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Abstract—In this paper, we propose and study an energy-efficient trajectory optimization scheme for unmanned aerial vehicle (UAV)
assisted Internet of Things (IoT) networks. In such networks, a single UAV is powered by both solar energy and charging stations
(CSs), resulting in sustainable communication services, while avoiding energy outage. In particular, we optimize the trajectory design of
UAV by jointly considering the average data rate, the total energy consumption, and the fairness of coverage for the IoT terminals. A
dynamic spatial-temporal configuration scheme is operated for terminals working in the discontinuous reception (DRX) mode. The
module-free, action-confined on-policy and off-policy reinforcement learning (RL) approaches are proposed and jointly applied to solve
the formulated optimization problem in this paper. We evaluate the effectiveness of the proposed strategy by comparing it with other
dynamic benchmark algorithms. The extensive simulation results provided in this paper reveal that the proposed scheme outperforms
the benchmarks in terms of data transmission, energy efficiency and adaptivity of avoiding battery depletion. By deploying the proposed
trajectory scheme, the UAV is able to adapt itself according to the temporal and dynamic conditions of communication networks.
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1 INTRODUCTION

FUTURE wireless communication networks are envi-
sioned to provide sustainable, reliable, and high-rate

data services for various application scenarios [1]. It be-
comes rather challenging to meet these ever-increasing data
services by terrestrial communication infrastructures, and
therefore more researchers turn the attention to the space
and aerial communication infrastructures and network inte-
gration [2]–[4]. In the context of network integration, data
can be aggregated/disseminated either in an ad-hoc fashion
by conveying the information hop by hop or in an infra-
structured manner where nodes exchange information with
nearby access points (APs) [5]. While the former approach
shortens the network lifetime by exploiting the battery of
IoT nodes along the routing path, the latter necessitates a
considerable number of stationary APs whose deployment
and maintenance may incur significant time and mone-
tary cost. Thanks to the recent advances in unmanned
aerial vehicle (UAV) communications technology, a UAV
can be equipped as an airborne AP and flexibly deployed
to disadvantageous locations depending on the needs of
dynamically changing IoT data traffic [6]–[9]. In this way,
simple and low-cost IoT nodes can be utilized since nodes
are no longer responsible for data relaying and routing. This
approach can also offer multi-fold gains for the IoT imple-
mentation and operation by striking an appropriate balance
between ad-hoc and infra-structured data aggregation.
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With the traits of dynamic on-demand services and a
high degree of mobility, the implementation of UAV-assisted
communication networks have drastically increased over
the past few years. Despite various potential benefits, some
obstacles hinder the usage of UAV-assisted communication
networks. Energy constraint, for example, introduces chal-
lenges for UAV-assisted communications, since the battery
life of typical UAVs is usually less than half an hour [10].
The continuously decreasing cost of the on-board renewable
energy systems provides an alternative solution [11]. Solar
energy has enormous potential due to its sustainability,
cleanliness, and low cost. Nevertheless, solar energy is in-
termittent and uncertain, which may expose the UAV to the
risk of energy depletion. Accordingly, additional docking
stations (DSs) for recharging are essential components in
the UAV-assisted communication networks [12]. In addition,
how to jointly design the trajectory of UAV to achieve
longer endurance and continuous operations for different
application scenarios and service demands remains a stern
and open challenge, which is worth further investigating
[13].

Pursuing high throughput while taking energy effi-
ciency, channel condition, and quality of service (QoS) into
consideration is another significant challenge, especially for
IoT terminals working in the discontinuous reception (DRX)
mode [14].The IoT terminals listen to the headers containing
flow information at the very beginning of each time slot and
judge whether the traffic is relevant to them or not. With a
certain probability, the DRX mode enables the IoT terminals
to negotiate phases in which data transmission occurs and
to enter a low-power state during other time slots. In this
manner, power consumption can be significantly reduced.
On the other hand, this setting becomes an obstacle for
the UAV to manage downlink service optimization since no
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causal knowledge is accessible.
To this end, we impose the on-policy scheme providing

the means for an aerial agent to learn while flying such
that the energy-efficiency trajectory optimization can be
achieved. To satisfy the QoS requirements of IoT networks
and dynamically optimize the data transmission efficiency,
two measures are taken into account in this paper: the
temporal aliveness of the terminals and the link signal-to-
noise ratio (SNR) threshold associated with the distribution
of the IoT network and the coordination of the UAV.

1.1 Related Works

As an integral component of future wireless networks,
harvested energy enabled UAV has been extensively inves-
tigated in recent years [15]–[19]. For instance, in [20], the
probability of energy outage at harvested energy enabled
UAV and the probability of SNR outage at ground cellular
users are calculated. The occurrence of energy outage is a
disaster to a UAV and could lead to severe accidents, which
should be averted by the best effort. The authors in [21]
investigate the trajectory and resource allocation design for
solar-powered UAV communication systems, including the
impact of the cloud layer. However, most of the references
listed above neglect the temporally dynamic property of
the harvested energy and the fact that the harvested energy
cannot guarantee the sustainable data services provided by
UAVs for modern communication networks that consume
large amounts of energy for high-rate transmissions. Even
worse, during the night time, the operation of UAVs cannot
be supported by solar energy. In [22], Zheng et al. optimize
a fixed-wing UAV’s flight radius and speed for achieving
maximum throughput and minimum energy consumption.
In [23], Zhan et al. utilize a UAV to maximize the lifetime of a
sensor network, which is achieved by optimizing the UAV’s
trajectory and the wake-up schedule of sensor nodes. An en-
ergy harvesting UAV-enabled wireless communication sys-
tem is investigated in [24], where the UAV transfers energy
to users in a wireless manner to charge them to facilitate
uplink transmission. In [25], the efficient deployment and
mobility of multiple UAVs are considered to collect data
from ground IoT devices. The authors propose a framework
for joint optimization of the 3D placement and the mobility
of UAVs, IoT-UAV association, and uplink power control. In
[26], Skeridis et al. consider a public safety network where
a UAV transfers power to charge ground IoT terminals
through a wireless link before the data transmission phase.
This is especially important to improve the network lifetime
in emergency situations with frequent or permanent power
outages. In this paper, we rather aim at improving the
UAV lifetime to enhance the mobile broadband services in a
ubiquitous manner.

Apart from energy related issues, various application
scenarios of UAV have also been well discussed in the
literature. The authors in [27] design a distributed energy-
efficient UAVs based navigation framework to sustain long-
term communication coverage. However, the crucial chan-
nel characteristics and the QoS for the users are not taken
into consideration. At the expense of limited mobility, the
tethered UAVs, as described in [28], can be a viable al-
ternative to provide seamless wireless data service over a

cable that reliably supplies power for data transmission and
processing. In [29], an optimization problem is formulated
and solved to minimize the total hovering and traveling
time of data aggregation and field estimation missions.

