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Abstract—Mobility management in cellular networks faces in-
creasing complexity due to network densification and heterogeneous
user mobility characteristics. Traditional handover (HO) mecha-
nisms, which rely on predefined parameters such as A3-offset and
time-to-trigger (TTT), often fail to optimize mobility performance
across varying speeds and deployment conditions. Fixed A3-offset
and TTT configurations either delay HOs, increasing radio link
failures (RLFs), or accelerate them, leading to excessive ping-
pong effects. To address these challenges, we propose two distinct
data-driven mobility management approaches leveraging high-
dimensional Bayesian optimization (HD-BO) and deep reinforce-
ment learning (DRL). While HD-BO optimizes predefined HO
parameters such as A3-offset and TTT, DRL provides a parameter-
free alternative by allowing an agent to select serving cells based
on real-time network conditions. We systematically compare these
two approaches in real-world site-specific deployment scenarios
(employing Sionna ray tracing for site-specific channel propagation
modeling), highlighting their complementary strengths. Results
show that both HD-BO and DRL outperform 3GPP set-1 (TTT
of 480 ms and A3-offset of 3 dB) and set-5 (TTT of 40 ms and
A3-offset of -1 dB) benchmarks. We augment HD-BO with transfer
learning so it can generalize across a range of user speeds. Applying
the same transfer-learning strategy to the DRL method reduces
its training time by a factor of 2.5 while preserving optimal HO
performance, showing that it adapts efficiently to the mobility of
aerial users such as UAVs. Simulations further reveal that HD-BO
remains more sample-efficient than DRL, making it more suitable
for scenarios with limited training data.
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optimization, reinforcement learning, data-driven optimization.
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1. INTRODUCTION

A. Background and Motivation

To accommodate growing mobile data traffic and new use
cases, network operators are deploying additional infrastructure
to enhance coverage, improve spectrum efficiency, and increase
spatial reuse [2], [3]. Managing user mobility in cellular net-
works remains a critical challenge, particularly with the increas-
ing densification of cells in next-generation networks [4], [5].

Handover (HO) mechanisms allow a moving user equipment
(UE) to seamlessly transition from a serving cell to a target
cell while maintaining quality of service (QoS). However, as
cellular networks become more dense, frequent HOs can sig-
nificantly increase the complexity of mobility management [6].
The effectiveness of mobility management is heavily influenced
by the configuration of the hysteresis margin (A3-offset) and
time-to-trigger (TTT)—two parameters playing a crucial role in
minimizing ping-pongs and HO failures (HOFs). In conventional
cellular networks, UEs typically operate with a finite set of such
parameters, which may be adjusted on a per-cell basis. However,
due to the interplay between cells, optimizing HO settings
individually does not guarantee optimal mobility performance at
the network level. Achieving an efficient configuration requires
a joint optimization approach, which becomes increasingly com-
plex in large-scale deployments.

Moreover, mobility management must account for UE speed
variations, as a parameter set optimized for one speed may not be
suitable for another. For instance, high-mobility UEs may travel
deep inside a target cell before the TTT expires, increasing the
likelihood of HOF due to degraded signal-to-interference-plus-
noise ratio (SINR). Conversely, these UEs may also experience
unnecessary HOs (ping-pongs) when passing through small cells
too quickly [7]. These challenges are intensified for aerial UEs,
such as uncrewed aerial vehicles (UAVs) or drones, as they
experience rapid fluctuations in received signal strength and
strong interference from neighboring cells, further worsening
connectivity issues [8], [9]. These factors collectively contribute
to frequent and unnecessary HOs (ping-pongs), increasing both
signaling overhead and the likelihood of radio link failures
(RLFs).

These challenges highlight the need for UE-specific and site-
specific solutions to mobility management, beyond a traditional



3GPP approach that relies on a specific set of HO parameters
across all network cells. To address this, we leverage recent
advancements in data-driven models and study two alternative
strategies for mobility management optimization in real-world
deployments: (i) high-dimensional Bayesian optimization (HD-
BO), which operates by optimizing HO control parameters,
and (ii) deep reinforcement learning (DRL), which follows a
parameter-free paradigm by directly making HO decisions based
on observed network states. Rather than merging these two
methods into a single approach, our work positions them as
complementary yet independent solutions to the same problem,
enabling a systematic performance comparison.

B. Related Work

Mobility management in cellular networks has attracted sus-
tained interest from industry, academia, and standards bodies.
Below we organize prior work into two major classes that
considers ground UEs (GUEs) and UAVs: (i) parameter-based
mobility optimization (including analytical models), and (ii)
reinforcement-learning—based mobility management.

Parameter-based (and analytical) mobility optimization: A
large body of work tunes HO control parameters—typically
A3-offset and time-to-trigger (TTT)—sometimes aided by data-
driven or federated mechanisms. For example, [4] exploits UE
mobility direction and RSRP patterns during TTT to reduce
frequent HOs, while [10] proposes an online learning mechanism
using posterior RSRP probabilities to identify the optimal target
cell. Federated learning has also been used to dynamically
adjust HO thresholds based on predicted RSRPs and historical
HO outcomes [11]. Analytical frameworks provide comple-
mentary insight into HO behavior. Stochastic-geometry—based
analyses and closed-form triggering models quantify associ-
ation/HO rates and triggering conditions under specific as-
sumptions [12], [13]. While valuable for intuition and design
guidelines, these models typically abstract away site-specific
3D geometry, material-dependent propagation, heterogeneous
speed mixes, and controller-timer details (e.g., L1/L3 filtering,
T310/Qin/Qout), which can limit deployability at city scale and
in dense, interference-limited scenarios.

Reinforcement-learning—based mobility management: A sec-
ond line of work formulates HO as a sequential decision
problem and applies RL to select the serving cell (or beam)
without relying on fixed thresholds. Prior studies span tra-
ditional and deep RL methods, across both GUE and UAV
settings, with reward functions typically involving through-
put/RSRP maximization and HO rate minimization. Examples
include Q-learning for high-mobility vehicular beam association
[14], multi-agent Q-learning for dense mmWave networks with
load balancing [15], Deep Q-Network (DQN)-based next-BS
selection with proportional fairness [16], and Proximal Policy
Optimization (PPO) within Open-RAN architectures optimiz-
ing weighted RSRQ/throughput/spectral-efficiency rewards [17].

UAV-oriented works have likewise applied Q-learning, DQN and
their variants to reduce HO rate while preserving signal quality
and availability [18]-[21]. Across the RL literature, feasibility
hinges on what the agent can realistically observe and act upon
at run-time. State designs often include some combination of
RSRP/RSRQ/SINR traces, serving and candidate BS IDs, posi-
tion and direction of the user, and sometimes load/interference
indicators. Some works assume instantaneous knowledge of
interference or global network states, which may be difficult to
satisfy in operational RANs without added signaling overhead
or latency.

Despite notable progress, several recurring limitations remain:
(i) parameter-based methods can require expert tuning and may
not scale under strong inter-cell coupling; (ii) analytical models
offer insight but may not capture site-specific propagation and
mixed-mobility conditions at scale; and (iii) many RL studies
adopt assumptions about observability or training/sample bud-
gets that are challenging in practice, or they target a single
mobility profile, hindering generalization across speeds and
routes. These considerations motivate evaluations that emphasize
realistic, site-specific deployments, standardized HO KPIs (ping-
pongs, RLF/HOF), and explicit discussion of sample efficiency.
In this context, our PPO-based DRL study differs from prior
works by being conducted in a site-specific ray-tracing—based
urban deployment, with standard-oriented reward design and
novel state space including a history of previous serving BSs
and the time of stay at current BS. Additionally, for the first
time to our knowledge, we benchmark DRL directly against
high-dimensional Bayesian optimization, thereby quantifying the
relative merits of parameter-free and parameter-based mobility
optimization approaches.

C. Approach and Contribution

We provide two methodologies based on HD-BO and DRL
for scalable cellular mobility management, optimizing practical
HO metrics for diverse speeds across designated streets.

Although BO [22] has proven effective in addressing
coverage-capacity tradeoffs and optimizing radio resource al-
location [23]-[30], it is inherently limited by the number of
decision variables it can efficiently handle—typically around
twenty or fewer in continuous domains [31]. This constraint
restricts the scalability of BO for optimizing mobility parameters
in large-scale cellular networks. To overcome these limitations,
this paper takes the first step in employing high-dimensional
Bayesian optimization (HD-BO) to optimize mobility-related
HO KPIs. To the best of our knowledge, this paper is the
first to (i) apply HD-BO tools to address practical mobility
management challenges in large-scale cellular networks using
real-world scenarios, and (ii) explore model generalization to
diverse UE speeds within the context of transfer learning through
HD-BO.



