environments. It characterizes the temporal-
spatial virus concentration in an effort towards enhancing viral
detection capabilities.

The fundamental research on viral spread is related to sev-
eral multi-disciplinary areas, which include treatment, vaccine
development, diagnostics, epidemic propagation, finance and
economy, safety and public health, and crisis management. In-
vestigating spatial-temporal viral spread performance from res-
piration, coughing, and sneezing in a bounded environment is
one particular relevant research direction which needs further
understanding and investigation. The rationale behind such
study is to help estimating the probability of infection in indoor
environments so as to detect specific viruses across time and
space. Such direction is also promising for mitigating the viral
spread, and identifying possible early hazards. Characterizing
spatial-temporal viral spread is also critical for investigating
initiatives that reduce anticipated viral waves, which often
follow the first wave. Such initiatives indeed aim at prevent-
ing from forming any potential epicenter that would initiate
subsequent waves [4]. For example, mass gathering events can
easily form an epicenter of an epidemic wave, such as the one
that occurred during the Champions League soccer game that
was held in Spain in February 2020, where is considered as
COVID-19 “biological bomb” in Spain [2]. Detecting infected
cases in mass gathering events can, therefore, thwart possible
traces of viral threats. Developing powerful mathematical tools
for understanding and analyzing virus transmission can then
provide paramount guidelines to reduce infection rates and
detect viruses, especially when equipped with the appropriate
sensors. This paper focuses on analyzing and detecting the
temporal-spatial virus concentration in bounded environments.
We model the system as a communication system that deals
with chemical and biological molecules.



Recently, proliferated research directions have emerged on
the topic, mainly due to the COVID-19 pandemic, so as
to understand the virus-laden aerosol transmission abilities,
infection mechanisms, interaction with the human respiratory
system, and proper preventive actions [5]-[10]. A review study
[5] is conducted based on laboratory experiments, air quality
monitoring, airflow dynamics, and its effect on epidemiolog-
ical spread to track the COVID-19 transmission pathways
and recommend prevention strategies. In [6], some safety
guidelines for the indoor environment related to exposure time,
ventilation, and occupancy are suggested based on a defined
risk index. To further investigate the virus-laden transmission,
a numerical simulation study models the virus-laden cloud
spread of coughing and sneezing and indicate that face masks
could decrease the virus concentration from 200 virus copies
down to 2 copies per 2 min [7]. Other studies, such as [8], fo-
cus on the infection trip after exhaling the virus-laden aerosols
from an infected person to the deposition in the lung and
airways. A fluid-dynamic-based study sheds light on two key
points that need deep investigations, the distribution of droplet
sizes and the potential of viral spread via dry versus liquid
droplets [9]. Moreover, the infection can be affected by the
droplet’s evaporation and sedimentation, as discussed in [10].
Another essential aspect that still needs further investigation is
the impact of a bounded environment on virus spreading where
the room walls may partially reflect/absorb the virus-laden
particles, and so our paper is one step forward in this direction
as it analyzes the spatial-temporal diffused viral concentration
in bounded-rooms.

Molecular communication (MC) is a nontraditional commu-
nication concept that uses the molecules to deliver information
through different media, instead of electromagnetic waves, and
to detect it using appropriate detectors. MC can be employed at
different scales, including microscale or macroscale depending
on the communication range, whether it is short or long,
respectively [11]-[13]. In MC, molecules are generated from
a point, line, plane, or volume source with different types,
concentrations, and releasing time. Then, molecules propagate
according to fundamental mechanisms such as free diffusion,
advection, and chemical reactions, which affect the communi-
cation channel modeling. Regarding the receiver, MC systems
can have either an active or passive receiver depending on its
ability to interact with the signaling molecules [14], [15].

A. Related Work

Communication via breath, recently introduced under the
umbrella of MC, describes scenarios where several data can
be exchanged through the inhalation and exhalation processes
[16]-[19]. The exhaled breath contains several biomarkers
that characterize human health through gases, volatile organic
compounds, and viruses. Furthermore, the exhaled breath af-
fected by the inhaled breath’s chemical and biological profile.
Thus, the links of two-way communication through breath are
established [16], [20]. One aspect of the breath communication
includes virus spread and detection from the exhaled breath'.

'We use the term exhaled breath to represent any respiratory activities,
whether continuous (breathing, speaking and singing) or impulsive (coughing
or sneezing).

Viruses emitted from exhaled breath propagate through the
aerosol channel based mainly on diffusion and advection
mechanisms and can be detected using suitable biological
receivers (sensors) [16]-[19].

The investigation of such an interesting problem from an
engineering perspective push the molecular communication
research community to adopt some of established techniques
to better understand and analyze communication via breath-
based systems [18], [19]. In [18], the problem of detecting
viruses from the exhaled breath is analyzed by assuming
largely unbounded environment. In this context, the steady
state analysis is considered and the probability of miss-
detection is analyzed assuming that a Silicon Nano-wire field
effect transistor is used for detection. In [19], the study is
extended to include multiple sources, such as sneezing and
coughing, in addition to the introduction of transient analysis
and frequency response. Both studies [18], [19] are suitable
for large rooms where one can neglect the effect of boundary
absorption and reflection. Furthermore, both studies model the
exhaled breath as a point source that is subjected to airflow
with a constant velocity. Although this model can give an
acceptable approximation when the airflow velocity is high, it
is not suitable for situations where there is no external airflow,
and where the exhaled nasal or mouth breath pattern would
follow specific patterns. In fact, in an experimental setup [21],
[22], an image-based study investigates the spatial-temporal
pattern of human jet sources, which come from breathing,
coughing and sneezing. In [21], the images of a high-speed
camera show a relatively symmetrical, conical geometry and
measure the expansion rate and area, which justifies parts of
the system model and assumptions adopted in our paper.

Studying the spread of expiratory particles has attracted
researchers of different fields, such as fluid dynamics, micro-
biology, and medicine [4], [21]-[27]. Such studies, however,
focus on the jet flow propagation analytically and experimen-
tally without considering the effect of bounded environment.
A respiratory activity emits particles of different sizes through
jet-like airflow with an initial velocity that diminishes spatially
[21], [22]. Large particles (or large droplets) are deposited to
the ground thanks to gravity, while small particles, or aerosols
(droplet nuclei), can propagate for a considerable distance and
stay suspended in the air [26], [27].