To reduce the complexity of the optimization problem,
some works model the UAV working process as sub-optimal
problems. The authors in [30] propose a cost function that
considers the energy consumption model and drone reuse
strategy. The approach is applied in simulated annealing
(SA) heuristic for finding sub-optimal solutions for practical
applications. The throughput maximization problem for
UAV-enabled networks is studied in [31]. First, an ideal
case to relax the formulated problem is considered. Sec-
ond, a locally optimal solution with the constraints, includ-
ing maximum speed and the users’ energy neutrality, is
achieved by alternating optimization and successive convex
programming. In [32], the authors propose a distributed
algorithm that allows UAVs to maximize the network’s sum
rate by dynamically learning the optimal three-dimension
(3D) locations associated with ground users. The algo-
rithm decomposition breaks the optimization into three sub-
problems addressed by a distributed matching-based asso-
ciation, a modified version of the K-means algorithm, and
a game-theoretic algorithm with a local utility function. The
problem of docking/charging station (DS/CS) placement is
investigated in [12], and then a UAV scheduling program is
formulated based on the optimized locations of CSs.

1.2 Main Contributions
As reviewed in the previous subsection, the real-world
conditions of infrastructure have not been fully consid-
ered when optimizing the UAV scheduling. Regarding the
real-world scenarios where infrastructures are usually pre-
configured, we propose a trajectory optimization scheme in
this paper that is capable of adapting to the temporal and
dynamic conditions of communication networks, regard-
less of the spatial distributions of IoT terminals and CSs.
Specifically, we jointly design the trajectory policy with the
constraints of prohibitive power depletion and QoS require-
ments to achieve an appropriate balance between the data
transmission, energy consumption, and coverage fairness.
The spatial-temporal and dynamic availability of harvested
energy as well as the distribution of IoT sensors in the DXR
mode raise the complexity of the strategy design. Overall,
the main contributions of this paper can be summarized as
follows:

‚ We propose a novel system model comprised of solar
energy and CSs to pursue high energy efficiency
while avoiding battery exhaustion. The proposed
model can be adapted to any network system with
an arbitrary spatial distribution of CSs.

‚ We formulate a trajectory design as a multi-objective
optimization problem, aiming to jointly optimize
data transmission, energy consumption, and cover-
age fairness.

‚ We propose an action-confined model-free ap-
proach to solve the formulated problem. Also, along
with off-policy algorithms, we deploy an on-policy
method to adjust the system setups for practical
scenarios where no causal knowledge is available.
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TABLE 1: Key notations used in this paper.

Notation Definition/explanation
J , M , H Number of IoT terminals, CSs, and SPs

Lj , Lm, Lh Location sets of IoT terminals, CSs, and SPs
lu location of the UAV

Ipt, dq Solar radiation at time t in the dth day of a year

Icbpt, dq
Clear-sky beam radiation at time t in the dth day
of a year

Ionpdq Extraterrestrial radiation in the dth day of a year
ISC Solar constant

τb, θ, φ, δ, Σ,
σ, ω

Atmospheric transmittance, angle of incidence,
latitude of the UAV, declination of the sun, slope
of the solar panel, surface azimuth angle, hour
angle

Phar, Pchar Power collected from harvesting and charging
Pmov, Pser Power consumed for moving and serving

T Duration of each time epoch
tmov, tser, tchar Time consumed for moving, serving and charging
sser, schar Indicators demonstrating the UAV’s destination
Emov, Eser Energy consumed for moving and serving
Ehar Harvested energy

Bmax, Bdep Battery capability and battery depletion threshold
sdep Indicates the penalty due to the battery depletion

sj
Indicates the establishment of the link connecting
the jth IoT terminal

aj Indicates the jth IoT terminal’s activeness

℘j
LoS

LoS probability corresponding to the jth IoT
terminal

PLj Path loss corresponding to the jth IoT terminal
Γj SNR corresponding to the jth IoT terminal
Γth SNR threshold.
Bj Bandwidth assigned to the jth IoT terminal
Cj Data rate corresponding to the jth IoT terminal

‚ We exhibit the convergence of the proposed algo-
rithms and reveal that the proposed strategy outper-
forms the benchmarks by simulation results. Addi-
tionally, we also show the effect of time on the energy
harvesting strategy.

1.3 Paper Organization
The rest of the paper is organized as follows. Section II
builds up the communication network model, energy har-
vesting model, energy consumption model, channel model,
and coverage fairness model. In section III, we formulate
the problem as a multi-objective optimization problem.
The action-confined on-policy and off-policy reinforcement
learning (RL) algorithms are proposed in Section IV to solve
the formulated problem. The numerical results and graphi-
cal trajectory are exhibited in Section V. Section VI concludes
the paper with a few important remarks. To improve the
readability, we list the key notations in Table 1

2 SYSTEM MODEL

2.1 Network Model
We herein consider a spatial-temporal communication net-
work where there exist a single UAV serving as the aerial
base station (ABS) to provide functions of network ac-
cess, edge computing, and caching. The area of interest

is confined within a finite region W , over which J IoT
terminals are uniformly and randomly distributed. The time
is divided into N epochs of duration T . The location set of
the IoT terminals is denoted as Lj “ t`1, ..., `j , ...`Ju, where
`j “ pxj , yj , zjq represents the coordinate of the jth location.
In each epoch, the IoT terminals operating in the DRX
mode listen to the headers containing the address details to
decide whether the transmission is relevant or not. The IoT
terminals only have to be active at the beginning of each
time slot to receive the headers, and the UAV only serves
the active terminals when it is necessary. In this manner,
the IoT terminals have a certain probability to switch off at
each time slot, and the battery life can thus be conserved.
Accordingly, the UAV takes action arns at the beginning
of time epoch n, @ n P r1, N s. In the duration of tmovrns,
the UAV moves from the current state to the destination.
Thereafter, it stays at either the CSs to charge or the serving
area to offer continuously data services for the rest of time
in the current time epoch. The rest of time can be easily
determined to be T ´ tmovrns, where T represents the time
duration of each time epoch. Based on the setup described
above, we consider two types of states for the UAV:

‚ Land & Charge states correspond to positioning the
UAV at one of M CSs, where the UAV can momen-
tarily charge its battery. The location set of the CSs
is denoted as Lm “ t`1, . . . , `m, . . . , `Mu, where
`m “ pxm, ym, zmq is a 3D Cartesian coordinate of
the mth CS, @ m P t1, 2, . . . ,Mu.

‚ Hover & Serve states correspond to navigating the
UAV to one of H serving points (SPs), where the
UAV exploits its available battery power to hover
and provide data services for the active IoT termi-
nals. The potential hovering location set is denoted as
Lh “ t`1, . . . , `h, . . . , `Hu, where `h “ pxh, yh, zhq
is the 3D Cartesian coordinate of the hth SP, @ h P
t1, 2, . . . ,Hu.