In addition, we introduce a non-parameter-based model-free
mobility management approach leveraging DRL. Unlike the HD-
BO method, which requires predefined parameters for HO deci-
sions, the DRL-based solution enables an agent to dynamically
select the next serving cell for a certain UE based on network
state information, eliminating the need for static thresholds.

Our main contributions can be summarized as follows:

o High-dimensional BO for HO parameter-based mobility man-
agement: We apply a state-of-the-art HD-BO technique to
mobility management, demonstrating its effectiveness in op-
timizing HO decisions for both GUEs and UAVs. In dense
urban deployments, mobility management involves the joint
tuning of multiple handover control parameters (e.g., A3-offset
and TTT) across many cells. This creates a high-dimensional
search space, where the performance of one cell is strongly
coupled with the configurations of its neighbors. Traditional
analytical models and manual tuning approaches cannot ef-
ficiently capture these interactions, and they quickly become
intractable at scale. HD-BO provides a sample-efficient way
to explore such large parameter spaces by building surrogate
models that guide the search towards promising configura-
tions. Specifically, we identify optimal A3-offset and TTT
configurations for real-world cellular network deployments,
that balance conflicting HO KPIs, such as ping-pongs vs.
HOF and ping-pongs vs. RLF. By extending BO to high-
dimensional settings, we enable large-scale, data-driven mo-
bility optimization beyond traditional BO constraints. Our case
studies consider both GUEs and UAVs moving at varying
speeds. Our extensive evaluations on a real-world cellular
deployment scenario in London show that, for per-cell op-
timization, HD-BO reduces ping-pongs by 73% for GUEs
moving at 60 km/h compared to 3GPP benchmarks. Also, for
UAVs at a 150m altitude, HD-BO outperforms 3GPP set-1
and set-5 benchmarks, achieving a 3% ping-pong rate (vs.
15% and 11%) and 0% RLF similar to the upper-bound set-5,
and performing better than set-1 of 9% RLF.

e DRL for parameter-free mobility management: We compare
the performance of the HD-BO approach to a non-threshold-
based mobility management method utilizing DRL. Unlike the
HD-BO method, which optimizes predefined HO parameters
such as A3-offset and TTT, the DRL-based solution elimi-
nates the reliance on fixed HO thresholds. Instead, an agent
autonomously learns and selects the optimal serving cell in
real-time based on the network state by directly interacting
with the environment. Our results show that the performance
achieved through DRL is comparable to HD-BO in both ping-
pong reduction and RLF minimization, confirming that DRL is
a viable alternative to parameter-based mobility management,
without predefined A3-offset and TTT thresholds.

o Transfer learning: Aiming at faster convergence to optimal
solutions, and aligning with the 3GPP vision on the need for

data-driven model generalization [32], we explore the transfer
learning capabilities of the HD-BO and DRL approaches.
We use transfer learning to leverage measurement outcomes
from a previously performed optimization process, denoted
as the scenario source, to predict the best solution for a
new optimization, termed the scenario target. Our experiments
reveal that the HD-BO approach is capable of generalization
to diverse UE speeds; furthermore, transfer learning applied
through DRL reduces training time by 2.5x while maintaining
optimal HO performance.

II. SYSTEM MODEL

In this section, we describe the network deployment, channel
model, and mobility management performance metrics used in
our study.

A. Cellular Topology and Site-specific Propagation Channel

We consider a site-specific scenario based on a real-world
production radio network operated by a leading commercial
mobile provider in the UK.

Cellular network deployment: The deployment under study
consists of 10 cell sites, with antenna heights ranging from 22 m
to 56 m. Each site comprises three sector antennas, resulting in
a total of 30 cells across the network. The selected geographical
area spans 1400 x 1275m and is located in London, between
latitudes [51.5087, 51.5215] and longitudes [—0.1483, —0.1296].
A 3D representation of the selected area is constructed using
OpenStreetMap and Blender, incorporating both terrain and
building information. In our first case study, focusing on ground
UE mobility management, the BSs antennas are configured
according to the actual cellular network. In our second case
study, focusing on UAV mobility management, BS antennas
are optimized to achieve a trade-off between ground and aerial
coverage. More details are provided in Section III-D.

Propagation channel: The channel between BS b and UE
k is computed using Sionna RT [33], a widely used 3D ray-
tracing tool for site-specific radio wave propagation analysis.
Simulations are performed at a carrier frequency of 2 GHz. The
material itu_concrete is used to model the permittivity
and conductivity of all buildings. The maximum number of
reflections and diffractions is set to 5 and 1, respectively.

SINR formulation: We compute the downlink wideband SINR
in dB experienced by UE k from its serving BS by as
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where G 1, is the square magnitude of the channel gain, incor-
porating both small-scale and large-scale fading, averaged over
50 physical resource blocks (PRBs), each with a bandwidth of
180kHz. The thermal noise power 02 over 10 MHz is obtained
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Fig. 1: 2D representation of the selected urban area, illustrating UE po-
sitions along streets (colored dots) and cell deployment sites (triangles).
The five chosen streets are marked with black lines, and colors denote
the index of the cell site providing the strongest average received power.

from a power spectral density of —174 dBm/Hz, while the trans-
mit power of BS b across the entire bandwidth is p, = 46 dBm
[34].

Cellular mobility management problem: For our mobility
study, we choose five main streets within the selected geo-
graphical area of London for experimentation. Fig. 1 provides
a 2D representation of the selected urban area, where colored
dots indicate outdoor locations of UEs along the streets. The
five selected streets are marked with black lines, with their
corresponding IDs labeled beside them. Some of the BS de-
ployment sites are represented as circled triangles, where each
site consists of three sector antennas. The color of each dot
indicates the cell site (one out of ten) providing the strongest
average received power, as shown by the heatmap bar on the side.
This visualization highlights the challenges of mobility man-
agement in real-world scenarios, since rapid signal fluctuations
may cause frequent changes in serving cells (handovers) over
short distances. Consequently, an effective data-driven mobility
management framework is required, one that is robust and
capable of targeting site-specific scenarios.

B. Handover Mechanism in Cellular Networks

In the following, we further detail the cellular mobility man-
agement problem and introduce the concepts of HO, HOF, RLF,
and ping-pongs.

Handover process: In cellular networks, handovers can occur
between different radio access technologies (RATSs), carriers, or
cells [35]. In this study, we focus on intra-RAT, intra-carrier HOs

and on hard HOs, where a UE disconnects from the source cell
before establishing a new connection with the target cell.!
Handover measurements: The UE performs HO measure-
ments and processing at both Layer 1 (physical layer) and Layer
3 (network layer). For HO measurements, the UE typically esti-
mates the RSRP for the cells listed in its neighboring cell list. To
mitigate the effects of small-scale fading in RSRP estimations,
the UE computes each RSRP sample as the linear average
of power contributions from all resource elements carrying
reference symbols within a single subframe and the designated
measurement bandwidth (e.g., six PRBs). These averaged RSRP
samples are then further smoothed over multiple samples. This
linear averaging process, performed at Layer 1, is known as LI/
filtering. In a typical setup, downlink RSRP samples may be
collected every 40 ms and then averaged over five successive
samples to obtain an L1-filtered HO measurement [36]. The L1-
filtered HO measurements are further averaged using a first-order
infinite impulse response filter to mitigate the effects of fading
and estimation imperfections. This moving averaging process is
performed at Layer 3 and is referred to as L3 filtering. A typical
L3 filtering period is 200 ms. For further details on the L1 and
L3 filtering procedures, we refer the reader to Fig. 1 in [36].
Handover trigger: A HO is triggered when the L3-filtered
HO measurement satisfies a HO event entry condition. While
there are eight types of HO event entry conditions [37, Section
5.5.4], we focus on Event A3: ‘neighbor becomes offset better
than server’, since it is typically used to trigger intra-RAT
intra-carrier HOs [36]. Once the A3 condition is met—i.e.,
the L3-filtered RSRP of the target cell exceeds that of the
serving cell by a hysteresis margin (also known as the event
A3 offset)—the UE initiates a 77T timer. The UE initiates the
HO preparation process only if the event A3 condition remains
satisfied throughout the TTT period. If that is the case, the UE
notifies the serving cell and reports the event A3 condition via
a measurement report. Then, the HO preparation phase begins.
Handover preparation and execution: The source cell issues a
HO request message to the target cell, which performs admission
control procedures based on the quality of service requirements
of the UE. The target cell prepares for the HO process and sends
a HO request acknowledgment to the source cell. Upon receiving
the HO request acknowledgment, the source cell initiates data
forwarding to the target cell and sends a HO command to the UE.
Finally, in the HO execution phase, the UE synchronizes with
the target cell and establishes access. Once the HO procedure is
completed, the UE sends a HO complete message to the target
cell, allowing the target cell to begin data transmission to the
UE [35], [36].
Radio link failure and handover failure: RLF occurs when a
UE is unable to maintain a reliable connection with the serving