B. Contributions

Unlike the aforementioned references, this paper considers a
bounded-room where the ceil, floor, and walls can partially or
fully reflect/absorb the emitted virus-laden aerosol particles.
We analyze the spatial-temporal diffused viral concentration
in the room, assuming a single exhaled breath source. In this
regard, we adopt an accurate model for the exhaled breath
as a relatively symmetrical conical cloud released from the
nose or the mouth in a room space. The exhaled particles
are released from a jet-like single source with an emission
angle and a specific initial velocity that reduces through
space and time until vanishing. Then, they diffuse from the
relatively symmetrical conical cloud base through the entire
room without any airflow sources. In this paper, we derive



a closed-form expression for the diffused virus-laden aerosol
concentration in time and space inside the room. Finally,
we analyze the ability to detect the virus by taking spatial
samples using a suitable bio-sensor. Towards this direction, the
paper assesses the proposed system’s detection capabilities via
evaluating the viral miss-detection probability as a function
of the sampling volume and the detection time-instance at
the receiver side. Several numerical simulations verify the
validity of the analytical results and illustrate the proposed
system’s ability to detect viruses in indoor environments. The
results further characterize the impacts of the indoor system
parameters (e.g., absorption and reflection coefficients, room
dimensions, etc.) on the miss-detection probability.

C. Organization

The rest of this paper is organized as follows, Section II
provides a description of the indoor system model. Section
IIT analyzes the spatial-temporal viral concentration due to a
point source. Then, Section IV derives the spatial-temporal
viral concentration due to an exhalation. Section V analyzes
the probability of missed detection using an appropriate bio-
sensor. Finally, Section VI assesses the system performance
followed by the paper conclusion in Section VII.

II. SYSTEM DESCRIPTION

Consider a 3-D bounded room in z, y and z dimensions, as
depicted in Fig. 1, where 0 <2 < L,, 0 <y <L, and 0 <
z < L, where L,, L, and L, are fixed positive constants. In
the room, we assume the presence of a person infected with a
specific virus, where virus particles spread in the room through
nasal or mouth exhalation. The exhaled breath represents a jet
flow source that takes a conical form and expands spatially till
reaching zero velocity at a distance 1, max from the infected
person [21], as illustrated in Fig. 2. The model adopted
herein is, in fact, aligned with the experimental findings of
reference [21]. More specifically, Fig. 4 in [21] shows the
distance and velocity of the exhaled profile along with the
breathing expansion area of 30 volunteers. Fig. 4 in [21]
infers that, based on the velocity and propagation distance of
the exhaled conical profile, the propagation velocity vanishes
after a specific distance 1, max and time Z.nq, as shown in
Fig. 2. Thus, the released particles of any respiratory activity
are emitted with a high relative velocity that reduces through
both space and time until vanishing, as shown in Fig. 2.
Meanwhile, the conical aerosol-cloud expands till reaching a
maximum volume after a specific time [21], as illustrated in
Fig. 2. Thus, the largest conical cloud in Fig. 2 and the one in
Fig. 1 represent the maximum signature of a single respiratory
activity. After that, the exhaled particles at the circular plane of
the largest conical cloud propagate in the entire room through
the diffusion mechanism without any external airflow sources.
Throughout this study, we focus only on the aerosols (small
particles) that diffuse in the zero-velocity region shown in
Fig. 2, and stay suspended in the air. Furthermore, the gravity
force has a negligible effect on aerosols compared with large
droplets (particles) that fall fast in short distances [26], [27].
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Fig. 1: Bounded environment indoor model.
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The paper assumes that the room boundaries have specific
capabilities of full or partial reflection/absorption. While such
features of the room can be designed to control infection or
support detection using a separate optimizing module, such
optimization falls outside the scope of the current paper and
is left as a future research direction. At the receiver side, on
the other hand, the paper assumes the existence of a single bio-
detector whose electrical characteristics change in a way that
matches the detection of the virus under study. In particular,
the detector is connected to an air sampler that collects the air
based on its volume, which is called the sampling volume and
for a specific duration that is called the sampling time ¢.
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Fig. 2: Spatial temporal propagation of respiratory cloud.

One of the paper goals is to analyze the temporal diffusion
of the zero-velocity continuous circular plane illustrated in
Fig. 2 along the room depicted in Fig. 1. Therefore, we
characterize the spatial-temporal viral concentration due to an
instantaneous single viral point source on the zero-velocity
continuous circular plane in Section III. Afterward, we use the
derived virus-laden aerosol concentration of the point source
to analyze the diffusion profile of the zero-velocity continuous
circular planar source by using suitable integration over both
time and space in Section IV.

III. SPATIAL TEMPORAL VIRAL CONCENTRATION OF A
POINT SOURCE

This section analyzes the instantaneous virus concentration
in a bounded room due to a single viral point source, similar to
the model illustrated in Fig. 1. The section first describes the
generic solution of the problem by casting its associated partial



differential equation (PDE) as a Sturm-Liouville problem. The
section then provides a discussion on the provided solution as
a function of its eigenvalues’ distributions.

A. Instantaneous Virus Concentration

We assume a point source located at (zp, yp, 2p)*> with a
viral concentration of @, mg.m~3. Let Cp, (z,y, z,t) mg.m ™3
be the spatial-temporal viral concentration at time ¢ and at
any generic point (z,y,z) inside the bounded room. The
mathematical performance of C,, (z,y, z,t) mg.m 3 can then
be found based on the mass conservation model and Fick’s law
using the following partial differential equation (PDE) [28]:

2 2 2
%:Kf) Cp +Ky8 Cp +KZ<9 Cp
ot ox? Oy? 022
where the K, (m2?.s71)’s, i.e., the values of the molecular dif-
fusivity along the v-dimension with v = x,y, 2, respectively,
are constants that depend on the diffusive mass type and the
surrounding fluid, R mg.s~1.m~3 is the concentration rate
change due to any reactions, and S mg.s~'.m~? represents
any sources and/or sinks that can change the concentration
rate. Throughout this paper, we do not assume any reactions
could occur in the room, i.e., R = 0. Also, since we assume no
airflow in the room, there is no turbulence diffusion in the zero
velocity region depicted in Fig. 2; thus, we consider only the
molecular diffusion in this region. Since we study the concen-
tration for an instantaneous point source that is released at ¢t =
to in this section, then S = Q0 (t — o) 0 (x — zp) 6 (Y — Yp)
d (z — zp). Thus, we can express Cp, (z,y, z,t) for different
time intervals as follows
1) Fort <ty, C, =0.
2) For t = t9,Cp, = Qpd(x —xp)d (Y —yp) 0 (2 — 2p),
where @), is the viral emission rate that occurs only at
t = to.

