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Abstract—The deployment of reliable maritime communication systems
integrated with terrestrial networks is challenging due to the large mar-
itime regions, the difficulty of deploying conventional base stations at
sea, and the heterogeneity of proprietary equipment. In this paper,
we propose an AI-based network slicing framework for Open Radio
Access Network (O-RAN) integrated aerial-terrestrial maritime networks
that incorporates non-tethered and tethered unmanned aerial vehicles
(UAVs) and marine buoys. The network provides ubiquitous connectivity
while addressing diverse maritime user requirements. Specifically, we
leverage network slicing to accommodate the needs of two distinct
slices: the maritime infotainment slice, which demands high data rates,
and the maritime emergency communication slice, which requires high-
reliability and low-latency. Moreover, we adopt virtualization principles to
enable flexible deployment approaches for virtualized network functions
(VNFs), that can be dynamically scaled and/or migrated across virtual-
ized network nodes. Then, we design a network slicing framework based
on a Deep Reinforcement Learning (DRL) that takes into account the
characteristics of the maritime environment, and present two algorithms
using Advantage Actor-Critic (A2C) and Proximal Policy Optimization
(PPO). Our findings highlight the importance of the integration of aerial
and terrestrial networks with network slicing to enhance the energy
efficiency of maritime communications while meeting diverse Quality of
Service (QoS) requirements.

Index Terms—Maritime Communication, Open-RAN, Integrated aerial-
terrestrial Network, Maritime Emergency and Rescue, Network Slicing,
Deep Reinforcement Learning (DRL).

1 INTRODUCTION

Maritime activities have expanded over the last few decades
beyond traditional fishing and maritime transportation to
include ocean exploration and climate change research. This
created a global marine market size worth 4,420.7 million
USD in 2022 and expected to surpass 10,000 million USD
in 2033 [1]. These activities require enhanced maritime com-
munications systems that provide ubiquitous connectivity
and satisfy the various demands of the passengers, fish-
ermen, and devices on remote ships. More critically, ships
and underwater rescue operations require more reliable
communication. In fact, statistics reveal that an average of
17% accidents per 100 marine vessels occurred worldwide
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between 2012 and 2017 [2]. However, establishing such
systems remains a challenge that requires further research.
This is due to the low user density, the vast ocean areas that
should be covered and the difficulty of deploying typical
base stations (BSs) in the seas [3]. Conventional maritime
communication technologies are based on on-shore BSs
providing basic services including text messaging and voice
calling. Additionally, satellite-based solutions were used to
expand the coverage in the sea [4]. However, they suffer
from large propagation distances and restricted on-board
resources leading to significant delays and limited data
rates. Moreover, international regulations are required to
manage the different demands and distribute the licenses;
which might delay the deployment and yield political com-
plications [3]. Also, maritime users particularly in fishing
villages and small islands cannot afford the use of satellite-
based systems. This is due to their high costs and large
antennas which cannot be installed on fishing and small
boats. Therefore, researchers are dedicating their efforts to
develop comprehensive 6G communication systems that
extend and complement the terrestrial networks. Specifi-
cally, integrated aerial-terrestrial networks have emerged
as a promising solution to endorse the coverage and ser-
vice scope of terrestrial networks. In fact, unmanned aerial
vehicles (UAVs) can expand the near-shore coverage, by
acting as relaying units to connect marine vessels and on-
land BSs. Thanks to their cost-efficiency, simple and flexible
deployment, UAVs are suitable to ensure seamless con-
nectivity in the near-shore region. The use of these aerial
platforms, including tethered and non-tethered UAVs, have
been explored in [5]–[8] to extend the coverage of terrestrial
networks and enhance maritime connectivity. Nonetheless,
such integrated networks are usually heterogeneous and
rely on proprietary equipment. This limits their flexibility
and adaptability to different Quality of Service (QoS) de-
mands, which is required to support diversified maritime
use cases. For instance, marine passenger infotainment users
need a high data rate connectivity, while maritime emer-
gency communication necessitates low latency.