We collect the location of the UAV as lu “ pxu, yu, huq P
tLm,Lhu. The UAV is capable of harvesting solar energy
while moving, serving, and charging. However, due to
the low altitude of CS, the harvested solar energy during
charging is relatively low compared to the charging energy,
which is assumed to be negligible in the proposed system.
Fig. 1 depicts a realistic scenario where a UAV-assisted
IoT network is operating and powered by both renewable
energy source and CSs.

2.2 Energy Harvesting Model
The utilizable amount of harvested power is mainly depen-
dent on three factors: 1) the efficiency of the photo voltaic
cell (PVC); 2) the radiation area of the boarded solar panels;
3) the solar radiation. Therefore, at time instant t in the dth

day of a year, the harvested power can be modeled by the
following function [33]:

Pharpt, dq “

#

ηAsolarIpt, dq tsr ă t ă tss

0 otherwise
, (1)

where tsr and tss represent the instants of sunrise and sunset;
η is the PVC efficiency; Asolar in the unit of (m2) is the radia-
tion area of the solar panels, and Ipt, dq in (W{m2) denotes
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Fig. 1: System model of a UAV-assisted IoT network considered
in this paper.

the solar radiation power per square meter that reaches the
PVC. The solar radiation goes through the atmosphere and
reaches the solar panels with attenuation due to atmospheric
scattering and atmospheric absorption. Neglecting the non-
significant diffuse radiation and reflected radiation compo-
nents, the solar radiation power per square meter absorbed
by the PVC, Ipt, dq can be described in terms of the clear-sky
beam radiation Icbpt, dq as follows [33], [34]:

Ipt, dq “ Icbpt, dq “ Ionpdqτbpθq cos θ, (2)

where Ionpdq represents the extraterrestrial radiation; τbpθq
represents the atmospheric transmittance for beam radia-
tion, and θ is the angle of incidence between the direct solar
beam and the normal to the surface of the solar panel. To
model the extraterrestrial radiation, Duffie and Beckman
give a simple formula of Ionpdq with an adequate accuracy
for most engineering calculations [34]:

Ionpdq “ ISC

ˆ

1` 0.033 cos

ˆ

2πd
365

˙˙

, (3)

where the solar constant ISC is the energy from the sun per
unit time, which is received on a unit area of surface per-
pendicular to the propagation direction of the radiation at
mean earth-sun distance outside the atmosphere. Equation
relating the angle of incidence, θ, to the other angles is given
as:

cos θ “ sin δ sinφ cos Σ´ sin δ cosφ sin Σ cosσ

` cos δ cosφ cos Σ cosω ` cos δ sinφ sin Σ cosσ cosω

` cos δ sin Σ sinσ sinω,
(4)

where φ, δ, Σ, σ, and ω are the latitude of the UAV, the
declination of the sun, the slope of the solar panel, the
surface azimuth angle, and the hour angle, respectively.

To keep balance against turbulent flows, the solar cells
are usually made as a horizontal surface implemented on
the wings of a UAV. Consequently, the angle of incidence θ
is simplified as the zenith angle of the sun θz , which is given
by:

cos θzpt, dq “ cosφ cos δ cosω ` sinφ sin δ. (5)

The solar declination δ and the hour angle ω are temporal
variables, the value of which can be obtained from the
approximates given as follows [35]:

δpdq “ 23.45 sin

ˆ

2π
284` d

365

˙

, (6)

and
ωptq “

π

12
p12´ tq . (7)

In terms of the atmospheric transmittance, Hottel in [36]
provides a black-plus-gray-plus-clear gas model which is
feasible to provide an accurate estimate:

τbpθzq “ a0 ` a1e
p´ k

cos θz
q, (8)

where parameters a0, a1, and k are affected by the atmo-
sphere visibility and the altitude of the observation. For the
standard atmosphere with 23 km visibility and the altitudes
of the UAV hu less than 2.5 km, these three parameters can
be well approximated by the following quadratics:

$

’

&

’

%

a0 “ 0.4237´ 0.00821p6´ huq
2

a1 “ 0.5055` 0.00595p6.5´ huq
2

k “ 0.2711` 0.01858p2.5´ huq
2

. (9)

2.3 Energy Consumption Models

The power consumption mainly occurs in two phases: the
moving and serving phases. We assume that the UAV is in
a quasi-static equilibrium condition in both phases, which
means that the UAV moves smoothly with a small accelera-
tion, and the cruising speed is a constant. [37], [38]

For 3D Cartesian coordinates, the moving process in-
volves a horizontal flight and a vertical flight. We define
v “ pvx, vy, vzq as the velocity of the UAV and focus on the
energy consumption due to the moving of the UAV while
neglecting the energy consumption caused by the internal
electronics of the UAV. Seddon and Newman in [39] provide
the aerodynamic power consumption module to capture the
power consumption for this case, which is adopted herein.
Specifically, the energy consumption for moving at a given
velocity is given by

Pmov “ Fthpvi ` vzq, (10)

where Fth is the propeller thrust of the UAV which can be
approximated to the weight of the UAV, i.e., Fth “ mug,
where mu denotes the mass of the UAV, and g is the
gravitational acceleration; vi is the induced speed denoted
as [39]

vi “
Fth
?

2ρA

1
c

|vx, vy|2 `
b

|vx, vy|4 ` p
Fth

ρA q
2

, (11)

where ρ is the air density and A “ πr2pnp is the total
area of the propellers which is determined by the propeller
radius rp and the number of propellers np. For the as-
cending flight, vz is positive; while in the descending case,
a negative vz implies power harvesting for UAV boarded
with a gravitational potential energy collecting system [33].
Even though the gravitational potential energy cannot be
utilized by typical UAVs, the power consumed during the
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descending process can be set to zero if the power consump-
tion for braking is neglected. The ascending flight and the
descending flight mainly occur in the scenarios that the UAV
moves from a CS to a SP, and vice versa. The other scenario
refers to that the UAV moves horizontally from one SP to
the other, where the value of vertical speed vz equals zero.
Accordingly, the energy consumption for horizontal moving
can be simplified as

Phor “ Fthvi. (12)

More specifically, when the UAV is hovering and serving,
the values of speed vx and vy equal zero as well. Therefore,
the power consumed for hovering can be simplified from
(11) to be

Phov “Fth
Fth
?

2ρA

1
b

Fth

ρA

“

d

F 3
th

2ρA
. (13)

Eqs. (10)-(13) evince that the most energy is consumed by
the climbing flight, as this is in line with the fact that
more energy is required for hovering than horizontal flight.
Consequently, the agent may not tend to the CSs since it
consumes more energy due to the altitude intercept between
the target SPs and the CSs. However, a good trajectory
design strategy should avoid energy depletion to achieve
a far-sighted reward for a sequential optimization problem.
As a direct result, the intelligent algorithms should thereby
fully consider the trade-off between the communication
performance, the total energy consumption, and the battery
outage probability.