3) For t > ty, C, is found using a simplified form of the
PDE presented in (1):

ac, 02C, 02C,
— =K, — —P 4y K, P 2
ot 022 o Mg @
To solve (2), we need to consider the following system
initial condition (IC) and boundary conditions (BCs):

+S+R, @

o*C
+ K,

1) The initial viral concentration is

Cp (l’,y,Z,to) = Qp6(x 7$p)6(y7yp)5(zizp) :
3)
2) The room is bounded in the v-th direction, where 0 <
v<L,, forve{zy,z}
3) Each room side exhibits different absorption and reflec-
tion characteristics, which is modeled mathematically as
[29, Ch. 18, Eqn. (18.92)],

K acp (:E?ya th)
v v

where 7+ = 1,2, 1 = 0, vu = L,, and d,, is the
deposition velocity in the v — th direction. In (4), d,,

:de‘CP (x7y7z7t)u V=, (4)

2We assume the point source is located at the zero-velocity circular plane
where Tp = Th max-

is used to represent the absorption/reflection level of a
certain surface or wall [29, Ch. 18], where d,, = 0
denotes total reflection scenario. As d,, increases, how-
ever, the surface absorption capability increases; a total
absorption scenario occurs when d,,, — co. The BC (4)
is known mathematically as Robin BC in differential
equations [30]. In the following, we rewrite (4) in a
simpler way as
ocC

d,.
P _ v
£y Bu;Cp, Where 3, K, (®)]

Now, we express Cp, (z,y, z,t) as a multiplication of inde-
pendent spatial functions. Such operation is mathematically
possible since the diffusion in a specific dimension does not
depend on other spatial dimensions [29]. More specifically,
Cp (z,y,2,t) can be written as:

Co (2,9, 2,1) = Co (2,8) Cy (y,1) C (2, 1) (6)

Then, we use (6) to find the equivalent PDE in the v — th
dimension from the main PDE (2). We get the following PDE?:

ac, (v,t) X 0%C, (v,t)

ot I, )
As for the IC, we use (6) in main IC equation (3) to get:
CU(V7 tO) = QU(S(V - Vp)a (8)

where (), is the virus concentration across the v — th di-
mension with @, = Q.QyQ.. As for the BCs, a simple
manipulation of equations (6) and (5) gives the following
simplified BCs:

ocC,
al/ = ﬁlllcy7 V= 07 (9)
886; = ﬂl/gcl/ﬂ v=1L,. (10)

The bounded-value PDE problem (7) with the BCs (9), (10),
and the IC (8) can be classified among the Sturm-Liouville
problems, which can be solved using a proper separation
of variables [30]-[33]. By applying the variables separation
approach to our problem, we can replace the PDE system with
a set of ordinary differential equations (ODE) that are solved
subject to the given BCs and IC. More specifically, we first
express C,(v,t) as a multiplication of separable functions as

Y

Then, we substitute (11) in (7) and divide both sides by
K,V (v) T (t). We obtain the following equalities:

1 dT(t) 1 d*v(v)

KT d V) a?

C,b(v,t) =V ()T ().

(12)

where «,, is a constant, since the first equality in (12) equates
functions of the two independent variables ¢ and v. Interest-
ingly, the equalities in (12) illustrate how the separation of
variable approach converts the PDE equation in (7) into two

3The proof of (7) is provided in Appendix A.



ordinary differential equations (ODEs), that can be written as
follows:

d*y (v)

Y () =0, (13)
dT(t) _
Ty +ovEude =0 (14)

In Sturm-Liouville problems, «, is called an eigenvalue,
which can take different values that satisfy the BCs (9) and
(10). Each eigenvalue gives a possible eigenfunction solution,
which contributes to the final concentration function in a form
of a weighted sum of all possible eigenfunctions that are
orthogonal, thanks to the Sturm-Liouville problem structure
[30]-[33]. Finally, the weights of different solutions can be
found by using the IC (8) and eigenfunctions’ orthogonality
property.

First, solve the ODE (14) gives the following solution:

T(t) = coe~ 1o Kt (15)

where ¢y is a constant. Solving the more complicated ODE
(13), on the other hand, necessitates the investigation of
possible eigenvalues that satisfy (13), subject to BCs (9)
and (10).

To best characterize the above solutions, the following
subsection studies the eigenvalues distribution, evaluate them
and find the corresponding eigenvectors and weights, which
would eventually allow us to express C, (v,t) as

Co(vt) =D Lyn®y (1,1), (16)
n

where ®,, (v,t) is the n — th eigenfunction that corresponds

to the n — th eigenvalue, A\, ,,, and ¢, ,, is the corresponding

weight. It is worthy to emphasize that ®,, (v,t) would, by

design, jointly have a separable form as in (11) and simulta-

neously satisfy the PDE in (7).

B. Eigenvalues Distributions

To study the distributions of the eigenvalues «,, we next
discuss three possible cases based on the sign of «,. More
specifically, the first case below assumes a zero eigenvalue,
ie., o, = 0. Then, we discuss the positive eigenvalues case,

ie., we let o, = )\3, where )\3 is a positive real number.
Lastly, we consider the negative eigenvalues case, i.e., we let
a, = —A\2, where A2 is a positive real number.

1) Zero Eigenvalue Case: First, we consider the ODE in
(13), with o, = 0, which gives the following solution

V(v) =cv+ca, 17)

where c; and cy are constants computed to satisfy the BCs.
By considering the BCs (9) and (10), we obtain

Cl = /811102?
(1= BuLy)c1 = Pu, (c1Ly + c2),

which can have two possible solutions. The first solution
is the trivial solution, i.e., ¢y = ¢ = 0. Such solution,
however, implies that V (v) is zero, which highlights the
impact of partial absorption of the wall, a feature of which

(18)

is the zero-concentration at steady state. The second solution
occurs by substituting the value of ¢; as ¢ = f(,,¢c2 in
(1= 5,,L,)c1 = By, (c1Ly, + ¢2). A direct inspection of such
substitution concludes that, in this case, (18) would be satisfied
when B,, = f,,/(1+ By, L,), provided that ¢; = f,,ca.
Such solution, however, represents the existence of a non-
zero steady state solution. Under the assumption of partial ab-
sorption, the viral concentration due to an instantaneous point
source must vanish at steady state, and so the second solution
above is indeed unfeasible. In summary, when «, = 0, the
only acceptable solution is ¢; = ¢y = 0, which rather means
the nonexistence of a zero eigenvalue case.