To overcome these inherent challenges of maritime
communication, we propose an intelligent network slicing
framework built on an integrated aerial-terrestrial maritime
network architecture. Incorporating non-tethered UAVs,
tethered UAVs, and marine buoys, the proposed architecture
offers ubiquitous connectivity and satisfies the requirements
of various maritime users. Additionally, we introduce Open
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Radio Access Network (O-RAN) concepts in the integrated
maritime network to offer openness, intelligence and in-
teroperability. The O-RAN architecture is mainly based on
virtualized RAN with disaggregated components and AI-
powered controllers [9]–[11]. Specifically, the RAN virtu-
alization through Network Function Virtualization (NFV)
can be exploited to improve network programmability,
flexibility, and agility. Additionally, to enable multi-vendor
deployments, O-RAN promotes the disaggregation of RAN
functions into Centralized Unit (CU), Distributed Unit (DU),
and Radio Unit (RU) as well as the use of open interfaces
and white-box hardware. To efficiently manage the network,
O-RAN architecture introduces the RAN Intelligent Con-
troller (RIC) based on software-defined networking (SDN)
principles [10]. RIC is responsible for network management,
RAN automation, and resource orchestration through the
integration of AI technologies. These O-RAN features enable
the deployment of the proposed intelligent network slicing
framework via the creation of optimized network slices
that ensure the coexistence of maritime applications with
different QoS requirements. In fact, the O-RAN virtual-
ization supports the flexible deployment of VNFs through
scaling and migration in network nodes, while the O-RAN
open interfaces facilitate data collection for the training and
inference of the proposed DRL-based RAN slicing and VNF
deployment algorithms.

1.1 Related Works

In this section, we discuss the existing related works on
network slicing in maritime networks and integrated aerial-
terrestrial networks. We focus on relevant studies tack-
ling the problems of RAN slicing and virtualized network
function (VNF) deployment, particularly VNF scaling and
migration1.

1.1.1 Network Slicing in Maritime Networks

The literature on network slicing in maritime networks is
limited with a handful of studies focusing mainly on the
design of SDN/NFV-enabled architectures as technology
enablers of slicing. Specifically, SDN/NFV-based architec-
tures are proposed for Internet of Things-based maritime
transport applications and underwater networks in [16]
and [17]. In addition, an SDN-enabled integrated maritime
network is designed in [18] to optimize QoS requirements
by leveraging a resource scheduling strategy based on deep
Q-network. In [19], an SDN-based architecture for under-
water acoustic networks is developed with network slic-
ing to improve routing and resource allocation. Moreover,
the authors of [20] propose a software-defined maritime
fog computing architecture to provide communication and
computing services. Despite such efforts, several challenges
associated with the use of slicing in maritime networks,
including RAN slicing, VNF deployment, and slice man-
agement, remain unexplored.

1. We note that the works included in this section employ traditional
and RL-based techniques in their studies. Hence, for readers particu-
larly interested in RL-based approaches in network slicing, we refer to
the following references for more details in the context of terrestrial
networks [12]–[14] and integrated networks [15].

1.1.2 RAN Slicing and VNF Deployment in Integrated
Aerial-Terrestrial Networks

The problems of RAN slicing and VNF deployment in
terrestrial networks are extensively examined [12], [13].
For instance, a heuristic VNF migration algorithm is pro-
posed in [21] for system cost minimization. Additionally,
the authors of [22] develop a VNF scaling scheme based on
deep reinforcement learning (DRL) to optimize the latency,
service acceptance rate and deployment cost. Meanwhile,
other studies jointly investigating RAN slicing and VNF
deployment are reported in [23], [24]. In particular, VNF
placement, CPU allocation, and traffic routing are jointly
considered in [23] to support vertical applications. Using
heuristics and convex optimization techniques, the authors
the formulated problem of delay minimization. Moreover,
in [24], a VNF embedding and RAN slicing strategy is de-
signed to maximize the number of mapped VNFs, utilizing
heuristic algorithms. However, these solutions, tailored for
terrestrial networks, are not suitable for integrated aerial-
terrestrial networks, primarily due to their unique character-
istics. In particular, the high mobility of UAVs, constrained
onboard resources, and limited power supplies, introduce
rapid environment dynamics and additional constraints.
This increases the complexity of the RAN slicing and VNF
deployment problems in integrated networks, rendering
conventional methods inefficient and intractable, and neces-
sitating more intelligent and adaptive approaches. That is
why several efforts have been dedicated to tackle these chal-
lenges [15]. For instance, dynamic RAN slicing is optimized
jointly with UAV positioning in [25] and [26] for improved
performance. The authors of [25] target resource consump-
tion minimization using a clique-based algorithm, while
the authors of [26] develop a DRL-based method to tackle
the formulated multi-objective optimization. Meanwhile,
VNF deployment is considered in [27]–[29] for integrated
networks. In particular, a hierarchical DRL-based scheme
is proposed to jointly minimize the average delay and
maximize the energy efficiency through VNF placement,
scheduling and migration with UAV trajectory optimization
[28]. Moreover, the joint RAN slicing and VNF deployment
is examined in [30] for integrated aerial-terrestrial networks.
the authors design an iterative algorithm that maximizes
the computing resource utilization efficiency to support
the three 5G slices. Despite these contributions, further
investigations are required to develop intelligent, adaptive,
and energy-efficient approaches capable of coping with the
features of integrated networks.