Following the above descriptions, the total power con-
sumption in the serving mode is mainly counted by those
for hovering and data transmission, which can be written as

Pser “ Phov ` Ptx, (14)

where Ptx represents the total power consumption for data
transmission. For simplicity, we assume that Ptx is the sum
of the transmission power allocated to all IoT terminals,
denoted as P jtx, and thereby have

Ptx “

I
ÿ

i“1

sjP
j
tx, (15)

where sj P t0, 1u is a binary indicator function depending
on whether the wireless link connecting to the jth IoT
terminal has been established or not. The link is set up
only if the jth IoT terminal is active and the QoS of the
channel meets the baseline. Indeed, the communication
energy consumption is lower than the propulsion energy
consumption. For simplicity, it is feasible to neglect the com-
munication energy consumption in less-dense IoT networks.
However, the energy consumption model and the associated
optimization are more accurate and close to real-world sce-
narios when taking the communication energy consumption
into consideration. Furthermore, the communication energy
consumption might be comparable to the propulsion energy
consumption in dense IoT networks. Therefore, we jointly
consider these two kinds of energy consumption mecha-
nisms in this paper for comprehensiveness.

2.4 Channel Model
To model air-to-ground channel between the hovering UAV
and IoT terminals, we take both line-of-sight (LoS) and non-
line-of-sight (NLoS) radio propagation paths into account.
Based on the empirical data, the International Telecommuni-
cation Union (ITU) determines a precise method to find the
probability of geometrical LoS between a terrestrial trans-
mitter with height hTX and a receiver at altitude hRX [40].
This probability depends on the following statistical and en-
vironmental parameters: 1) α represents the ratio of built-up
land area to the total land area; 2) β represents the average
number of buildings per unit area, i.e., [buildings/km2]; and
3) γ is a scale parameter to describe the buildings’ heights
distribution as per Rayleigh probability density function,
i.e., fpHq “ pH{γ2q expp´H2{2γ2q, where H [m] is the
average building height. Accordingly, the LoS probability
is given by [40]

PpLoSq “
m
ź

n“0

»

—

—

—

–

1´ exp

¨

˚

˚

˚

˝

´

„

hTX ´
pn` 1

2 qphTX´hRXq

m`1

2

2γ2

˛

‹

‹

‹

‚

fi

ffi

ffi

ffi

fl

,

(16)
where m “ tpr

?
αβ´1u; r is the Euclidian distance between

the transceivers; n is merely a product index. The model
in (16) can be further simplified by the approximation of a
simple modified Sigmoid function (S-curve) as follows [41]:

℘jLoS “
1

1` εe
´β

´

arccotp
dj
rj
q´ε

¯ , (17)

where dj and rj denote the horizontal distance and the
spatial distance between the hovering UAV and the jth IoT
terminal, respectively; ε and β are the S-curve parameters
depending on the chosen environment, e.g., urban, sub-
urban, and dense urban. The signal propagating from the
UAV first goes through the free space and then the urban
environment. Therefore, the overall path loss is dominated
by two parts: the free-space path loss (FSPL) PLFSPL and the
excessive path loss PLurban. Based on the models proposed
in [41] and [42], the path loss of the link connecting the UAV
and the jth IoT terminal can be written as

PLj “ PLFSPL ` PLurban

“ 20 log

ˆ

4πfcrj
c

˙

` ℘jLoSξLoS ` p1´ ℘
j
LoSqξNLoS,

(18)

where ξLoS and ξNLoS represent the additional path loss cor-
responding to the LoS and NLoS transmission, respectively.
The values of ξLoS and ξNLoS vary depending on the chosen
environment; c and fc are the speed of light and the carrier
frequency.

We assume that the IoT terminals are assigned with
orthogonal channels, and the co-channel interference be-
comes negligible, since the existing techniques such as cell
planning, frequency reuse, and beam-forming are capable of
significantly mitigating the interference [43]. Therefore, the
SNR of the link between the UAV and the jth IoT terminal
can be expressed as

Γj “
P jtx10´PLj{10

N0Bj
, (19)
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where N0 denotes the noise power density, and Bj is the
bandwidth assigned to the jth IoT terminal. The bandwidth
is uniformly allocated for simplification purposes. To satisfy
the dynamic QoS requirements and achieve energy-efficient
communications, the serving process should be well man-
aged. Ideally, a communication link should be set up if and
only if the SNR of the corresponding channel is above a
predefined threshold Γth.

According to Shannon capacity bound, the instantaneous
data rate associated by the UAV-assisted channel is given by

Cj “ Bj log2 p1` Γjq, (20)

in bits per second (bps).

2.5 Fairness Model
Applying the conventional greedy searching, the UAV tends
to serve the region producing the maximum data trans-
mission in each epoch. Albeit with a highest throughput,
this strategy results in the service unfairness among users
because some users in certain regions are served for many
times, while others have never been served at all. To mit-
igate this problem and jointly consider efficiency and fair-
ness, we integrate the recorder to explicate the serve status
of each serving region and evaluate the serving fairness by
Jain’s fairness index defined as [44]

f rns “
p
řJ
j“1Ojrnsq

2

J
řJ
j“1Ojrns

2
, (21)

where Ojrns represents the times the jth IoT terminal has
been served until time slot n, which can be explicitly written
as Ojrns “

řn´1
k“1 sjrks. Ideally, the value of the fairness in-

dex equals unity when all IoT terminals are served equally.

3 PROBLEM STATEMENT, FORMULATION, AND
SOLUTION

3.1 Problem Statement: A Multi-Objective Trajectory
Design
We formulate the sequential trajectory design as a Markov
decision process (MDP), where the transfer probability is
independent of the past states, given the present state. The
MDP is defined by a tuple ă S,A,R ą, where S is
the state space; A is the action space; R Ð s ˆ a is a
real-value reward function, and the UAV takes an action
a P A at state s P S. The action space A fi tLm,Lhu
contains the potential locations of the UAV, where arns “
pxarns, yarns, zarnsq P A provides the coordinate of the
destination, to which the UAV is moving. Thus, the car-
dinality of the action space is pM ` Hq. The state space
S fi LuˆBˆt consists of three components: 1) the location
state space; 2) the time state space; 3) the battery state space.

The location state space in our system is defined as
Lu fi tLm,Lhu, with the same representation as the action
space, where `urns “ pxurns, yurns, zurnsq P Lu describes
the coordinate of the UAV at time slot n. Specifically, action
a determines the location of the UAV for the next time slot
by the relation

`urn`1s “ `urns`T`urns,arns,`urn`1sparns´`urn`1sq, (22)

where T`urns,arns,`urn`1s denotes the transferring possibility
from the origination `urns to the destination `urn`1s under
the operation arns, which can be explicitly expressed as

T`urns,arns,`urn`1s “

#

1 }arns ´ `urns}2 ď vmaxT

0 }arns ´ `urns}2 ą vmaxT
, (23)

where }arns ´ `urn` 1s}2 represents the Euclidean dis-
tance between the destination and the origination; vmax is
the UAV’s maximum speed that is normally constrained
by the hardware specifications as well as the aviation and
security policies.