2) Positive Eigenvalue Case: To study the positive eigen-
values distribution, we consider o = A2 in (13), i.e.:

d*V (v)
dv?

The solution of (19) has a trigonometric periodic function
form that can be expressed as follows:

=-A2V(v). (19)

V (v) = ez cos(A,v) + ey sin( A, v), (20)

where c3 and c4 are constants that are found from the BCs.
Firstly, we use the BC in (9) and obtain ¢4 = (3., ¢3/A,. Then,
we use the second BC in (10) and find the following relation

/\V (5”1 - Buz)
B Buy + X2

which is used to find different values for A, that satisfy the
ODE of V (v) in (19).

To study the eigenvalues distributions of (21), we examine
both sides of the equality in (21). To this end, define f (A,) =

tan (\,L,) and g (\,) = % Fig. 3 plots f ()\,) and
g (\,) versus \, so as to grai)hizcall}yl characterize the roots of
equation (21). Firstly, we consider the case where f3,, < f,,.
The eigenvalues in this case are, therefore, at the intersection
of f(\,), i.e. the tan function, and g(}\,). Such intersection
herein is in fact an infinite set of points, each belonging to
one interval ((k — §)m, km), for one particular integer k, as
shown in Fig. 3.

Secondly, we consider the case where 5,, > f,,. In
this case, the intersection set is also infinite; however, the
cigenvalues belong to intervals (km, (k+ 3)7), as shown in
Fig. 3. At the special case k£ = 0, there is an eigenvalue in

the interval (0, T) , if CICJ;T@ > diso), which is equivalent to

L, < %, as illustrated in Fig. 3.
v1 Brg

After computing the eigenvalues, i.e., A, ,, we find the

corresponding eigenvectors, i.e., @, (v, 1), based on (11), (15)

and (20) as follows:

tan (A, L,) = 1)

P, (v,t)= <cos(,\,,ny) + fﬁ Sin()\um,l/)) e K Ant(22)

v,n

The corresponding weight of the eigenvector @, (v, 1), i.e.,
4, n, can now be evaluated by using the orthogonality property
of eigenvectors and the IC (8) [30]-[33]:

Jv €y (vyto) @y (v to) dv

(23)
[ @2 (v,t0) dv

gl/,n =
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Fig. 3: Positive eigenvalues distribution.

Once the integrations of the numerator and the denominator
of (23) are found®*, equation £, ,, can be written afterwards as

follows:

4)\,?;’71@,, (cos()\l,’nup) +

(A2, —B2)sin(2\, L) —2X, 0 By, €08(2A 0 L) +pu
(24)

f”l Sin()\y,nup)) v\ nto

v,n

Eu,n:

where p, , =2\, ((Agn + BZ) Ly, + Bu,).
3) Negative Eigenvalue Case: In the negative eigenvalues

case, i.e., when o, = —)\12,, equation (13) is expressed as:

d?V (v)

dv?
The solution of (25) can be written either as in hyperbolic
form, or in an equivalent exponential form. In the following,
we choose to adopt the hyperbolic representation so as to have
a similar form to the one presented in the positive eigenvalue
case above. More specifically, V (v) can be written as follows:

(26)

=2V (). (25)

)Y (y) =cs5 cosh(S\VV) + cg sinh(jxl,u),

where c5 and cg are constants that can be found from BCs (9)
and (10). The first BC, (9), results in ¢cg = 3, /A,, while the
second BC, (10), yields

5‘l/ (ﬁl’l - ﬁllz)
6U1/BD2 - 5\3

which is used to find different values for )\, that satisfy the
PDE of V (v) in (25).

Similar to the discussion of the positive eigenvalues case, we
next characterize the negative eigenvalues distributions. Define
f(A,) = tanh(A\,L,) and §(\,) = % Fig. 4 plots
f(\,) and g(X,) versus \,. Firstly, wlheri By > Bu,, both
functions are positive and increasing for \, € (0, v/ Buy Busy)-
Furthermore, both functions have a zero value at S\V = 0. Fig. 3

shows that while f(),) is concave, §(\,) is convex. Thus,

tanh (X,Ll,) - 27)

b

4We show all the computation details in Appendix B.
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Fig. 4: Negative eigenvalues distribution.

- e : e df(0)  dg(0)
f(A) and g(X,) may intersect at one point if <53~ > 5=,

which is equivalent to L, > ﬂgl _Bﬂ “2 | as illustrated in Fig. 4.
v1rHva

Secondly, when £,, < fB.,,, §(\,) is positive if \, €
(/B By, 00). Since §(A,) decreases and §(\,) increases
over (1/fBu, Bu,, 00) as shown in Fig. 4, there is always one
intersection point (i.e., one feasible eigenvalue).

Based on the above discussion, we conclude that, in the
negative eigenvalue case, there is one unique eigenvalue if

either 5,, < fB,, or L, > % The corresponding
virFv2

eigenvector, denoted by ® (v, 1), is then found based on (11),
(15) and (26) as follows:

3 ﬂul
<cosh()\uz/) + 3

D (v,t) =

sinh(xyu)> e KAt (28)

v

The corresponding weight ?, of the eigenvector ® (v,t) can
then be evaluated based on (23) as follows; see Appendix C
for more details:

O 4ANQ, (cosh(S\pr) +

. ~ 12
ﬂ:\”yl Slnh()\uup)> eflviuto

(A2 +B2) sinh(2X\, L,)+2), 8., cosh(2A, L,) —p,

where 5, = 2\, (( 2 - 5\3) L,+ ﬁyl).

(29)

IV. SPATIAL TEMPORAL VIRAL CONCENTRATION OF
EXHALATION

In this section, we utilize the spatial-temporal viral concen-
tration due to an instantaneous point source analyzed in the
previous section to characterize the instantaneous virus-laden
aerosol concentration emitted from a human exhalation in the
bounded room and specifically in the zero-velocity diffusion
region as shown in Fig. 2. To this end, we consider the
exhaled profile after reaching zero-velocity and approximate it
as continuous circular source in the y — z plane, which diffuses
along the room as discussed in section II.

The analysis presented in this section aims at characterizing
the spatial-temporal virus concentration due to both continuous
(exhaled breath) and temporal sources (sneezing, coughing).