To address these research gaps, our work investigates the
joint RAN slicing and VNF deployment in integrated aerial-
terrestrial maritime networks. Specifically, we consider the
characteristics of maritime integrated networks such as the
low user density and the clustered distribution, high mobil-
ity of UAVs, and their limited resources. Additionally, we
focus on energy-efficiency maximization, a critical aspect of
such networks, and we take into account the distinct QoS
requirements, in terms of throughput, delay and reliability,
of each network slice. We highlight that the concurrent sat-
isfaction of these heterogeneous requirements is necessary,
presenting significant challenges.
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1.2 Main Contributions
In this work, we propose an intelligent network slicing
framework for integrated aerial-terrestrial maritime net-
works. Leveraging O-RAN principles, the proposed archi-
tecture offers ubiquitous connectivity and satisfies various
maritime user demands. We exploit the concept of RAN
virtualization to dynamically deploy network functions in
virtualized network elements, specifically UAVs, tethered
UAVs and marine buoys. The VNFs can be scaled and/or
migrated in these virtualized nodes, featuring different
hardware characteristics and energy constraints. In addition,
we adopt RAN slicing to serve the desired requirements
of two slices. Specifically, we focus on serving the mar-
itime infotainment slice with high data rates needs and the
maritime emergency communication slice; which requires
high reliability and low delays. In particular, we employ
resource slicing to properly allocate the computing and
communication resources to serve the two maritime slices.
The main contributions of this paper can be summarized as
follows:

• We design a network slicing framework for integrated
aerial-terrestrial networks, that takes into account the
characteristics and requirements of maritime users.

• We leverage RAN virtualization, a key concept of the
O-RAN architecture, to flexibly deploy VNFs through
scaling and migration in network nodes that offer dif-
ferent resource and energy constraints.

• We use RAN slicing to properly allocate the resources
to serve two types of slices namely the high data rate
connectivity slice for marine passenger infotainment,
and the high reliability emergency communication slice
for ships rescue. We perform inter-slice and intra-slice
resource management where the computing resources
are allocated to each slice (inter-slice allocation) and
the communication resources are allocated to each user
belonging to each slice (intra-slice allocation).

• We formulate the joint RAN slicing and VNF deploy-
ment with UAV trajectory optimization problem to
improve the performance of the integrated network. We
maximize the overall energy efficiency, which is a key
aspect in these networks, and meet the requirements of
the slices in terms of data rates, reliability and delay.

• We propose a Deep Reinforcement Learning-based
Maritime Network Slicing Framework to tackle the
formulated problem exploiting the characteristics of the
maritime environment and using two policy gradient
algorithms, namely Advantage Actor-Critic (A2C) and
Proximal Policy Optimization (PPO).