Handovers can be governed by both signal strength and signal quality. In this
study, we follow the 3GPP assumptions in [35], where the handover procedure
is based on Reference Signal Received Power (RSRP) measurements.



cell due to sustained poor signal quality. Specifically, a UE is
considered out of synchronization when its wideband SINR,
denoted by SINRgg j, falls below a threshold Q. The UE
regains synchronization when this SINR exceeds a threshold Q.
Once SINRgg ; drops below Qou, a timer T3 is triggered. If
the SINR does not recover above Q;, before T31¢ expires, the
UE declares a RLF [35], [38]. HOF is then defined as a specific
instance of RLF occurring during the HO process. Based on [35],
[38], a HOF is declared if any of the following conditions are
met: (1) RLF occurs after the HO is triggered (e.g., event A3) but
before the HO command is received; (2) the 751 timer is already
running when the handover command is sent; or (3) SINRgp j
remains below Qo at the time the handover complete message
is sent. In these cases, the HO cannot be successfully completed
due to poor radio conditions. For the sake of tractability, in
our model, we adopt the definition of HOF as follow: a HO is
considered to have failed if the UE’s SINR is below (), at the
moment the HO complete message is sent. This simplification
allows us to assess HOF events directly based on instantaneous
SINR measurements during the handover execution phase.

Handover ping-pongs: The occurrence of a HO ping-pong is
determined by the duration for which a UE remains connected
to a cell immediately after a handover, referred to as the time-
of-stay. This duration begins when the UE sends a handover
complete message to the target cell and ends when the UE
sends another HO complete message to a new cell. A HO is
classified as a ping-pong if the UE’s time-of-stay is shorter than
a predefined threshold, T}, (e.g., 1s), and if the new target cell
is the same as the original source cell prior to the previous HO,
leading to increased signaling overhead and reduced network
efficiency.

Performance trade-off: Small A3 offsets and TTT values can
trigger premature handovers, increasing the ping-pong effect,
while larger values may excessively delay handovers, leading
to a higher risk of HOF or RLF. Therefore, optimizing the
A3 offsets and TTT based on UE velocity and site-specific
radio propagation conditions is crucial for effective mobility
management. In 3GPP, mobility management relies on pre-
defined threshold sets to regulate handover decisions. Among
the benchmark configuration suggested by the 3GPP in the
simulation recommendations, we specifically focus on sez-1 and
set-5 [35], as they represent two extreme cases in handover
optimization:

e Set-1 is designed to reduce ping-pongs by delaying han-
dovers, applying a uniform configuration across all cells
with a TTT of 480 ms and an A3-offset of 3 dB.

o Set-5, on the other hand, aims to minimize HOF by accel-
erating handovers, setting TTT to 40 ms and A3-offset to
-1dB, again uniformly across all cells. While this configura-
tion allows the UE to switch to a stronger serving cell more
quickly, it increases the likelihood of ping-pongs, as rapid
transitions may cause frequent unnecessary handovers.

We employ 3GPP set-1 and set-5 as performance benchmarks, as
they define the two extremes in handover performance trade-offs,
serving as a reference for evaluating the performance of our data-
driven methods. Set-1 designed to reduce ping-pongs, and Set-5,
on the other hand, aims to minimize HOF. It should be noted that
3GPP evaluations apply these settings uniformly across all cells
in their performance evaluations rather than adapting them per-
cell, primarily to simplify network-wide mobility management
and reduce optimization complexity. However, this approach is
often suboptimal, as it lacks adaptability to site-specific radio
conditions and UE mobility patterns, motivating the need for
adaptive, data-driven optimization techniques.

In the remainder of this paper, we demonstrate how data-
driven machine learning methods can optimize mobility manage-
ment by addressing two key optimization problems: i) balancing
ping-pongs and HOF, ii) balancing ping-pongs and RLF. The
exact problem formulations will be detailed in the following
two sections, where we introduce two different optimization
methodologies based on HD-BO and DRL, respectively.

III. CELLULAR MOBILITY MANAGEMENT VIA
HIGH-DIMENSIONAL BAYESIAN OPTIMIZATION

In this section, we formulate the HO parameter-based mobility
management optimization problem and propose a solution based
on high-dimensional Bayesian optimization (HD-BO).

A. Problem Formulation

Our objective is to identify the joint optimal sets of A3-
offset and TTT parameters for all cells under consideration that
minimize conflicting HO KPIs. We consider two practical trade-
offs defined as follows.

KPI study #1: Ping-pongs vs. HOF. We examine the trade-off
between reducing the number of ping-pongs and reducing the
number of HOF. The problem is formally defined as follows:
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where 1.y is an indicator function that evaluates whether a HO, a
ping-pong, or a HOF event occurs at time-step ¢. This function
takes a value of 1 if the respective event is observed and 0
otherwise. The first term captures the percentage of ping-pongs
with respect to the total number of successful handovers, ex-
cluding handover failures. The objective function (2) minimizes
a weighted sum, where wpp and wyor are positive real numbers
that determine the relative importance of reducing ping-pongs
versus HOF. The vectors A3 and TTT contain the A3-offset
A3y, and time-to-trigger TTT}, of all BSs b € B, respectively. The



smallest allowed values are A3 and TTT, while A3, TTT are the
largest allowed values. Once selected by the optimizer, the values
of A3-offset and TTT remain fixed throughout the evaluation.
They are not adapted dynamically during a simulation run,
but instead are assessed over all UEs and trajectories under
the chosen configuration. This ensures a fair comparison with
baseline 3GPP settings.

KPI study #2: Ping-pongs vs. RLF. In this experiment, we
focus on RLF instead of HOF, i.e., on reducing link outages
while minimizing the number of ping-pongs. Similarly, the
problem is formally defined as follows:
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The selection of weights for ping-pongs, HOFs, and RLFs
are not unique, but rather depends on operator preferences and
deployment objectives. In our experiments, we tested several
combinations and reported those that yielded the most balanced
performance across the considered KPIs. For instance, higher
weights on RLFs naturally drive the optimizer to prioritize con-
nection stability, whereas higher weights on ping-pongs lead to
more conservative handover triggering. The results presented in
this paper correspond to the combinations that achieved the best
trade-off in our scenario under consideration. Importantly, the
proposed framework is flexible and scalable, allowing operators
to adapt the weight configuration to their own performance
requirements.

The optimization problems (2) and (3) are nonconvex, in-
tractable, black-box optimization problems. Furthermore, for
our practical scenario with 30 cells, they involve 60 optimiza-
tion variables, requiring efficient methods to handle the large
search space. In the following, we introduce high-dimensional
Bayesian optimization as a potential solution for optimizing HO
parameter-based mobility management.

B. High-dimensional Bayesian Optimization

Bayesian optimization (BO) is a powerful method for opti-
mizing black-box functions that are expensive to evaluate. Its
practical value lies in the ability to reduce the number of costly
evaluations by learning a surrogate model (typically a Gaussian
Process or related variant) of the objective function. Each new
observation, obtained by simulating or measuring the mobility
performance of the network under a given configuration, updates
the surrogate model, which in turn guides the selection of the
next most informative configuration to test [22]. This process
allows BO to focus evaluations on the most promising regions

of the search space, achieving near-optimal solutions with far
fewer samples than exhaustive search or random exploration.

Thus, BO operates by iteratively constructing a probabilistic
surrogate model of the objective function f(-) based on prior
evaluations at selected points [22]. This surrogate model, which
is computationally easier to evaluate than f(-), is continuously
updated as new points are assessed. To determine the next point
to evaluate, an acquisition function «(-) scores the surrogate
model’s response, guiding the search process. The acquisition
function strategically balances exploration (searching for new,
potentially better solutions) and exploitation (refining the current
best solutions).

Objective function evaluation: We define a query point X =
[A3, TTT] as a configuration for both the A3-offset and TTT
for each BS b € B, and obtain the corresponding objective
function value f(x) as in (2) or (3). In both cases, the objective
function f(-) being optimized is a mathematically intractable
stochastic function that captures the model detailed in Section II,
along with the inherent randomness of UE locations and the
wireless channel. As a result, we do not directly observe f(x);
instead, we obtain a noisy realization or observation of the
function, denoted by f(x), through system-level simulations.
Importantly, repeated evaluations at the same query point X may
yield different outcomes due to the intrinsic stochasticity of the
environment. For convenience, we define a set of N query points
as X = [xy,...,Xy] and the corresponding set of observations
as £(X) = [f1,...,fn]", where each f; = f(x;) represents a
stochastic observation of f(x;) for ¢ = 1,..., N. In practical
deployments, these observations could also be obtained through
real-world network measurements.