We use, therefore, the spatial-temporal viral concentration due
to an instantaneous point source analyzed in the previous
section so as to study the viral concentration of a continuous
emitted circular source, named C,. (z, vy, 2, t), which is assumed
to have a uniform virus distribution. We first introduce the fol-
lowing notation to express the spatial-temporal concentration
of a point source, C,, (z,y, 2, t),

Cp (z,y,2,t) =C(2,Y, 2, t;Tp, Yp, Zp, t0) 5 (30)
where the right hand side denotes the spatial-temporal con-
centration due to a point source located at (zp, yp, 2p) Which
is released at ¢ = tg.

Consider the point (zp, yp, 2p) that is located at the circular
plane center, as shown in Fig. 1. Let r. be the radius of
the circular area. The viral concentration of the continuous
emitted circular source C. (x,y, z,t) can then be found based
on C, (z,y, z,t) as follows:

22 Y2
:L y Y, 2, t // C $ Y, 2, t :vay()»ZOv )dyOdZOdTv
to

(31)
where 21 = 2, —T¢, 22 = Zp+7Te, Y1 = Yp— /T2 — (2 — 20)?,

and y2 =y, + m . After evaluating the integral

of yo, equation (31) reduces to

Ce (z,y, 2, t):[ /22<ZZ/” (1) @, (y,t) +Zy (1) @ (y, ta

n

X (Zﬁzm (20,7) Py (2,) + l, (z0,7) ) (z, t))
X (men (2p,T) B (2, 1) 4 Ly (2, 7) @ (z, t)) dzodr, (32)

where ¢, ,, (T) is expressed in terms of £, ,, as

Y2

fy,n (yOa T) dy07
Y1

Lyn(T)= (33)
where £, ,(.,.) is the weight associated with the positive
eigenvalue case, as illustrated in (24). Note that the arguments
yo and 7 of £, , in (33) represent the variables v, and to in
(24), respectively. ¢, , (T) can now be readily written as:

Cyn (1) = 402 0

sin(Ayny2) —sin(Ay nt) + 52 (€08(Ay 1) — 05 (Ayny2))

(Ai,n —ﬁzl) Sin(2Ay 0 Ly) =2y 5By, €0S(2Xy 1 Ly) 40y n
(34)

~

¢, (), on the other hand, can be found based on £, (yo, ) as
follows:

> vz _
0, () = / 7, (v, 7) dyo, (35)
Y1

where £, (.,.) is the weight associated with the negative
eigenvalue case, as illustrated in (29). Note that the arguments

yo and 7 of Zy inA(35) represent the variables v, and % in

(29), respectively. éy (1) can now be readily written as:

o~

0y (1) = 4X2eFNT
sinh(S\yyg) — sinh(xyyl) /3;; (cosh(j\yyg) — cosh(}yy1)>
(A2+32) sinh(2A, L) +2X, B, cosh(2X, L) —4,

(36)

Evaluating the double integrals in (32) is a complicated
mathematical process due to the circular plane integration
which results in dependent integral bounds, and due to the
inner multiplication of infinite sum functions. It is, therefore,
desirable to find a tractable way to evaluate the concentration
in (32), or to approximate the spatial temporal concentration
across the room. One alternative to partially simplify the
mathematical computations in (31) is by approximating the
integration evaluation over the circular plane with a square
plane. For instance, such approximation can be made possible
through replacing the circle with either a smaller or larger
square than the circular area. For example, choosing the square
with side length of Ly = 2r. results in an upper bound on
(32). Similarly, choosing a square with a diagonal 2r. gives
Lo = v/2r¢, and results in a lower bound on (32).

A more accurate approximation of (32) can be found by
integrating over a square with the same area as the original
circle. Such a square has a side length Ly = /7r.. In this
case, the concentration in (31) due to integrating over a square
planar surface can be found using the following integration
bounds substitutions: z; = zp, — Lg/2, 20 = 2, + Ls/2, y1 =

Lg/2, and y» = yp + Ls/2. The concentration in (31)
then reduces to the following expression:

C (‘T Y,z / <Z€ZI1
X (Z Com (T) @y (1) +2. (1)@ (2, t))

x (Z Con (T, T) @y (2,8) + by (2, 7) P (z,t)) dr, 37)

where Cs (x,y, z,t) denotes the respective approximate con-
centration. In fact, the numerical results in section VI suggest
that that integration simplification in (37) yields a tight approx-
imation as compared to the original concentration expression
(32). The results also illustrate the numerical behavior of both
the upper and the lower bounds described above.

V. VIRAL DETECTION PERFORMANCE

This section aims to study the ability to detect viruses
from the spatial-temporal exhaled breath profile in bounded
environments using electronic-based biosensors, whose elec-
trical signals/properties change after interaction with the virus-
laden aerosol particles. The Silicon NanoWire (Si-NW) field-
effect transistor (FET) is one of the electronic-based biosensors
where the Silicon NanoWire is coated by virus antibodies
and placed between the FET source and drain [34]. Once



the virus-laden aerosol particles are bound with the antibod-
ies, we can estimate the viral concentration by tracking the
changes of transistor electrical signal/quantities such as cur-
rent/inductance, respectively. Before the biosensor, an aerosol
sampler is used to collect the suspended air during a specific
sampling time T; in a particular sampler volume V. Among
the possible sampler alternatives, we can use the electrostatic
aerosol sampler due to its commercial availability, sensitivity,
and ability to sample nano-sized pathogens particles (regard-
less of the size of pathogen-laden droplets, which could be in
the micrometer range).

The Si-NW electronic-based biosensor is subjected to dif-
ferent antibodies used to coat the nanowire to several electrical
and biological noises such as air quality, thermal noise, flicker
noise, interference, and binding errors. In recent virus-laden
aerosol detection studies [18], [19], the total equivalent noise
is modeled in the electrical domain a Gaussian noise source
based on the central limit theory [35], [36]. Therefore, the
received virus concentration is then modeled as in [18], [19]:

C = n'YCsamp + N, (38)

where 7 is the sampling efficiency, v is the probability of virus
binding, Csamp is the mean of sampled virus concentration,
and N is the additive noise that captures the effect of flicker,
thermal, interference and binding noise. In (32), the random
variable N is modeled as a zero mean Gaussian noise with
variance o2. Csamp, On the other hand, is expressed as the
integration of viral concentration over V; during 7T as follows:

CsampZ/T/VCC (x,y, 2,t) dedydzdt, (39)

where C. (z,y, z,t) is defined in (32). Thanks to the adopted
biosensor’s non-passive nature, virus-laden aerosol particles’
impact appears once they bind with the antibodies and cannot
bind again with other antibodies.