2 SYSTEM MODEL

The proposed integrated aerial-terrestrial maritime network
is illustrated in Fig.1. The architecture is composed of teth-
ered and non-tethered UAVs as well as marine buoys that
act as RAN nodes where different VNFs can be deployed.
These nodes provide connectivity to the maritime end-users,
i.e. user equipment (UEs), on the ships belonging to the ma-
rine infotainment slice or emergency slice. Moreover, Fig.1
illustrates how the major components and interfaces of the
O-RAN architecture map onto the proposed integrated net-
work, based on the O-RAN Alliance reference architecture

[10], [11], to support maritime-oriented slicing. Specifically,
the open RU (O-RU) and open DU (O-DU), hosting low-
level functionalities, can be deployed on the UAVs and
buoys to reduce network latency, by eliminating the open-
fronthaul link, fulfilling the low latency requirement of the
emergency slice. Meanwhile, the open CU (O-CU) can be
deployed on on-land edge/cloud servers since it manages
higher-level functions requiring larger computing resources.
The O-CU connects to the O-DUs through the F1 interface,
which carries user and control planes traffic. In addition,
the O-RAN architecture includes two types of RICs, namely
the Near-Real-Time (Near-RT) RIC, and the Non-Real-Time
(Non-RT) RIC. On the one hand, the Near-RT RIC deals
with real-time RAN control and management by enforcing
policies provided by the Non-RT RIC, using trained AI
models. It can be deployed on edge/cloud servers and it
communicates with the O-CU and O-DU nodes through the
E2 interface, which allows the Near-RT RIC to send control
commands to the O-CU/O-DU and collect network data
from them. On the other hand, the Non-RT RIC is respon-
sible for RAN analytics, policy management, and network
optimization by training AI algorithms. It can be deployed
on regional or national cloud servers and it connects to
the Near-RT RIC via the A1 interface, which enables the
Non-RT RIC to transfer AI-enabled policies and models,
and receive updated network information. Consequently,
the RICs enable the O-RAN intelligence required to support
the proposed intelligent network slicing framework. Table 1
summarizes the main notations used throughout the paper.

2.1 Integrated-Aerial-Maritime Channel Modeling
In the proposed integrated-aerial-maritime network, four
types of wireless channels can be distinguished. This in-
cludes (i) the Air-to-Air (AA) channel for the communi-
cation between UAVs, (ii) the Air-to-Sea (AS) channel for
UAVs to maritime end-users and buoys links, (iii) the Sea-
to-Air (SA) channel for UAVs to buoys communication, and
(iv) the Sea-to-Sea (SS) channel in for marine buoys and end-
users links. The modeling of each channel includes the large-
scale fading characterized by the path loss of the dominant
Line-of-Sight (LOS) component, and the small-scale fading
modeled as a Rician fading [31]. First, the path loss for the
AA, AS and SA channels can be expressed using the Free-
space path loss model, as follows [32],

Lsc [t] = 10αsc log10

(
4πdA,B [t]

λ

)
(1)

For the SS channel, given that three types of rays can co-
exist in this environment, the path loss is modeled using
the two-ray model and the three-ray model to account for
different link ranges, and it is expressed as [31],

LSS[t] =

{
20 log10

(
2L0 sin

(
2πzAzB
λdA,B [t]

))
, dA,B [t] ≤ db

20 log10 (2L0 (1 + ∆SS)) , dA,B [t] ≥ db
(2)

where ∆SS = 2 sin
(

2πzAzB
λdA,B [t]

)
sin
(
2π(zd−zA)(zd−zB)

λdA,B [t]

)
, L0 =

4πdA,B [t]
λ , zd is the duct layer height, and db = 4zAzB

λ is
the boundary distance the model to employ. Additionally,
zA and zB are the heights of the transmitter and receiver,
αsc denotes the path loss exponent and λ = c/f , with f
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Fig. 1: Illustration of the O-RAN Integrated Maritime Network Architecture.

Notation Description
T Set of time slots
S Set of network slices
F Set of VNF types
N Set of non-tethered UAVs
M Set of tethered UAVs
K Set of marine buoys
Us Set of end-users belonging to slice s
Xus [t] 3D position vector of end-user us at time slot t
Xζ [t] 3D position vector of node ζ ∈ {N,M,K} at time slot t
C total

ζ Total CPU capacity at node ζ ∈ {N,M,K}
P transmit
ζ Total transmission power at node ζ ∈ {N,M,K}