Gaussian Process prior distribution: We use a Gaussian
Process (GP) prior, f(-), to construct a surrogate model (i.e.,
the posterior) that approximates the objective function f(-) [22].
The resulting GP model enables the prediction of f (x) at a
query point x based on previously observed values, f(X) = f,
over which the model is trained. Formally, the GP prior on the
objective function f(x) assumes that for any set of input points
X, the corresponding function values f are jointly distributed as

p(F) = N(T | u(X), K(X)), @)
where p(X) = [u(x1), ..., p(xn)] T is the N x 1 mean vector,
and K(X) is the N X N covariance matrix, with each entry (i, j)
given by the covariance function k(x;,x;). For a given point x,
the mean function p(x) provides prior knowledge about f(x),
while the kernel function K (X) captures the uncertainty between
different input values x.

Gaussian Process posterior distribution: Given a set of ob-
served noisy samples f at previously sampled points X, the
posterior distribution of f(x) at a new query point X can be
expressed as [31]:
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where the posterior mean and variance are given by:
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where k(x) = [k(x,X1), ..., k(x,xy)]T is the N x 1 covariance
vector, and K(X) = K(X) + I, with o2 representing the
observation noise (i.e., the variance of the Gaussian distribution),
and Iy denoting the N x N identity matrix. Note that (6)Aand
(7) define the mean and variance of the estimated function f(x),
where the variance quantifies the uncertainty in the prediction.

Initial dataset creation and acquisition function: The
BO algorithm begins by constructing a Gaussian Process
(GP) prior {u(-),k(-,-)} using an initial dataset D =
{X1,....Xn,, f1,---, fn,}. which consists of N, initial obser-
vations. The dataset is generated through system-level simu-
lations based on the objective function defined in (2) or (3)
and the model described in Section II. For each observation
point x; € D, the A3-offset and TTT values are randomly
selected from the ranges [—1 dB,3 dB] and [40 ms, 480 ms],
respectively. The algorithm then leverages the observations in
D to choose x,,. This is performed via an acquisition function
a(+), which is designed to trade off the exploration of new points
in less favorable regions of the search space with the exploitation
of well-performing ones. The former prevents getting caught
in local minimum, whereas the latter minimizes the risk of
testing points with excessively degrading performance. We adopt
Thompson sampling as the acquisition function, which has
shown to perform well in terms of balancing the trade-off
between exploration and exploitation [39].

Batch evaluation of candidate points: We employ a batch
evaluation strategy that enables efficient query space exploration
while reducing the number of required physical experiments.
At each iteration, a set of N. = 500 candidate points is
selected based on the posterior distribution (5) and evaluated in
parallel across available computational resources. This approach
leverages the capability of BO to learn from a limited number
of samples, making it particularly suitable for scenarios where
extensive real-world experimentation is impractical. We split the
candidate points into 10 batches each consisting of 50 points.
The query point x,, is then chosen as

Xp = argmax «a (Xeang; | D) - 8)

K2
Once x,, js determined, a new observation of the objective
function f(x,) is then produced, and the dataset D, the GP
prior, and the best observed objective value f * are all updated.
In practice, the maximization in (8) is not solved as a continuous

optimization problem. Instead, the acquisition function is eval-
uated over a set of randomly drawn candidate points, and the
point with the highest score is selected. This makes the selection
step computationally efficient even in high dimensions. The BO
loop terminates after a fixed budget of evaluations, which reflects
the maximum number of system-level simulations (or real-world
measurements) that can be afforded. This criterion is commonly
adopted in Bayesian optimization, since exact convergence to
the global optimum cannot be guaranteed for general black-box
objectives.

For BO methods to achieve greater sample efficiency, it is
essential to introduce a hierarchical significance structure for
the dimensions of x € D. In high-dimensional problems, certain
features, such as {x22,X44 }, may play a critical role in capturing
the primary variations of the objective function f, while others,
such as {x2,X4,Xg0}, may have moderate significance. The
remaining features may contribute negligibly. HD-BO exploits
these hierarchical relationships to improve optimization effi-
ciency. In the following, we introduce the core features of a
HD-BO method known as Trust Region BO (TuRBO) [39].2

Trust Region BO (TuRBO): To address the challenges of high
dimensionality in BO, the authors in [39] proposed Trust Region
BO (TuRBO), an approach that shifts from global surrogate
modeling to managing multiple independent local models, each
focusing on a distinct region of the search space. TuRBO
achieves global optimization by simultaneously maintaining sev-
eral local models and allocating samples using an implicit multi-
armed bandit strategy. This enhances the acquisition strategy by
directing samples toward promising local optimization efforts.
TuRBO leverages trust region (TR) methods from stochastic
optimization, which are gradient-free and employ a simple
surrogate model within a defined TR—typically a sphere or
polytope centered around the best solution found. However,
simple surrogate models may require excessively small trust
regions for accurate modeling. To mitigate this, TuURBO utilizes
a GP surrogate model within the TR, preserving key BO features
such as noise robustness and systematic uncertainty handling. In
TuRBO, the TR is defined as a hyperrectangle centered at the
current optimal solution, f*. The initial side length of the TR is
set to L < Li,. Each dimension’s side length is then adjusted
according to its respective length scale \; in the GP model. The
side length for each dimension is given by:

d —1/d
Li=\L- (Hj_l Aj> . 9)

where d is the total number of dimensions (i.e, optimization
parameters under consideration). During each local optimization

2We implemented and tested three HD-BO methods: Sparse Axis-Aligned
Subspaces (SAASBO) [40, Section 4], BO via Variable Selection (VSBO) [41,
Section 3], and Trust Region BO (TuRBO) [39, Section 2]. TuRBO demonstrated
superior performance and higher suitability for the problem under consideration.
For a detailed analysis of the limitations of SAASBO and VSBO in related
cellular optimization problems, see [42].



run, an acquisition function selects a batch of ¢ candidates
at each iteration, ensuring they remain within the designated
TR. If the TR’s side length L was large enough to cover
the entire search space, this method would be equivalent to
standard vanilla-BO. Thus, adjusting L is crucial: the TR must be
large enough to encompass promising solutions while remaining
compact enough to ensure the local model’s accuracy. The TR
is dynamically resized based on optimization progress: it is
doubled (L < min{ L.y, 2L}) after 7. consecutive successes
and halved (L < L/2) after 7¢,; consecutive failures. A success
is defined as an iteration where the objective function value
improves compared to the previous one, whereas a failure corre-
sponds to an iteration with no improvement. Success and failure
counters are reset after each adjustment. If L falls below Ly,
the TR is discarded, and a new one is initialized at L;,;;. The TR’s
side length is capped at Ly,,x. TURBO maintains m trust regions
simultaneously, denoted as TR;, where [ € {1,...,m}, each
defined as a hyperrectangle with a base side length L; < L.
Candidate selection involves choosing a batch of ¢ candidates
from the union of all TRs. Thompson sampling is used for
selecting candidates both within and across trust regions.

In this study, TuURBO is run using an open-source repository
[39] with the following hyperparameters: Tgee = 3, Tril =
15, Linit = 0.8, Linin = 277, Linax = 1.6.

Motivation for High Dimensionality: In our setting, the han-
dover control parameters (A3-offset and TTT) must be tuned
across multiple cells in a dense urban deployment. We formulate
this as a high-dimensional optimization problem, where each
cell contributes two optimization variables, resulting in a search
space with tens of dimensions (e.g., 60 variables for 30 cells).
While this formulation may appear conservative compared to
optimizing only the neighboring cells of each UE, it is motivated
by the strong inter-cell coupling that characterizes dense urban
networks. Handover dynamics at one cell boundary are often
influenced by the configuration of adjacent and even non-
adjacent cells, due to overlapping coverage areas, LoS interfer-
ence, and the fact that ping-pongs and RLF events can cascade
across multiple sectors. Optimizing all cells jointly allows us to
explicitly capture these dependencies and avoid network-wide
imbalances.?