The time consumed by UAV moving from the current
location at time slot n to the destination of next time slot
n` 1 is derived by

tmovrns “
}`rn` 1s ´ `rns}2

|v|
. (24)

As a spatial-temporal module, the time set t is adapted as
part of the state space, which can provide another degree
of freedom to enhance the system performance under the
DRX mode for IoT networks equipped with time-based
energy harvesting modules. The time instant trns P t is
the starting time of time slot n. Specifically, we assume that
the harvested solar power Pharptrns, dq does not change in
decision epoch n and the operational indicator ajrns equals
one if the jth IoT terminal is active. Obviously, the starting
time of the n` 1 decision epoch is determined by

trn` 1s “ trns ` T. (25)

The last component of the state space is the battery state
space B, which signifies the battery condition of the UAV,
where Brns P B represents the residual energy level of the
UAV at decision epoch n. The UAV simultaneously harvests
and consumes energy while moving over time duration
tmov. If the UAV needs to go for charging, then it gets
the energy supplement from the CSs over time duration
T ´ tmov, which is the left time duration in the time slot after
moving. On the other hand, if the UAV is required to serve at
a SP, energy is consumed due to hovering and transmission
over time duration T ´ tmov. Overall, the battery state at the
pn` 1qth decision epoch can be updated as

Brn` 1s “ maxtBmax, rtmovrns pPharptrns, dq ´ Pmovrnsq`

pT ´ tmovrnsq pPcharrnsscharrns ´ Pserrnssserrnsq `Brnss
`
u,

(26)

where Bmax represents the battery capacity of the UAV;
rxs` fi maxp0, xq; Pcharrns represents the charging rate at
decision epoch n; parameters schar and sser are the indicators
demonstrating the status of the UAV’s destination, which
are given by

sserrns “

#

1 arns P Lh
0 arns P Lm

, (27)

and

scharrns “

#

1 arns P Lm
0 arns P Lh

. (28)
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With the statements above, the total amount of data trans-
mission C and the net harvested energy E are given respec-
tively by

C “
N
ÿ

n“1

I
ÿ

i“1

sjrnsCjrnspT ´ tmovrnsqsserrns, (29)

and

E “
N
ÿ

n“1

tpPharrns ´ Pmovrnsqtmovrns,

` pPharrns ´ PserrnsqpT ´ tmovqrnssserrnsu.

(30)

As we mentioned above, the objective of most UAV-
assisted IoT networks is to navigate the UAV in a wise
way to achieve long-term serving with the optimized data
transmission rate, net harvested energy, and system-level
fairness. This objective can be realized by designing the
trajectory policy of the UAV with a series of constraints. In
this paper, we propose such an optimized trajectory policy
πptarnsuq by solving the following optimization problem

max
πptarnsuq

tC,E, f rN su,

s.t. C1 : Brns ` pPharrns ´ Pmovrnsqtmovrns P p0, Bmaxq,

C2 : Brns ` PharrnsT ´ Pmovrnstmovrns

´ Pserrnstserrns P p0, Bmaxq,

C3 : Brns ` pPharrns ´ Pmovrnsqtmovrns

` Pcharrnstcharrns ă Bmax

C4 : tmov `
ÿ

k

tkrnsskrns “ T, k P tser, charu,

C5 : sserrns ` scharrns ď 1,

C6 : ajrns ď sjrnsptq ď 1,

C7 : Γjrns ě sjrnsΓth,

C8 : vmaxT ě |lurn` 1s ´ lurns|,
(31)

where C1 prohibits the battery level of the moving UAV
to overflow the battery capability which is defined as Bmax,
and meanwhile it should be noted that the energy consump-
tion for moving should not render battery exhaust of the
UAV; C2 confines the same energy boundary for the UAV
which takes the action, navigates to SPs, and serves for the
remaining time duration in one time slot after moving; C3
guarantees that the UAV will not be over-recharged while
docking at the CSs for the left time duration in one time
slot after moving; C4 specifies the sum of the time assigned
to each state equals the duration of one time slot T ; C5
requires the UAV to choose only one action that can be either
serving or recharging in one time slot; C6 ensures that the
UAV serves for only active IoT terminals, and the parameter
ajrns is a binary indicator signifying whether the jth IoT
terminal is active or not; C7 guarantees the QoS for the IoT
network, i.e., the SNR of the link between the UAV and the
jth IoT terminal Γjrns should be above the SNR threshold
Γth; finally, C8 specifies that a potential destination should
be located within the reachable region over the entire time
duration T .

3.2 Reward Function Design
To solve the multi-objective optimization problem described
in (31), simultaneously considering the constraints from C1

to C8, we propose an RL approach with a comprehensive
reward function design. In particular, Rsrns,arns,srn`1s ex-
presses the immediate reward obtained when action arns P
A is taken at state srns P S and leads the UAV to state
srn ` 1s P S. The system returns a unique reward in each
time slot, and, therefore, we can simplify the reward as Rrns
in the following analysis of this paper.

The overall design goal of the reward function is to
jointly optimize the transmission rate and the energy con-
sumption, i.e., bit per Joule, which should also consider
two key practical concerns: 1) Fairness: The transmission rate
should be weighted with a fairness index to strike the right
balance between service delivered to the entire IoT network.
This concern is raised to avoid the case that the UAV
may tend to serve a small subset of IoT nodes with better
channel conditions, which causes the quality of experience
degradation for other IoT nodes. 2) Energy Depletion: In
order to avoid UAV clashes and resulting permanent service
interruptions, energy depletion states should be penalized
severely. In light of the above discussions, the reward func-
tion can be formulated as follows

Rrns “ w1

sserrns
řJ
j“1 sjrnsCjrnstserrnsf rns

Emovrns ` Eserrns ´ Eharrns
` w2sdeprns.

(32)
The reward function is constructed by two components

with the weights of w1 ą 0 and w2 ă 0. The first
component is positive and donates the energy efficiency
of data transmission in the unit of bit{pW ¨ hq multiplied
by Jain’s fairness index. The denominator is the total net
energy consumption consisting of three parts: The energy
consumption for moving Emov, the energy consumption for
serving Eser, and the energy harvested from the renewable
energy resource Ehar. These three energy components can
be calculated by the expressions given as follows:

Emovrns “ Pmovrnstmovrns, (33)

Eserrns “ Pserrnstserrnssserrns, (34)

and

Eharrns “ Pharrnstmovrns ` Pharrnstserrnssserrns. (35)

The negative component represents the penalty of battery
depletion. The binary constant sdeprns indicates the penalty
applied to the agent in the state where the battery level is
below the threshold Bdep, i.e.,

sdeprns

#

1 Brns ď Bdep

0 Brns ą Bdep
. (36)

Power outage leads to the termination of one episode and is
catastrophic to the UAV. Therefore, the weight of the power
outage penalty should be set much heavier than the weight
of the fairness index decorated energy efficiency of data
transmission, resulting in |w1| ! |w2|.