Consider a cuboid sampler with dimensions a,, a,, and a,
that is centered at x4, yq, 24, in the x, y and z dimensions,
respectively. Thus, a simplified expression of Csamp can be
found by using the approximate concentration of a square area
in (37) as follows:

where the respective expressions of ¥, ,, (t) and ¥, (t) can

be generally written as:

Vo (t) = [sin (/\u,n (Vd + %)) — sin ()‘Vyn (Vd — %))
— e (cos (A (v + %)) =05 (A (0 - a;)))]

—K, 22t
X 6)\7, 41)
and

b, (1) = [Sinh (% (va+ %V)) —sinh (3, (va - %u))
o 3 ) <o 5 = )|

(42)

Based on the above expressions, we next assess the detection
ability in the proposed setup by analyzing the probability
of miss-detection. We start by comparing Csamp With the
maximum likelihood threshold C;, to decide whether the
pathogens exist at the room. Denote by T the event of
pathogens existence, and by F the event of pathogens absence.
We then use the following decision rule

F
P(FIC:) 2 P(TIC:). (43)
T
Using Bayes’ rule, and given that the events of detecting
and not detecting pathogens at the receiver side are equally
likely, the decision rule in (43) boils down to the following
maximum-likelihood inequality:
F
P (Ci[F) 2 P(C.[T) (44)
T
Based on the received virus concentration expression (38), one
can rewrite (44) as

1 —(Cr—n7Csamp)? T 1
e 202 z e
V2ro? F V2mo?

which can be simplified as follows:

—(c
2a% (45)

T Csam
¢, z Disamp, (46)
F 2
Thus, the maximum likelihood threshold Cyy, is defined as
Csam
Cop = T, )

The probability of miss-detection, P;,q, can then be expressed

as follows
FCs2amp
@p

(48)
where O (.) represents the right tail distribution function of the
standard Gaussian distribution, i.e., Q (z) = % f;o e 2 du,
and where I' = Q,, (17)” /(2302) represents a scaled ratio
of the detected virus point source concentration and the

Csam
Pmd = (Cr < Cth|T) = Q (%) = Q (



noise variance. Observe that the definition of I' resembles,
to some extent, the concept of signal-to-noise ratio (SNR)
in conventional wireless communications systems [35]. The
Q (.) expression of the probability of miss-detection in (48) is
also akin to the classical communications systems probability
of error as a function of SNR. In light of such analogy, we
choose to simulate the impact of changing I' on the probability
of miss-detection, as illustrated in the next section of the paper.

VI. NUMERICAL RESULTS

In this section, we present the numerical results that validate
the instantaneous spatial viral concentration expressions in
a bounded environment and quantify the proposed system
capabilities at virus detection using appropriate biosensors.
We start by investigating the number of positive eigenvalues
needed to characterize the spatial-temporal concentration of
a point source accurately. Then, we study the viral concen-
tration performance due to a point source under different
absorption/reflection boundaries characteristics and validate
the solution by checking the PDE and BCs. After that, we
study the spatial-viral concentration due to exhaled breath
with a continuous circular source model and study the derived
bounds and approximation expressions. Finally, we study the
probability of miss-detection considering several features of
the sampling and detecting receiver and different reflect-
ing/absorbing boundary abilities. Throughout the numerical
results, we use K, = 2.42 X 10*5mz/s [19] and choose the
absorption/reflection capabilities based based on practical wide
ranges values of d,, reported in [37]. We also choose 10°
positive eigenvalues as a benchmark for the viral concentration
bounds and approximation performance.

Firstly, we plot the average maximum absolute error versus
a different number of positive eigenvalues in Fig. 5a and Fig.
5b, both under short-time and long-time variations, respec-
tively. To this end, we study the spatial-temporal concentration
due to a point source in zx-direction with L, = 1m, and
zp = 0.5m. Regarding the deposition velocity setting, we
assume one room side is a good reflector with d,, = 1077
m.s~!, while the other side has good absorption abilities
where d,, = 107! m.s™!. For short-time variations, the
concentration changes due to an instantaneous point source are
expected to be close to pulse shapes. Hence, more terms in the
infinite summation are needed to characterize the concentra-
tion performance accurately, as also confirmed in Fig. 5a. For
example, to achieve a maximum relative error of 104, Fig. 5a
shows that approximately 450, 145, and 55 terms are needed
to characterize the concentration for ¢ = 1, 10, and 60 sec.,
respectively. In the case of the long-term variations, the
concentration is expected to change slightly, thus less positive
eigenvalue terms are needed to represent the concentration
performance, as confirmed in Fig. 5b. Specifically, around
10, 8, 7, and 6 terms are needed to accurately characterize
the concentration performance at ¢ = 10, 15, 20, and 30 min.,
respectively.

Secondly, we study the problem of viral concentration in a
bounded environment and validate the problem solution. We
focus only on a single-dimension study with an instantaneous
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Fig. 5: The average of maximum absolute errors along the
r—direction versus different number of positive eigenvalues.

point source to easily visualize the effect of partial absorp-
tion/reflection and verify the numerical problem solution. We
herein adopt the previous example results shown in Fig. 5a
and Fig. 5b, and assume different deposition velocities, as
explicitly mentioned in the captions of Fig. 6a, Fig. 6b and Fig.
6¢c. In Fig. 6a, we consider the good-reflector good-absorber
scenario with d,, = 1078 m.s™! and d,, = 1072 m.s~!, and
study the normalized spatial viral concentration with respect
to @), at different time instances, ¢ = 5, 10, 20, and 30 min..
Fig. 6a shows that after releasing the instantaneous point
source, the concentration decreases slowly around z, = 0.5m
as a result of the slow diffusion process that is controlled by
K. On the other hand, the viral concentration increases away
from z,,, as can be seen in Fig. 6a. At the boundary sides,
we observe a different behavior due to the deposit velocities
variation. On the left side of the room, there is a concentration
increase due to the low deposition velocity, which causes
viral particle accumulation. On the right side of the room,
there is a concentration decrease due to the relatively large
deposition velocity, which causes viral particle elimination.
In the second scenario, i.e., in Fig. 6b, both boundary sides
have relatively large deposition velocities. Thus, while the viral
particles would vanish at both sides of the room, most of



TABLE I: Solution verification of Fig. 6 scenarios

(a) Scenario a

l Time (min.) “ 5 l 10 l 20 l 30 H
Maximum  absolute 1.7 x | 87 X 3.8 X 217 x
error of PDE (7) 10-18 10—19 10—19 1019
Absolute error of BC 9.5 X 1.7 X 6.8 X 0
9) 10—20 10—20 10—20
Absolute error of BC 1.2 X 7.2 X 3.5 X 21 x
(10) 10—12 10—13 10—13 10~13