C. Case Study #1: Ground UE Mobility Management

In our first case study, we analyze GUE mobility across three
different speed categories: i) pedestrian speed of 3 km/h, ii)
moderate speed of 30km/h, iii) high speed of 60km/h. Our
study aims to understand the cross-impact of speed-specific

3We note that the proposed HD-BO framework can be iteratively applied to
optimize handover parameters over clusters of neighboring cells, taking into
account the inter-cell coupling. The size of these clusters could be chosen based
on a trade-off between algorithm complexity and network-wide performance.
This trade-off could be site-specific, depending on cell isolation, buildings
topology, and type of user (GUE or UAV).

optimizations, examining how optimizing HO parameters for
one speed affects the performance of others. Additionally, we
evaluate the capability of HD-BO to handle heterogeneous speed
scenarios, where GUEs move along a street portfolio consisting
of five main roads in London. Finally, we compare the benefits
of per-cell optimization versus applying a uniform TTT and A3-
offset across the entire network, highlighting the advantages of
cell-specific mobility management.

Minimizing HOF vs. RLF: Table I compares the performance
of GUEs for a speed of 3km/h for the two KPI trade-offs:

« Ping-pongs vs. HOF (‘PP-HOF’, KPI study #1), i.e., prob-
lem (2) with wpp = 1 and wyor = 9.

« Ping-pongs vs. RLF (‘PP-RLF’, KPI study #2), i.e., prob-
lem (3) with wpp = 1 and wg g = 9.

These optimizations are achieved through the per-cell joint
tuning of the A3-offset and TTT parameters using HD-BO
and are compared to the reference performances under 3GPP
benchmark configurations set-1 and set-5. For our evaluations,
we set Qou = —8dB, T519 = 15, and T, = 1, as per [35].
Fig. 2 illustrates the cumulative distribution function (CDF)
of the SINR for UEs of speed 3 km/h. The solid and dashed
black lines represent the SINR performance under the 3GPP
benchmark configurations, set-5 and set-1, respectively. The
orange curve in Fig. 2 represents the performance after the data-
driven optimization for KPI study #1, while the blue curves
depict the performance for KPI study #2. Based on the results in
Table I and Fig. 2, the following key observations can be drawn:

o The HD-BO approach successfully reduces HOF to 0% in KPI
study #1 and RLF to 0% in KPI study #2, achieving the upper
bound set by 3GPP set-5 while also reducing ping-pongs by
25%.

« Minimizing RLF leads to better outage performance than min-
imizing HOF. Specifically, when focusing on HOF reduction,
the optimization framework may delay handovers to avoid
reporting HOF at the measurement time. While this results in
a 0% HOF metric, it can also cause UEs to remain connected
to a weak-serving BS for too long, leading to outages (RLF)
before the next handover occurs (in 4.8% of the cases, as seen
in Fig. 2).

« In contrast, when optimizing for RLF, the framework accounts
for UE conditions both at the time of handover and afterward.
This ensures that UEs do not experience outages due to
delayed handovers. As a result, optimizing for RLF not only
eliminates outages (0% RLF) but also naturally leads to 0%
HOF, as seen in Fig. 2.

Remark: The proposed framework is flexible and allows tuning
the weights of the objective function to achieve KPI trade-offs
aligned with operator preferences. For instance, one can select
weights such that the resulting ping-pong (or RLF) percentages
match those of a 3GPP baseline (e.g., set-1), while still im-
proving the remaining KPIs. This flexibility is not exploited in
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Fig. 2: SINR for GUEs at 3 km/h: the 3GPP benchmark configurations
(set-1 and set-5), optimizing ping-pongs vs. HOF (‘PP-HOF’), and
optimizing ping-pongs vs. RLF (‘PP-RLF’).

Table I, which focuses on comparing PP-HOF and PP-RLF
directly. Broader comparisons against 3GPP baselines under
different weight configurations are presented in the following
sections.

Since minimizing RLF not only reduces outages but also natu-
rally minimizes HOF, in the following, we focus on KPI study
#2, i.e., ping-pongs vs. RLF.

TABLE I: Mobility performance for GUEs at 3 km/h: 3GPP benchmark
configurations (set-1 and set-5), optimizing ping-pongs vs. HOF (‘PP-
HOF’), and optimizing ping-pongs vs. RLF (‘PP-RLF’).

3GPP set-1  3GPP set-5 PP-HOF  PP-RLF
Ping-pongs (%) 48.8 75.3 56.4 56.4
HOF (%) 6.5 0.0 0.0 0.0
RLF (%) 7.4 0.0 4.8 0.0

In addition to the extreme 3GPP configurations (sets 1 and 5),
we evaluated a representative non-extreme 3GPP setting (set 4,
TTT = 80ms, A3-offset = 1dB). While set 4 achieves zero
RLFs, it results in a ping-pong rate of 73.5%, highlighting
the limitations of globally applied handover parameters. In
contrast, the proposed HD-BO framework preserves the same
RLF performance (0.0%) while reducing ping-pongs to 56.4%,
owing to its ability to optimize handover thresholds to local radio
and mobility conditions.

All UEs at the same speed: Fig. 3 illustrates the mobility
performance when all UEs move at the same speed, for different
values of such speed (3 km/h, 30 km/h, and 60 km/h). For each
value of the speed, the A3-offset and TTT is optimized for ping-
pongs and RLF via HD-BO and the objective function weights

are set to wpp = 9 and wgrrr = 1. The comparison includes a
one-threshold optimization approach (where all cells share the
same configuration) and a per-cell configuration. Compared to
the 3GPP set-1 benchmark (optimized for reducing ping-pongs),
HD-BO with one-threshold optimization (uniform configuration
for all cells) achieves a 20% reduction in ping-pongs. Per-cell
optimization further improves performance, reducing ping-pongs
by 35% for GUEs moving at 3 km/h. At higher speeds, such as
60km/h, the improvement is even more significant, with ping-
pong reductions of 57% and 73% for one-threshold and per-cell
optimization, respectively, compared to the 3GPP benchmark.
The relatively high ping-pong ratio observed for 3GPP set-
1 at pedestrian speeds arises from its uniform configuration
across all cells. Slow-moving UEs spend more time in cell-edge
regions where RSRP levels of neighboring cells fluctuate around
similar values. With a fixed, non-adaptive configuration, these
fluctuations frequently cross the handover threshold and trigger
ping-pongs. By contrast, per-cell optimization adapts thresholds
locally to the propagation conditions, thereby reducing unnec-
essary handovers. Thus, adaptive thresholding—especially when
done on a per-cell basis—helps mitigate unnecessary handovers.
These results highlight the advantages of per-cell optimization
over one-threshold optimization. It should be noted that slower
UEs (3km/h) exhibit a higher ping-pong ratio compared to
faster UEs. While one might intuitively expect the opposite,
this behavior arises from the interaction between user speed
and the TTT parameter. At slower speeds, UEs remain longer
in cell-edge regions where neighboring cells provide similar
RSRP values. Even after L1/L3 filtering, small fluctuations can
repeatedly cross the handover threshold, causing unnecessary
handovers and thus more ping-pongs. In contrast, faster UEs
traverse cell boundaries more quickly, reducing the likelihood
of returning to the previous serving cell after a handover and
therefore experiencing fewer ping-pongs.

Impact of speed-mismatched optimization: Fig. 4 illustrates
the performance of UEs when the handover parameters are opti-
mized for a different mobility speed. The results show that speed-
specific configurations obtained via HD-BO may significantly
degrade performance when applied to UEs moving at other
speeds. For instance, a configuration optimized for pedestrian
mobility (3km/h) increases ping-pongs by nearly 8x when ap-
plied to higher speeds such as 30 km/h. This effect arises because
the TTT parameter plays a critical role at higher velocities,
where handovers must occur promptly before the UE traverses
the cell and moves into a new coverage area. Conversely, a
configuration optimized for high-speed mobility (60 km/h) yields
a 2x increase in ping-pongs when applied to pedestrian users at
3km/h. While one might expect that configurations optimized
for slower speeds, which generally favor longer TTT values,
would reduce ping-pongs for faster UEs, the results show the
opposite. This behavior arises because both TTT and A3-offset
are optimized jointly in our framework. Configurations tailored
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Fig. 4: GUE ping-pongs at a certain speed when the network is
optimized via HD-BO for a specific (not necessarily the same) speed.

for pedestrian mobility tend to include A3-offsets configuration,
which are effective at capturing RSRP differences at low speeds.
However, when applied to fast-moving UEs, these offsets cause
the handover threshold to be crossed more frequently as users
traverse overlapping coverage areas, leading to an increase in
ping-pongs. These findings emphasize that handover parameters
optimized for a single mobility profile are not transferable across
heterogeneous speed scenarios. They highlight the necessity
of accounting for all speed categories simultaneously when
designing mobility management schemes, a point that motivates
the all-speed optimization strategy presented in the following
section.