4 OFF-POLICY AND ON-POLICY REINFORCEMENT
LEARNING BASED TRAJECTORY OPTIMIZATION

The optimization problem formulated in (31) is a multi-
objective optimization problem that is generally hard to
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Algorithm 1: Action-confined off-policy RL.

Input : Agent information: starting time tr0s and
initial location lur0s;
System information: ε-greedy parameter εg ,
discounted factor γ, and learning rate Υ;

Output: Trajectory strategy πptarnsuq;

1 repeat
2 Initialize the state sr0s, Q-value Qr0s, and n “ 0;
3 for n<N do
4 Confine the action space aavairns based on C8;
5 Select action arns from aavairns using the

ε-greedy policy;
6 Obtain the reward Rrns and observation brns;
7 Update state srn` 1s Ð brns;
8 Update Qrns based on causal knowledge:
9 Qrns Ð Qrns` and

ΥpRrns ` γmaxaQrn` 1s ´Qrnsq;
10 if Brns ă Bdep then
11 End the episode and back to Line 2;
12 end
13 n “ n` 1;
14 end
15 until convergence is reached;

solve, especially with several non-convex constraints. Ad-
ditionally, the highly dynamic and spatio-temporal distri-
bution of the network topology increases the complexity of
solving the problem. Hence, we resort to RL to jointly op-
timize the energy efficiency, the data transmission, and the
fairness of the coverage. Meanwhile, the proposed approach
should guarantee the QoS for the IoT network. In particular,
two approaches relying on off-policy and on-policy RL are
proposed in the following subsections for trajectory design
of the UAV.

4.1 Off-Policy Reinforcement Learning for Trajectory
Design

With the awareness of causal knowledge and the off-line
training data, the off-policy Q-learning can be applied as
a model-free approach to help design the UAV trajectory.
The algorithm is given as Algorithm 1. We first randomly
initialize the UAV’s state and the Q-value with a two-
dimension zero matrix and set the time slot counter n to
zero. Then, the action space is confined as aavai to satisfy C8
in (31) and to reduce the action space for accelerating the
convergence process. To find the optimal policy πptarnsuq,
the Q-value is introduced to evaluate the long-term effect of
the actions at state s in each slot, which is given by

Qπrnspsrns,arnsq “ E

˜

N´n
ÿ

Tn“1

γTnRrn` Tns

ˇ

ˇ

ˇ

ˇ

srns,arns, π

¸

,

(37)
where Tn donates the following sequence of time slots, and
γ P p0, 1q is the discounted factor imposed to reduce the
farsighted impact.

The action of the agent is selected based on the distri-
bution of Q-value. The trade-off between exploration and
exploitation is always considered as a key concept for RL

methods, since the exploration process may involve short-
term sacrifices but gathering more information for better
long-term decisions. In this regard, we implement the ε-
greedy policy described as

arns “

$

&

%

arg max
arns

Qpsrns,aavairnsq prns ă εg

random selected prns ą εg
, (38)

where prns is a random variable for the exploration of the
agent and can help get rid of local optima. Hyper-parameter
εg reveals how much the agent explore while training.
Specifically, the action arns that maximizes the Q-value is
selected with a probability of p1´εgq`εg{|taavairnsu|, while
other actions are chosen with a probability of 1 ´ εg . The
variable |taavairnsu| denotes the total counts of the available
actions in time slot n.

Taking the advantage of causal knowledge, in each time
slot n, the Q-value can be iteratively updated by taking the
action that moves toward the maximum Q-value of the next
time slot, i.e.,

Qrnspsrns,arnsq Ð Qrnspsrns,arnsq `ΥpRrns`

γ max
arn`1s

Qpsrn` 1s,arn` 1sq ´Qrnspsrns,arnsqq, (39)

where Υ P p0, 1q is the learning rate. The action that moves
towards the maximum Q-value can be obtained offline and
is not necessarily the same as the action carried out by the
UAV. We can repeat the aforementioned procedure until the
Q-value converges so that an optimized trajectory design is
obtained.

4.2 On-Policy Reinforcement Learning for Trajectory
Design
With the awareness of causal knowledge and capability of
computing offline, an off-policy learner is able to estimate
the value of an optimal policy, which is independent of the
agent’s actions. However, in some practical scenarios, e.g.,
disaster rescue and remote surveillance, only non-causal
knowledge is available [45]. Additionally, it is risky to omit
the actions of the agent in some cases where significantly
negative rewards are imposed as penalty. In this regard, an
alternative way is to utilize an on-policy learner, termed
state–action–reward–state–action (SARSA). The on-policy
learner evaluates the value of the policy which the agent
is carrying out. By using the on-policy learner, the Q-value
can be updated by the following relation:

Qrnspsrns,arnsq Ð Qrnspsrns,arnsq `ΥpRrns`

γQpsrn` 1s,arn` 1sq ´Qrnspsrns,arnsqq,
(40)

where both of the current action arns and the action of next
step arn ` 1s are selected by using the ε-greedy method
described in the off-policy learning process.

4.3 Optimality, Complexity, Convergence, and Real-
time Implementation Analysis
The optimization problem presented in (31) is a non-convex
mixed-integer non-linear programming problem (MINLP),
which is known to be a non-deterministic polynomial-time
(NP) hard to solve [46]. In other words, obtaining an optimal
solution even for a moderate-size IoT network will yield



9

Algorithm 2: Action-confined on-policy reinforce-
ment learning.

Input : Agent information: starting time tr0s and
initial location lur0s;
System information: ε-greedy parameter ε,
discounted factor γ, and learning rate Υ;

Output: Trajectory strategy πptluuq;

1 repeat
2 Initialize the state s, Q-value, and n “ 0;
3 for n<N do
4 Confine the action space Arns based on C8;
5 Select action aavairns from aavairns using the

ε-greedy policy;
6 Obtain the reward Rrns and observation brns;
7 Update state srn` 1s Ð brns;
8 Update Qrnspsrns,arnsq using the ε-greedy;
9 if Brns ă Bdep then

10 End the episode and back to Line 2;
11 end
12 n “ n` 1;
13 end
14 until convergence;

prohibitive time complexity. Therefore, we will compare
proposed solution methodologies with random and greedy
benchmarks in the rest of the paper. The proposed on-
policy and off-policy schemes are model-free approaches
and both implement the ε-greedy exploration methods.
Therefore, the time complexity of the proposed schemes is
OpKHq, and the space complexity is OpSAHq, where K
is the number of training episodes and H is the number
of steps in each episode [47]. The regret is also important
while analysis the complexity of RL algorithms. The upper
bound regret of the proposed action confined RL schemes
is ΩpmintKH,AH{2uq [48]. Once well trained, the models
are installed in the UAV with an embedded system. The
time to process the inputs and generate the output actions is
negligible, and therefore the execution of the model can be
regarded as real-time implementation. Given the proposed
update rules, the Q-value converges w.p.1 to the optimal
Q-value as long as:

ÿ

n

Υ “ 0, and
ÿ

n

Υ2 ă 8. (41)

Since 0 ď Υ ă 1 in our assumption, (41) requires all
state-action pairs to be visited infinitely often, which is
satisfied by implementing an ε-greedy algorithm with a
zero-initialled reward in model-free Q-learning algorithms
[49].