(b) Scenario b
Time (min.) 5 10 20 30
Maximum  absolute 26 Xx | 87 X 3.3 X 1.6 X
error of PDE (7) 10—18 10—19 10—19 10—19
Absolute error of BC 1.6 X 5.5 X 4.4 X 4.4 X
9) 10—15 10—16 1016 1016
Absolute error of BC 9.2 X | 25 X 1.6 X 1.8 X
(10) 10— 14 10— 14 1013 1013
(c) Scenario ¢
Time (min.) 5 10 20 30
Maximum  absolute 2.6 X 8.7 X 3.3 X 1.6 X
error of PDE (7) 10-18 10—19 10—19 10—19
Absolute error of BC 46 X 1.1 x |44 x |0
9) 10—16 1018 10—16
Absolute error of BC 7.2 X 1.4 X 5.1 X 1.2 X
(10) 1015 1015 1016 1016

the viral particles remain around z,, as validated in Fig. 6b.
Finally, in Fig. 6¢c, we show an opposite scenario to the one
illustrated in Fig. 6a. As expected, Fig. 6¢ shows that the viral
particle accumulation occurs near the right side of the room
after a relatively larger period of time.

To test the approximation quality of using finite eigenvalues
in finding the PDE solution, we consider the same scenarios
studied in Fig. 6, and highlight the numerical evaluations of
the solutions in the PDE (7), and the associated BCs in (9)
and (10). The approximation errors of scenarios a, b, and ¢
in Fig. 6 are then listed in Tables Ia, Ib, and Ic, respectively.
Since each scenario has spatial-temporal solutions, we use the
maximum error over the spatial domain as an error metric
for a specific evaluation time. All three tables illustrate how
the evaluation errors are negligible (practically zero) for all
scenarios at different time instances, which highlights the
acceptable accuracy of the approximation and analytical results
presented in our paper.

Thirdly, we study the spatial viral concentration in a small
bounded environment (e.g., an elevator), due to an infected
person that has been in the room for 1 minute. In this scenario,
the spatial dimensions are set as follows: L, 1.5m,
L, =3m,and L, = 4m. For illustration purposes, we assume
that (zp, Yp, 2p) = (0.6, 0.4, 1.5). The deposition velocities are
set to be within the range of values reported in [37] as follows:
dyy = 1078 m.s~1, dyy = 1075 m.s~1, dy, = 107% m.s~1,
dy, = 107 ms™!, d,, = 107! m.s™!, and d,, = 1077
m.s~!. We then evaluate the normalized viral concentration,
C/Q, after 10 minutes, i.e., after the infected person left by 9
minutes. Fig. 7a plots C/Q versus the z-direction at y = 0.4m
and z = 1.5m. The performance versus the y-direction is then
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Fig. 6: The impact of different absorption/reflection scenarios
on the spatial-temporal virus-laden aerosol concentration due
to an instantaneous point source.



shown in Fig. 7b at x = 0.6m and z = 1.5m. Finally, we
plot C/Q performance versus the z-direction at = 0.6m
and y = 0.4m in Fig. 7c. In addition, to best characterize
the spatial concentration performance, we compare the exact
integral evaluation based on the circular planar modeling in
(32) to the integration bounds that are based on the square
planar source model in (37). More specifically, we evaluate
(37) at three different squares: the large square of side length
2r. which gives an upper bound, the small square with side
length \/2r. which gives a lower bound, and the square of
side length \/7r. which gives an approximate concentration
performance. Fig. 7a, Fig. 7b, and Fig. 7c visualize the upper
and lower normalized concentration bounds, together with
the exact and approximate values. The figures particularly
highlight how tight is the approximate solution proposed in
(37), as it gives a close performance to the exact solution
(31), despite the reduced computation burden of (37).

Fourthly, after evaluating the spatial-temporal concentra-
tion, we next explore the possibility of viral detection using
electrical detectors. In this example, we assume the same
environment setup used in the previous example. Further,
to mimic the scenario of a short stay in an elevator-like
environment, we assume that the infected person stays for
5 seconds. We then study the probability of miss-detection
versus I' at different detection time instances, as illustrated in
Fig. 8. We assume the detector is located at (0.8,0.1,1.4) and
has Ty = 0.5sec.. We also set the side of the cubic sampling
volume to 5cm. According to the results shown in Fig. 8§,
viruses can be best detected if the detection time instance
is close enough to the human existence in elevators. This is
particularly possible in cases where detectors are supported
with powerful abilities such as sampling efficiency, binding
probability, and available viral concentration. For example, to
detect viruses with P,,q of less than 1072, we need to have
detectors with I' = 24 dB. Such detectors would be able to
detect the virus within 2 minutes, given that the infected person
stays for a short time, as illustrated in Fig. 8.

Finally, we study the effect of detector location, sampling
time, sampling volume, and reflecting boundary on the miss-
detection probability. We use the same system setup param-
eters as in Fig. 8, and evaluate in Fig. 9 Pyq versus the
detector center location in the x— direction after 1 minute
for I' = 20dB, different 7§, double sampling volume, and
a highly reflecting bound scenario. Fig. 9 shows that the
detection process is efficient when the detector is close to
the human location due to the slow diffusion process of the
aerosol particles and the non-existence of an airflow. The
figure also shows that slightly increasing the sampling time
improves the performance significantly and provides robust
detection abilities, especially for nearby locations. On the
other hand, while increasing V; can improve the miss-detection
performance and can allow using less 75, the performance
gain due to doubling T is better than doubling V4, since
increasing T allows collecting extra diffused viral particles.
Another critical aspect illustrated in Fig. 9 is the impact of
the reflecting/absorbing characteristics of the room boundaries.
The figure shows that when the detector is close to a good
reflecting boundary with d,, = 107° m.s™!, the virus-laden
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Fig. 7: Spatial concentration due to a human exhalation for 1
minute and evaluated after 10 minutes. The circular exhaled
planar is located at z, = 0.6m, y, = 0.4m and z, = 1.5m.
The spatial concentration is shown versus each dimension and
the comparison is provided between the exact, upper bound,
lower bound and approximate expressions.
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Fig. 9: Probability of miss-detection versus detector location
along z-direction.

aerosol concentration particles can accumulate near the y-
boundary, which allows the detector to collect extra samples,
thereby improving the detection capability. For instance, hav-
ing such reflecting abilities can provide a robust detection of
2 x10~% at z = 0.7m, and a good performance up to 1072
up to x = 0.9m, which illustrates the improved detection
capabilities of the reflecting boundaries as compared to the
partial absorption boundary case, as shown in Fig. 9.