Joint optimization across all speeds: Fig. 5 shows the perfor-
mance of UEs at different speed categories when the network
is optimized simultaneously for all speeds, using per-cell op-

timization with wpp = 9 and wgr = 1. Compared to speed-
specific optimization, this strategy naturally introduces trade-
offs across mobility profiles. For example, GUEs at 60 km/h
see ping-pongs increase moderately from 9% to 14%, while
for pedestrian users at 3km/h the degradation is significantly
constrained: instead of doubling as in the speed-mismatched
scenario, ping-pongs rise only slightly from 32% to 36%.
Similar patterns hold across the other speed categories, with
HD-BO per-cell optimization consistently mitigating the most
severe mismatches. These results confirm that optimizing for
all speeds jointly cannot achieve the absolute optimum for any
single mobility profile. Nevertheless, it provides a balanced
solution that substantially reduces the performance degradations
observed under mismatched configurations, thereby supporting
more robust mobility management across heterogeneous UE
populations.

To further understand the impact of HD-BO on radio link
quality, Fig. 6 illustrates the CDF of the SINR for UEs at
each speed category when the network is optimized for all
speeds simultaneously. This figure complements the previous
analysis by showing that, despite optimizing handover param-
eters for reduced RLF and ping-pongs, HD-BO can maintain
SINR performance close to the 3GPP set-5 benchmark. The
black lines represent the SINR under 3GPP set-5, which serves
as an upper bound by enforcing fast handovers to the best
candidate BS while ignoring ping-pong constraints. The blue
curves show the performance after HD-BO optimization with
wpp = 1 and wgrrr = 9, prioritizing RLF minimization across
a street portfolio with diverse mobility patterns. The similarity
in SINR distributions between HD-BO and 3GPP set-5 explains
why RLF performance remains nearly identical in both cases:
in both strategies, UEs are handed over to strong-signal BSs
in a timely manner. Moreover, the reduction in ping-pongs
relative to 3GPP set-5 is annotated in boxed text for each
speed category—8% for 3 km/h, 28% for 60 km/h, and 100%
for 30 km/h—demonstrating that HD-BO successfully mitigates
unnecessary handovers without compromising signal quality. It
should be noted that the hump observed in the CDF of the SINRs
is due to site-specific propagation conditions. The urban effects
on the channel such as LoS dominance and diffraction, results
in the concentration of users around these SINR levels, which
manifests as a hump in the CDF.

D. Case study #2: Aerial UE Mobility Management

In our second case study, we focus on mobility management
for aerial UEs (i.e., UAVs) along predefined 3D aerial corridors
at altitudes of 140-160 m.

Optimal cellular antenna configurations: As cellular BSs are
traditionally designed to optimize 2D ground-level connectivity,
aerial UEs are often limited to receiving signals through the
weaker upper antenna sidelobes, resulting in significant signal in-
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Fig. 5: Ping-pongs and RLF experienced by GUEs at different speeds
when the network is optimized via HD-BO for a mix of all speeds.

stability during flight. Additionally, when UAVs fly above build-
ings, they frequently face interference from line-of-sight (LoS)
signals from nearby BSs [8], [43], which degrades their signal-
to-interference-plus-noise ratio (SINR) [44], [45]. To address
this limitation, next-generation mobile networks are expected
to provide reliable UAV connectivity by re-engineering existing
ground-focused deployments [46]-[48]. In our previous study,
we proposed a framework for designing a cellular deployment
that accommodates both GUEs and UAVs flying along specific
streets (i.e., corridors) by optimizing the electrical antenna tilts of
each BS. Our findings indicate that, unlike conventional cellular
networks where all BSs are downtilted, balancing coverage
between ground UEs and UAV corridors necessitates uptilting
a subset of BSs [42]. Therefore, for this Case Study #2 on
aerial UE mobility management, before optimizing mobility, we
first optimize the electrical antenna tilts of all BSs following the
approach in [9]. The goal is to determine the set of antenna tilts
that maximize the rates of GUEs and UAVs with equal weights.
This ensures an optimized cellular deployment configuration
that enhances coverage and capacity for UAVs, serving as a
foundation for the subsequent aerial UE mobility optimization.

Mobility performance: Table 1I presents the performance of
UAVs across all speeds (i.e., 3km/h, 30km/h, and 60 km/h),
considering an equal weight distribution over the five-street
portfolio. The evaluation compares the performance of HD-BO
with wpp = 9 and wg g = 1 to the two 3GPP benchmark
configurations, set-1 and set-5. HD-BO outperforms both 3GPP
set-1 and set-5 in reducing ping-pongs and RLF. It achieves a
3% ping-pong rate (compared to 15% for set-1 and 11% for set-
5) and 0% RLF (vs. 9% for set-1). Even though the objective
function prioritizes ping-pong reduction (wpp = 9, wrLr = 1),
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Fig. 6: SINR achieved by GUEs of different speeds when the network
is optimized for all speeds with wpp = 1 and wrLr = 9, compared to a
3GPP set-5 configuration. Ping-pongs reduction with respect to 3GPP
set-5 is indicated in boxed text for each speed.

HD-BO is still able to completely eliminate RLF (0%), while
achieving the best ping-pong performance.

TABLE II: Ping-pong (PP) and RLF performance for UAVs across all
speeds with equal weight distribution over the five-street portfolio.

3GPP set-1 3GPP set-5 HD-BO
PP (%) RLF (%) PP (%) RLF (%) PP (%) RLF (%)
15 9 11 0 3 0

E. Transfer Learning Experiments

Since it is desirable for a machine learning model to deliver
consistent performance across diverse scenarios [49], we now
examine the generalization capabilities of the HD-BO framework
across different UE speeds in the context of transfer learning.

Scenario source vs. scenario target: Transfer learning lever-
ages knowledge or data from a previously solved problem
(source) to accelerate the solution of a new but related problem
(target). This approach is particularly beneficial when generating
the initial dataset D for the BO posterior is costly or time-
consuming, such as when real-world measurements are required.
Let Dy and Dy, represent the initial datasets obtained for
the source and target scenarios, respectively. We conduct three
evaluations by varying the proportion of the initial dataset D
that originates from the target scenario, as follows:

e 100% (D = Dy, prior knowledge based on scenario target).
e 50% (half of D is drawn from Dy, half is from D).
e 0% (D = Dy, prior knowledge based on scenario source).
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We apply scenario-specific transfer learning to Case Study #1,
where the objective is to leverage data from a scenario with a
certain GUE speed to optimize a new scenario with a different
speed.

Convergence of transfer learning: Fig. 7 is obtained consid-
ering a source scenario based on the previously described Case
Study #1, where GUEs move along a portfolio of five streets
at a speed of 60km/h. In the target scenario, we modify the
GUE speed to 30km/h. The figure illustrates the convergence
of transfer learning using HD-BO by showing the best observed
objective at each iteration n. To present a practically relevant
measure, we plot the min-max normalized KPI from (3), where
0 corresponds to the 3GPP baseline (worst performance) and 1
represents the best achievable KPI when the HD-BO posterior
contains 100% prior knowledge of the target scenario. The initial
dataset D consists of N, = 60 observations, following the
recommendation in [39], which suggests building the prior on an
initial dataset of size twice the number of optimization parame-
ters. D is drawn from Dy, (blue), from D, (green), or half each
(red). Fig. 7 shows that with a 50%/50% reliance on Ds/Dy;,
convergence occurs in a comparable number of iterations to
that observed with 100% reliance on Dy, (i.e., without transfer
learning). This demonstrates the HD-BO posterior’s ability to
generalize after optimizing a related task. Even in the absence of
prior knowledge of the target scenario (D = D), performance
declines by only 3%, indicating that the posterior trained at one
speed retains useful structural information that can be reused at
another speed.

It is important to note that the KPI defined in (3) serves
as a scalar optimization objective for the learning algorithm
rather than a directly interpretable performance metric. Due

to the weighted combination of multiple mobility indicators,
temporal averaging, and evaluation across heterogeneous user
speeds, the resulting value has no intrinsic physical meaning
and cannot be interpreted in isolation (e.g., as a percentage).
In our experiments, the raw KPI values range between 4.22
and 6.40; however, these magnitudes alone do not convey ac-
tionable insight. Therefore, a min—max normalization is applied
to contextualize the learning process between two meaningful
reference points: the current network deployment based on a
3GPP configuration (normalized to 0) and the achievable upper
bound corresponding to full posterior knowledge of the target
scenario (normalized to 1). This representation enables a clear
visualization of transfer learning efficiency and convergence
behavior without altering the relative performance trends.