5 NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we first present the training process of off-
policy and on-policy RL schemes in terms of cumulative
reward and energy outage ratio. Then, we implement the
module obtained from the training process, and various
empirical results of the proposed schemes are numerically
evaluated. Specifically, we consider an 1000 m ˆ 1000 m
square as the area of interest in all simulations, where there

TABLE 2: Summary of simulation parameters.

Parameter Value
Weight of the UAV (mug) 40 N
Total area of rotor disks (πr2pnp) 0.18 m2

Density of air (ρ) 1.225 kg{m3

Speed of the UAV (v) 10 km{h

Power consumption for data transmission (P j
tx) 0.1 W

S-curve parameters (ε, β) 9.6, 0.16
Path loss for LoS transmission (ξLoS) 1 dB [50]
Path loss for NLoS transmission (ξNLoS) 20 dB [50]
Noise power density (N0) -174 dbm/Hz
Total bandwidth (B) 10 MHz
Solar constant (ISC) 1367 W{m2 [51]
Learning rate (Υ) 0.1
Discounting factor (γ) 0.9
Weight parameters (w1, w2) 1, -100
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Fig. 2: Probability of the IoT terminals’ activation

are two CSs and several IoT terminals. The CSs and the IoT
terminals are uniformly located in the area of interest, and
the heights of the CSs and the IoT terminals are randomly
generated within the ranges from 0 m to 10 m, and from 10
m to 20 m, respectively. The probability of the IoT terminals’
activation is given in Fig. 2. A random variable is generated
as the threshold, and at each time slot the threshold is com-
pared to the probability of the IoT terminals’ activation to
determine the activation pattern of the IoT terminals. Only
active IoTs with an SNR higher than the SNR threshold can
be served by the UAV to increase the system throughput.

The influence of variable εg is studied through the per-
formance evaluation of the cumulative reward, the energy
outage ratio, and the trajectory of the UAV. Finally, we ob-
tain the average data rate and the total energy consumption
in terms of various starting times for the system execution.
The training and testing processes are developed by Python
3.7 on a workstation utilizing the Linux 3.10 operating
system. The main parameters adopted in the simulations are
summarized in Table 1. Note that the proposed schemes are
model-free and general approaches. Therefore, all the solar-
powered rotary-wing UAVs with embedded system can be
adopted in the framework, as long as a series of related
characteristic parameters listed in Table 2 are given.
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(a) Cumulative reward as a function of episodes with the off-policy scheme.
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(b) Cumulative reward as a function of episodes with the on-policy scheme.

Fig. 3: Convergence of training process using different εg .

5.1 Training Process

Unlike the supervised learning that trains and obtains the
module with labeled samples, the RL process is executed by
updating the estimated value of the state-action pairs until
the Q-value converges [52]. We represent the convergence
of cumulative reward in each episode regarding both off-
policy and on-policy RL schemes in Fig. 3. From Fig. 3(a)
and Fig. 3(b), we observe that both off-policy and on-policy
schemes converge after being trained for 3 ˆ 105 episodes.
The ε-greedy scheme with εg “ 0 means that the agent
greedily searches for the next action when estimating and
updating the current Q-value. In this manner, we obtain
a rapidly increasing cumulative reward, which converges
much faster than the other schemes at the very beginning
of the training process. However, the ε-greedy scheme with
εg “ 0 leads to a predicament of the accumulate reward and
keeps it at a relatively low level. The cumulative reward of
ε-greedy scheme with εg “ 0 is only half of the best value
obtained by executing the ε-greedy scheme with εg “ 0.1.
The reason is that the agent will never explore and often
gets stuck at local optima that may lead the UAV to an
awful situation on a long-term basis. On the other hand,
the ε-greedy scheme with εg “ 1 is equivalent to randomly
selecting the next action when estimating and updating the
current Q-value. In this case, the agent obtains enormous
penalty, and the UAV frequently falls into the battery outage
situation that causes severe reliability problems to the IoT
network.
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(a) Energy outage ratio as a function of episodes with the off-policy scheme.
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Fig. 4: Energy outage ratio of the training process using
different εg .
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Fig. 5: Cumulative reward of simulation process using different
εg .

For both off-policy and on-policy schemes, the agent
achieves the best performance when εg “ 0.1, because
it strikes a balance between exploration and exploitation
in RL. When εg “ 0.01, the agent conducting the on-
policy scheme achieves approximately 80% of the maximum
cumulative reward after being trained for 45000 episodes,
while the agent relying on the off-policy scheme is able
to achieve the same level of the cumulative reward in a
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Fig. 6: Per-step cumulative rewards corresponding to different
optimization schemes.

much faster manner. This is because the agent using the off-
policy scheme learns from the causal knowledge and asyn-
chronously updates the Q-value and the executed action.

Fig. 4(a) and Fig. 4(b) shows the energy outage ratio Rou,
which is defined by

Rou “
counts of energy outage episodes

counts of total episodes
. (42)

As depicted in Fig. 4, the UAV efficiently learns to avoid
energy outage by deploying the proposed strategies.
Compared with its off-policy counterpart, the on-policy
scheme leads to a lower energy outage ratio and faster
descent, since the on-policy scheme is more cautious about
updating the Q-value.

5.2 Numerical Results

After being trained with both off-policy and on-policy
schemes as specified in the previous subsection, we then
implement the trained models in a highly dynamic and real-
istic simulation environment. In this simulation, we suppose
that the UAV starts the task at 2:00 pm and accomplishes
the transmission task in 5 hours. Fig. 5 shows the perfor-
mance of the on-policy and off-policy schemes over different
values of the hyper-parameter εg . Generally, the off-policy
scheme exhibits better performance by virtue of the access
to causal knowledge. However, the on-policy scheme also
provides sufficient cumulative reward which is 96.3% of
the cumulative reward produced by the off-policy scheme.
These results validate the effectiveness of both schemes for
realistic application scenarios.

In Fig. 6, we compare the proposed schemes with greedy
searching and random searching algorithms. The result
shows that our proposed strategies outperform the bench-
marks. Both off-policy and on-policy schemes are capable of
adjusting the trajectory of the UAV so as to provide high-
quality data transmission services while properly navigat-
ing to avoid energy depletion. The flat segments of the lines
indicate that the UAV goes to CSs for charging and thereby
gets no rewards. Energy outages occur at Step 3 and 5 at
the agent simulated with greedy algorithm and random
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(b) RL scheme with εg “ 0.05.
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Fig. 7: Navigation trajectories by different optimization
schemes.

searching algorithms, respectively. The ε-greedy schemes
with εg “ 0.05 and εg “ 0.1 support the UAV to complete
the entire simulation and obtain sufficient rewards. The
limited exploration of the agent operating under the ε-
greedy scheme with εg “ 0.1 results a lower cumulative
reward than the agent operating under the ε-greedy scheme
with εg “ 0.1. On the other hand, the ε-greedy schemes
with εg “ 1 cannot adapt the UAV corresponding to the
quick changes in the highly dynamic environment because
of over-exploration. Overall, the on-policy scheme achieves
a 90 % cumulative reward of the off-policy scheme, which
is much higher than the greedy and random searching
algorithms. These simulation outcomes show the efficiency
of both off-policy and on-policy schemes.