VII. CONCLUSION

In light of the hazardous airborne transmission of pathogens,
characterizing the viral concentration and modeling the viral
transmission are considered significant milestones for enhanc-
ing viral detection capabilities. In this paper, we characterized
the viral spatial-temporal concentration in a small bounded
environment with partial reflecting/absorption boundaries. We
derived a close form expression of the viral concentration
using detailed analysis based on the mass conservation model

and Fick’s law. Moreover, we adopted an accurate model
for the exhaled breath, which allowed us to model it as a
continuous planner source. Although such an accurate model
complicated the analysis, we managed to propose a simplified
approximation for the viral concentration expression, which
reduces the computation burden significantly and achieves a
very close performance to the exact one. We then analyzed
the abilities of electronic biosensors to detect the viruses from
aerosol by analyzing the miss-detection probability. Finally, we
presented several simulation scenarios that helped us under-
standing the airborne virus spread in a bounded environment
and its associated miss-detection probability. We figured that
the reflecting characteristics of the boundaries play a signif-
icant role in extending the existence of virus-laden aerosol
particles suspended in the room, which is further validated
through improving the detection ability. This paper is one step
forward towards a full-scale analysis of the spatial-temporal
diffused viral concentrations in bounded environments with
partially reflecting/absorbing characteristics under different
diffusion models, which promises to be an active area of future
research.

APPENDIX A
PROOF OF EQUIVALENT PDE IN THE v — th DIMENSION

First, we consider the main PDE in (2) and evaluate it using
(6) and obtain

acm(x’t) Cy(y,t) CZ(Z,t) + CI(.’E,t)

ot
0C,(z,t

0°Cy(y, t)
Tyzcz (2,t)

—a C.(z,t)

0?C,
Ox?

=K, (x,t) Cy(y,t) C.(2,t)

+ K,Cy(x,t)
02C,(2,t)

0z2

Then, we divide both sides of (49) by C, (z,y, z,t) using the
proposed form in (6) obtaining

+ K.Cy(z,t) Cy(y, t) (49)

1 0Cu(x,t) 1 9Cy(y,t) 1 9C.(z,t)
Cy(x,t) O Cyly,t) Ot C.(z,t) Ot
K, 0%Cy(z,t) K, 0°Cy(y,t)
© Cu(z,t)  O2 Cy(y,t) 0Oy?
K. 0°C.(z,1t)
C.(z,t) 022
(50)
After comparing both sides of (50), we find
1 0Cy(x,t) K, 0%C,(z,t)
Co(x,t) Ot  Cu(x,t) Oz
1 9Cy(y,1) _ K, 82Cy(il/at) (51)
Cy(y7 t) at Cy (y’ t) 3y2
1 0dC.(z2,t) K. 0%C.(z,1)
C.(z,t) Ot  Cuzt) 022

which is written in a general form in (7).



APPENDIX B Then, we find the denominator integration of (23) from
POSITIVE EIGENVECTOR WEIGHT DERIVATION L,
First, we evaluate the numerator integration of (23) from, /0 ® (v,t9) dv

Ll/ - - 2 ~
/ (COSh()\Vl/) + é\ul sinh()\,,z/)) e 2Ku At g,
0

v

L, L,
/ Co (v, to) @y (v, t0) dv :/ Qv — 1), (v, to) dv
0 0

ﬂ B q)n (Vp;to) . — e—?KuS\itO |:/LV (COShQ(S\yV> + ~321 Sinh2(5\uV)) dv
=Q, (cos(/\ymvp) + )\Vl sin()\wLVp))e’K")‘Mto. (52) LO AL
v 2/8111 v Y . 3
Then, we find the denominator integration of (23) from + A, /0 cosh(A, ) sinh(A, ) du] ' (56)
Ly 9 Then, we use the trigonometric identities, cosh(20) =
/O @, (v, to) dv 2cosh?(f) — 1 = 2sinh2(0) + 1 and sinh(20) =

2sinh(0) cosh(d), we can write the integration equivalently as

Ly, 52 1 Ly ~
/ B2 (v, t9) dv = e 2Ev b0 {7 / (1 + cosh(2)\,,1/)) dv
0 0

L, 2
:/ (cos()\l,,nl/)Jr By sin()\l,,nz/)) e 2K AL to gy,
0

v,n 2
Corox o] [ 2 B o 2 L, N 8 L,
=e v coS ()‘u,n’/) + N2 s ()‘V,n’/) dv 4+ o / (cosh(2>\l,1/) — 1) dv + i/ sinh(2A\,v) dy}
0 v,n 2X2 Jo Avn Jo
25111 L, ) 2K, X24 Ly, Sinh(?S\ULy) Luﬁgl
+ \ cos(Ay p V) sin(Ay pv) dv|. (53) =e S e T
v,n JO ~
. . o B2 sinh(2A, L -
Then, we use the trigonometric identities, cos(26) = + % 2’8% (COSh(Q)\VL,,) _ 1)}
2cos?(f) — 1 = 1 — 2sin*(#) and sin(26) = 2sin(0) cos(6), KA v
. . . . - vALto ~ ~ ~ ~
we can write the integration equivalently as = ET [QLVAf’, + AZsinh(2X\, L) — 2L, A, B2,
Ly 2 1 [Ee Y - - -
/ B2 (1, tg) dy = e~2Ke e nto [2 / (1 + cos(2\ynv)) dv + B2, sinh(23, L) + 23,8, (cosh(23, L) — 1) }
0 0
2 L., 3 L., e ntor
+ 2/\21 / (1 —cos(2A, 1)) dv + y | sin(2A,,v) du] - 403 [()‘V + ,Bul) sinh(2A, L)
v,n J0 v,n JO
. 3 5 i 32 2
—2K, 22 to {Lu I sin(2A, 0Ly ) Luﬁgl + 220 By cosh(2Aw L) + 20 ((A” B ”1> Ly - 6’“) } 7
= e viyn - 2
2 . .
2 4Avn 2)‘1/,71 Thus, we can find the weights numerator and denominator
2 sin(2\, L) B, integration in (55) and (57), respectively, to obtain (29).
- e 2 (1 —cos(2A,,nLy))
v,n v,n
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