Performance of successful transfer learning: Fig. 8 compares
ping-pong and RLF percentages under different source—target
dataset compositions. In the successful case (top), transferring
from 60km/h to 30 km/h achieves performance comparable to
a fully target-trained model, confirming that prior knowledge
at higher speeds can generalize well to slower mobility. These
results illustrate the potential of data-driven transfer mechanisms
and motivating future extensions to more complex scenarios.

Example of unsuccessful transfer learning: However, transfer
learning proves ineffective for pedestrian speeds (3 km/h). The
figure highlights this limitation, as scenario-specific transfer
learning fails in both initial dataset variations (50%-50% and
100% scenario source). In both cases, the achieved ping-pongs
and RLF performance do not match the levels obtained when
the optimization is conducted with an initial dataset composed
entirely of the target scenario (100% scenario target). This
occurs because the HD-BO method establishes trust regions
based on presumed solution locations, primarily favoring lower
TTT values. Without data specific to pedestrian performance, it
lacks awareness of the importance of higher TTT values and
consequently defaults to optimizing only for lower ones. As a
result, this approach fails to yield improvements for pedestrian-
based scenarios.

IV. CELLULAR MOBILITY MANAGEMENT VIA
DEEP REINFORCEMENT LEARNING

Having examined mobility management from a parameter-
based perspective using HD-BO, we now turn to a comple-
mentary paradigm: parameter-free optimization via deep rein-
forcement learning (DRL). While HD-BO focuses on tuning
predefined control parameters such as A3-offset and TTT, DRL
eliminates these thresholds altogether by allowing an agent to
directly select serving cells based on network state information.
This transition from parameter optimization to parameter-free
decision-making highlights the two distinct ways in which
data-driven approaches can be applied to the same mobility
management problem, setting the stage for a systematic com-
parison between them. In our case studies, we compare the KPI
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Fig. 8: Performance of transfer learning applied on Case Study #1.

performance and convergence of the DRL approach to the one
based on HD-BO

A. Overview of Deep Reinforcement Learning

RL is a type of machine learning in which an agent learns
by interacting with the environment. Using the data collected
from these interactions, the agent learns a policy allowing it
to select the actions maximizing cumulative rewards [50]. RL
problems are typically modeled as Markov decision processes
(MDPs), characterized by states, actions, rewards, state transition
dynamics, and a discount factor balancing between immediate
and future rewards. At each step, the agent observes a state
describing the environment, chooses an action based on its
policy (which defines the agent’s behavior), and receives an
immediate reward. RL algorithms can be classified into two main
categories: value-based methods and policy gradient algorithms.
Value-based methods, such as Q-learning, rely on value functions
which estimates the expected cumulative reward that the agent
can achieve, under a specific policy, from a particular state
or a state-action pair. These algorithms optimize policies in
an implicit fashion by selecting the actions maximizing the
estimated value function. Meanwhile, policy gradient methods,
including REINFORCE, directly optimize the policy parameters
using gradient ascent on the expected reward.

To expand the applicability of RL, deep RL was introduced
combining RL with deep neural networks (DNNs) [51]. This
enables agents to handle more complex environments. Examples
of DRL algorithms include Deep Q-Network (DQN), Deep
Deterministic Policy Gradient (DDPG), Proximal Policy Opti-
mization (PPO), and Advantage Actor-Critic (A2C). While DQN
is designed to deal with discrete actions using DNNs for Q-value

function approximation, DDPG is developed to handle continu-
ous actions through an actor-critic architecture. Meanwhile, PPO
and A2C use stochastic policies, which not only allow them to
make both discrete and continuous actions, but also improve their
state space exploration compared to DQN and DDPG. Moreover,
as policy-gradient algorithms, PPO and A2C can address the
limitations of value-based methods like DQN which suffer from
slow convergence and high approximation errors.

B. DRL-based Mobility Management

In our DRL-based mobility management framework, the state
space, action space, and reward function are defined as follows:

State space: The state s; of the environment at time step
t includes the ID I'; of the street where the UE is located,
the ID «; of the current serving BS, the time of stay at
current BS ToS,,,, the ID 3; and RSRP Z=; of the candidate
BS. Additionally, we consider a history H;* of n previous
serving BSs, defined by the ID 3! and the RSRP value =i
i = 1...n, in the state representation. Hence, the state is
given by s; = {T't, as, ToS,,, B, Et, Hi'}. The agent is at the
network-side controller, which observes these standard 3GPP
measurements and makes mobility decisions on behalf of the
UEs.

Action space: The actions of the agent at time step ¢ include
a binary action a; = {0, 1}, representing the decision to stay
connected to the current BS or make a handover to the candidate
BS.

Reward function: The reward r; at time step ¢ is a weighted
sum of the ping pong event and the RLF event, given by:

rt = —wpp - Lpp, — WRLF - IRLF,- (10)

which is consistent with the multi-objective formulations in
(2)-(3). Those equations aggregate PP and RLF rates across the
whole trajectory, whereas (10) expresses the same cost in an
event-driven form, suitable for RL training.

Proximal Policy Optimization: To solve the formulated RL
problem, we adopt PPO [52], a DRL algorithm widely used in
wireless communication applications, thanks to its robustness,
stability, and sample efficiency. PPO optimizes its policy through
a clipped objective function, which prevents excessively large
policy updates. This offers more stable and reliable training
compared to other actor-critic methods. PPO includes two neural
networks: the policy network (actor) and the value network
(critic). The former is responsible for action selection where
the actions are sampled from a probability distribution based on
the actor’s stochastic policy 7,,. Meanwhile, the latter evaluates
the actions taken by the policy network through value function
estimation. Through interactions between the agent and the envi-
ronment, batches of trajectories (i.e., sequences of states, actions,
rewards, and next states) are collected to update both networks.
Unlike HD-BO, the DRL approach does not rely on fixed



HO parameters (A3/TTT). Instead, the policy learns serving-
cell decisions directly from experience, making it effectively
“parameter-free” with respect to handover thresholds.

Value loss: The value network parameters [ are updated by
minimizing the value loss, defined as

Coatee(8) = By [(Vs (s1) = Go)? an
where V3 (s;) is the estimated state-value function and G
denotes the observed return.

Policy objective: Simultaneously, the policy network my is
updated by maximizing the policy objective, given by

[/policy(¢) =k, [min(PtAww , Clip(ﬂt’ l—-71+ T)Aﬂw]

(12)
+€eXpE‘ﬂ'¢ [log T (a’|st)]

where the first term refers to the clipped surrogate objective
and the second terms is the entropy loss which encourages
exploration. Also, p; = % represents the probability
ratio between the new and old policies and A, denotes the
advantage estimate, which measures the quality of an action
given a state based on the critic’s estimated value function. In
addition, e, and 7 are the entropy coefficient and the clipping
hyperparameter, respectively.

Training process: The training process is repeated over mul-
tiple episodes, allowing the critic to improve its value function
estimation and the actor to enhance its action selection based on
the critic’s feedback. We fine-tune the different hyperparameters
of the PPO algorithm (including both the actor and the critic
networks architectures) through extensive experimentation. The
policy network is designed using three layers with 256, 128, and
256 neurons, respectively, while the value network includes three
layers with 64 neurons each. To optimize the losses, an Adam
optimizer is used with a learning rate of 0.0001. Additionally,
we select a discount factor v = 0.95, an entropy coefficient
€exp = 0.002, and a clipping parameter 7 = 0.2.

C. Performance and Convergence Assessment

We now compare the performance of the PPO agent to the
HD-BO approach and to the 3GPP baseline configurations (set-
1 and set-5) for Case Study #1, i.e., GUE mobility management.
The PPO agent’s objective is to maximize the reward function
defined in (10). Unlike traditional approaches, the RL-PPO
agent selects the next serving BS without relying on predefined
network parameters such as the A3-offset and TTT.

Fig. 9 illustrates the mobility performance at different speeds
(3 km/h, 30 km/h, and 60 km/h) in terms of ping-pongs and
RLF. The objective function weights are set to wpp = 9 and
wrLp = 1. The following key observations can be drawn.

I 3GPP set-5
80 I 3GPP set-1
[ HD-BO
60 I RL

Ping-pong %
5

n
o

3km/h

30km/h 60km/h

3km/h 30km/h 60km/h

Fig. 9: Ping-pongs and RLF performance for GUEs at different speeds
when the network is optimized via RL-PPO, HD-BO, and the 3GPP
baseline configurations. Lower ping-pong and RLF percentages are
better, indicating more efficient mobility management.