To provide a visual impact, Fig. 7 exhibits the trajectories
of the UAV configured by different optimization methods.
The greedy algorithm navigates the UAV serving at two
SPs (c.f. the 3D profile) until the battery energy has been
exhausted. The UAV operating under the action-confined
RL algorithm can get rid of energy outage. The agent taking
the ε-greedy scheme with εg “ 0.1 explores more than the
agent taking the ε-greedy scheme with ε “ 0.05, resulting
in better fairness performance. The random searching algo-
rithm also explores while performing searching tasks, but
ends up with energy exhaust since no charging interaction
has been involved in the procedure.

Additionally, a 3D profile of the network system
with UAV trajectory configured by different optimization
schemes is given in Fig. 8. The altitude of the UAV is
constrained within the range from 100 m to 500 m. By im-
plementing the proposed RL schemes, the altitude-adaptive
navigation is achievable. However, we find out that the UAV
is adjusted to relatively low altitude. This is because the
amount of the harvested energy is not sufficient to attract
the UAV to higher altitude. In reality, the height of the UAV
is usually optimized for maximizing coverage [41] and is
set as a constant. Therefore, we also present the data rate
and the harvested energy as functions of the navigation
altitude in Fig. 9. For each height, we repeat the simulation
for 50 times in terms of different location and activation
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Fig. 8: 3D profile of the network system with UAV trajectories
configured by different optimization schemes
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Fig. 9: Data rate and harvested energy as functions of UAV
altitude

probability of the IoT terminals. The performance reveals
that higher altitude results in a lower data rate but a higher
level of harvested energy.

Subsequently, we present the effect of the starting time
of the tasks in terms of cumulative reward, data rate, and
energy consumption. We consider short-term (5-hour se-
quential), middle-term (10-hour sequential), and long-term
(24-hour sequential) simulations. For simplicity, we fix the
ε-greedy parameter εg “ 0.1 for the RL algorithms. Fig.
10 shows the cumulative reward as a function of starting
time. For the short-term simulation, the greedy algorithm
achieves a higher cumulative reward at most of the time.
However, it could lead the UAV to the energy outage situ-
ation which is not acceptable for most IoT networks. When
we increase the simulation time, the greedy algorithm is not
capable of optimizing the trajectory of the UAV to avoid
energy outage. This is because the greedy algorithm cannot
deal with the highly dynamic environment jointly rendered
by energy harvesting behaviors and fast-changing network
topology. In this scenario, both of the proposed off-policy
and on-policy RL schemes can help the UAV avoid energy
outage and yield higher cumulative rewards.

Apart from the cumulative regard, data rate and energy

consumption are also of paramount importance for operat-
ing UAV-assisted IoT networks. Fig. 11 represents the data
rate as a function of starting time. Generally, the off-policy
scheme explores more and thus gets better performance for
data transmission. For the short-term simulation described
in Fig. 11(a), the UAV using the off-policy scheme explores
and transmits more data starting at 8:00 am and 9:00 am,
when the renewable energy is sufficient. Fig. 12 quantifies
the energy consumption as a function of starting time.
From the results of 5-hour sequential and 10-hour sequential
simulations, we remark that the agent implementing the
proposed RL schemes fully utilize the renewable energy
and realizes the energy-efficient trajectory optimization. The
energy consumption for the simulations operating in the
daytime significantly decreases compared with the simula-
tions operating at night, because no much renewable energy
can be harvested at night.

Finally, we investigate the effects of the SNR threshold
and the number of IoT terminals. Fig. 13 and Fig. 14 are
obtained by processing the long-term simulations starting
at 6:00 am. Each simulation is repeated for 10 times, and the
performance is evaluated in form of means. Fig. 13 presents
the data rate and the energy consumption per SNR thresh-
old. The proposed RL schemes are capable of providing the
solution for IoT networks with the SNR threshold below 40
dB. For the IoT networks with the SNR threshold above 40
dB, the data rate decreases as the SNR threshold increases.
Generally, a higher data rate is achievable by implementing
the off-policy scheme than the on-policy scheme. However,
in the scenario with an extremely high SNR threshold, the
UAV executing on-policy scheme takes an energy-efficient
decision heading to the CSs. In contrast, the off-policy
scheme navigates the UAV to explore more, resulting in
higher energy consumption, which is inadvisable.

Fig. 14 shows that the data rate increases as the number
of the IoT terminals increases. The growth rate becomes
high when the scale of the network is relatively small. This
is caused by fully exploiting the communication resource.
However, when the number of IoT terminals is larger than
50, the increase of the data rate slows down due to the
limitation of available bandwidth. Besides, the total energy
consumption is not significantly affected by the change
in the number of IoT terminals, since the communication
energy consumption is low compared with the propulsion
energy consumption. Therefore, we present the fairness
index as a function of the number of IoT terminals. In this
scenario, the on-policy scheme makes more effort on cover-
age fairness than the off-policy scheme. The fairness index
decreases as the number of IoT terminals increases, since
less communication resource is assigned to each terminal
and the UAV can serve only the IoT terminals with low
SNRs.

6 CONCLUSIONS

In this paper, we proposed the action-confined off-policy
and on-policy RL schemes for the energy-efficient trajectory
optimization for UAV-assisted IoT networks. We considered
the complex environment caused by the highly dynamic
aliveness of IoT terminals working in the DRX mode, the
renewable energy availability, and the network topology
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(a) 5-hour sequential simulation.
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(b) 10-hour sequential simulation.
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(c) 24-hour sequential simulation.

Fig. 10: Cumulative reward as a function of starting time.
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Fig. 11: Data rate as a function of starting time.
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Fig. 12: Energy consumption as a function of starting time.

determined by the operational state of the UAV. The conver-
gence of the training process was verified for both off-policy
and on-policy schemes. By using the proposed schemes,
the UAV-assisted IoT network can efficiently avoid energy
outage and outperform those using the greedy and random
searching algorithms in terms of cumulative reward, data
rate, and energy consumption. The numerical results also
revealed the importance of using learning schemes to adapt
the operational state of UAV in complex environments for
enhancing energy efficiency and data transmission capa-
bility. To further enhance the practicality of the proposed
schemes and analyses, a generalized scenario shall be con-
sidered as future work, such as a network encompassing
multiple UAVs and dense IoT terminals. In this context, it
would be interesting to investigate the cooperation among
multiple UAVs, the partial observable environment, multi-
user resource allocation, interference mitigation, and UAV-
to-UAV communications.
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