RL-PPO vs. 3GPP baselines: The RL-PPO framework sig-
nificantly outperforms both 3GPP set-1 and set-5 configurations
in terms of reducing ping-pongs. For example, at 30 km/h, RL-
PPO achieves a ping-pong rate of 5%, compared to 56.16% for
set-5 and 14.2% for set-1. Additionally, RL-PPO maintains a
lower RLF rate across all speeds, despite the objective function
prioritizing ping-pong reduction by assigning it a higher weight.
This demonstrates RL-PPO’s ability of providing robust mobility
management.*

RL-PPO vs. HD-BO: The performance achieved through RL-
PPO is comparable to HD-BO in both ping-pong reduction and
RLF minimization. For instance, at 3 km/h, RL-PPO maintains
a ping-pong rate of 35%, similar to HD-BO’s 32%. At 30 km/h
RL-PPO performs slightly better achieving a ping-pong rate of
5%, compared with HD-BO’s 7%. At 60 km/h, RL-PPO achieves
a ping-pong rate of nearly 0%. Performance-wise, this confirms
RL-PPO as a viable alternative to parameter-based mobility
management, without predefined A3-offset and TTT thresholds.

Sample efficiency: Table III compares the convergence be-
havior of HD-BO and the RL-PPO framework in terms of
the total number of iterations required. This comparison is
conducted for both objective function weight configurations:
{’LUPP = 9, WRLEF = 1} and {pr = 1, WRLF = 9} While
RL-PPO achieves comparable performance to HD-BO, a key
drawback is its significantly higher sample complexity. Each

43GPP set-5 can be regarded as a practical upper bound in terms of RLF
performance, as it performs fast handovers without considering the ping-pong
effect, focusing solely on minimizing RLF. Therefore, the primary comparison
should be made with 3GPP set-1, which is specifically designed to reduce ping-
pongs while also accounting for RLF.



iteration in both methods involves running a simulation or
taking a measurement, making sample efficiency critical. In
our setting, each optimization iteration requires one system-
level evaluation (i.e., one sample) obtained through simulation
or real-world measurements. Hence, the number of iterations
directly corresponds to the sample complexity of the framework.
We therefore report sample complexity in terms of iterations,
since both are equivalent in this context. RL-PPO requires 10
to 250 times more iterations before convergence compared to
HD-BO, depending on the KPI weight configuration and GUE
speed. For instance, at 30 km/h with wpp = 9, wrrr = 1, RL-
PPO requires 14,000 iterations—each corresponding to a costly
simulation—whereas HD-BO converges in just 60 iterations.

Although RL-PPO is well-suited for digital twin environ-
ments, where large-scale simulations can efficiently generate
training data, in real-world measurement-based scenarios, where
data collection is mission-critical, costly, or labor-intensive, its
high sample complexity makes RL-PPO less viable compared to
HD-BO’s data-efficient optimization approach.

TABLE III: Convergence comparison based on number of iterations at
different speeds with varying KPI weight parameters.

3 km/h 30 km/h 60 km/h
HD-BO RL-PPO  HD-BO RL-PPO HD-BO RL-PPO
wpp = 9, WRLF = 1 125 3200 60 14000 30 4300
wpp = 1, WRLF = 9 140 320 75 300 45 270

D. Transfer Learning Experiments

We now evaluate the generalization capability of the RL-PPO-
based mobility management framework in adapting to aerial
UEs at a altitude of 150 m, using an agent trained exclusively
on GUEs at 1.5m. The study focuses on a mobility scenario
where both categories of UEs move at a speed of 30km/h.
As previously discussed, RL-PPO-based mobility management
requires large-scale simulations to generate extensive training
datasets. The objective of transfer learning in this context is to
minimize the need for collecting new data when UE altitude
changes (e.g., when an aerial highway is relocated due to
regulations [53]).

Table IV presents the PP and RLF performance for wpp = 9
and wrrr = 1. The results highlight the effectiveness of transfer
learning in reducing training overhead while maintaining optimal
mobility performance. With transfer learning, both PP and RLF
rates remain at 0%, while significantly reducing the number of
iterations required for training. Without transfer learning, the
RL-PPO agent requires 6,200 iterations to converge. Transfer
learning cuts this down to 2,400 iterations—a 2.5x reduction in
training effort—successfully generalizing to aerial UEs without
compromising handover efficiency. These results also underscore
the data efficiency of the proposed DRL framework. By lever-
aging transfer learning, the agent requires significantly fewer
training iterations (2,400 vs. 6,200) to achieve the same optimal

performance, demonstrating how prior knowledge can reduce the
amount of data and training effort needed for convergence.

TABLE IV: PP and RLF performance for UAVs at 150 m and 30 km/h,
w/ and w/o RL-PPO transfer learning, for wpp = 9 and wrir = 1.

Set-1 ~ Set-5  w/o Transfer Learning  w/ Transfer Learning
PP (%) 0.0 20.0 0.0 0.0
RLF (%)  5.18 0.0 0.0 0.0
Iterations - - 6200 2400

V. CONCLUSION AND DISCUSSION

This paper explored two distinct data-driven approaches for
mobility management in cellular networks: HD-BO and DRL.
While both aim to optimize HO performance, they operate under
fundamentally different paradigms—HD-BO as a parameter-
based optimization method and DRL as a parameter-free learning
framework. Our study highlights the complementary strengths of
these two methods and provides comparisons of their applica-
bility in real-world site-specific mobility management scenarios.
Both approaches aim to optimize HO performance, targeting
trade-offs between ping-pongs and RLF. The HD-BO method
enables scalable, sample-efficient optimization over large cel-
lular deployments by constructing local surrogate models and
leveraging trust-region strategies. It demonstrates strong perfor-
mance across diverse UE mobility profiles, including both GUEs
and UAVs, without requiring extensive training data. In contrast,
DRL provides a model-free solution that bypasses the need for
predefined HO thresholds, directly learning optimal mobility
policies from interaction with the environment. While DRL
offers flexibility, it requires significantly more training iterations,
which can limit its feasibility in real-world deployments where
data collection is costly or constrained. To address this, we apply
transfer learning to both approaches, demonstrating its ability to
accelerate convergence and improve generalization across UE
speeds and altitudes. These results suggest that transfer learning
is particularly effective in reducing training demands, especially
for DRL, and highlight the broader potential of adaptive, data-
driven mobility management in dense and heterogeneous net-
work scenarios. The transfer learning results presented in this
paper can be regarded as a proof of concept illustrating the
potential of data-driven mobility management. While our case
study focuses on speed variation, which already poses non-
trivial challenges due to its strong impact on signal behavior and
handover dynamics, extending this framework to more complex
scenarios; such as different urban layouts, remains an important
direction for future work.

Deployment Practicality: A key aspect of data-driven mobility
management is the feasibility of deployment in operational
networks. In our framework, the optimization process is en-
visioned to run at the network controller, which already has
access to the necessary performance measurements collected in



current systems. For the HD-BO approach, these measurements
include for example L1/L3-filtered RSRP. Optimized handover
thresholds (A3-offsets and TTTs) are then configured at the cell
level via standard control signaling. Since these updates occur
at large time scales (e.g., hours or days), the resulting signaling
overhead is negligible. For the DRL framework, we explicitly
restrict the state space to features that are realistically observable
at the controller: serving and candidate cell IDs, and filtered
RSRP values. These are all quantities already reported by UEs
as part of the measurement reporting framework, and no new
feedback channels are required. Overall, both approaches lever-
age existing 3GPP-compliant measurement procedures and rely
on site-specific configurations. This makes the proposed methods
compatible with ongoing standardization efforts, and we believe
they can be integrated into future cellular deployments without
introducing prohibitive communication or computational over-
head.

Future work: Several areas remain open for further explo-
ration, including the following ones:

o Beam-based mobility management: Future 6G deployments
may operate in the FR3 spectrum and rely on highly
directional beams. Investigating beam-based HO strategies
that integrate beam selection and mobility optimization is
crucial for ensuring seamless connectivity.

Multi-RAT handovers: In integrated terrestrial and non-
terrestrial networks (NTN), UEs may switch between cel-
lular and satellite network segments [54]. Extending our
framework to multi-RAT handovers would enable load
balancing and mobility robustness across a heterogeneous
infrastructure.

Multi-agent RL: Extending the DRL-based HO manage-
ment to multi-agent systems could improve performance
in large-scale networks with load balancing-aware mobility
management. Specifically, in such scenario the state and
action spaces would be extremely large for one agent to
handle. Thus, multiple RL agents could be deployed where
each agent has partial knowledge of the network. Then,
using a distributed learning approach, HO management
could be optimized with reduced overhead.

Robustness to stochastic RL training: Training DRL agents
can exhibit performance variability due to random initial-
ization and stochastic optimization, even when using the
same dataset. While the proposed framework is evaluated
under a fixed training setup, a systematic multi-seed training
and evaluation analysis is an important direction for future
work to assess robustness and statistical stability.
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