Bζ Bandwidth at node ζ

P
flight
ζ Power needed for the flight of node ζ ∈ {N,M}

C
req
f,i CPU capacity required to deploy one VNF instance i of

type f ∈ F

Λζ
f,s[t] Number of VNF instances of type f ∈ F at node ζ ∈

{N,M,K} serving slice s ∈ S at time slot t
C

req
f,s Resource requirement of CPU capacity for deploying the

VNF of type f to serve slice s
QP,f,i,s CPU capacity needed by VNF instance i of type f to serve

slice s
QT,f,i,s Data size transmitted by VNF instance i of type f to serve

slice s
Rs

min Minimum throughput requirement for slice s
W s

min Minimum reliability requirement for slice s
Ds

max Maximum delay requirement for slice s

ηζf,s[t] Integer variable indicating the scaling of VNF instances
of type f at node ζ to serve slice s at time slot t

µζ,ζ′

f,i,s[t] Binary variable indicating the migration of VNF instance
i of type f from node ζ to ζ′ at time slot t to serve slice s

cζf,i,s[t] CPU capacity allocated to VNF instance i of type f at
node ζ to serve slice s at time slot t

pζf,i,us
[t] Transmission power allocated to VNF instance i of type f

at node ζ to serve user us at time slot t

TABLE 1: Main Notations.

and c are the frequency and the light velocity. Also, dA,B [t]
represents the distance between the transmitter node A and
receiver node B, which can be tethered UAVs, non-tethered
UAVs, buoys or maritime end-users. Thus, the path gain of

the A−B link is:

hA,B [t] = 10
GA+GB−Lsc [t]

10 , (3)

where sc ∈ {SS,AS, SA,AA}, GA and GB are the
transmitter and receiver antenna gains. Moreover, to capture
the characteristics of the maritime channel, the small-scale
channel fading caused by the weak paths resulting from
the multiple sea surface reflections, especially in rough sea
situations, is modeled as Rician fading with the following
distribution [31],

fχA,B [t](x) =
x

σ2
exp

−
(
x2 + ν2A,B

)
2σ2

I0 (xνA,B
σ2

)
(4)

where ν2A,B [t] = PA[t]
(

λ
4πdA,B [t]

)αsc

GAGB and 2σ2

represent the average received power of the LOS component
and the multipath components, respectively. Additionally,
PA[t] is the transmit power and I0(.) denotes the first kind
of modified Bessel function of the 0th order.

2.2 UAV Mobility and Flight Power Consumption

To ensure optimized and efficient network performance,
we examine the joint RAN slicing and VNF deployment
in conjunction with the non-tethered UAV trajectory de-
sign. We assume that the non-tethered UAVs have equal
maximum velocity V = VUAV, then the UAVs can travel
a maximum distance dUAV = τV between two consecutive
time slots. In addition, to avoid collisions between the UAVs
including both tethered and non-tethered types, a safety
minimum distance dsafe should be guaranteed [28]. Thus,
two mobility constraints should be fulfilled in the UAV
trajectory optimization:

C1 : ||Xn[t]−Xn[t− 1]|| ≤ dUAV, ∀n ∈ N. (5)
C2 : ||Xζ [t]−Xζ′ [t]|| > dsafe, ∀ζ ̸= ζ ′ ∈ {N,M} (6)
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whereXζ [t] denotes the position vector of node ζ = n,m
corresponding to the nth UAVs and mth T-UAVs. Moreover,
we assume that both types of UAVs are rotary-wing UAVs.
While the tethered UAVs only hover over their position, the
non-tethered UAVs travel at a maximum constant velocity
V . Their hovering P hover

m and flight P flight
n powers are [33]:

P hover
m = P bpm + P ipm , (7)

P flight
n =P bpn

(
1 +

3V 2

U2
tip

)
+ P ipn

(√
1 +

V 4

4V 4
0

− V 2

2V 2
0

)1/2

+

1

2
DRρairSrotorArotorV

3,

(8)

where P bpζ =
Pdrag

8 ρairSrotorArotorv
3
bladeR

3
rotor and P ipζ = (1 +

cip)
(wN

ζ )3/2
√
2ρairArotor

denote the blade profile and induced powers
of the UAV hovering. Pdrag and ρair are the profile drag
coefficient and the air density. Also, Rrotor, Arotor, and Srotor
represent the rotor radius, disc area, and solidity, respec-
tively. vblade, wNζ , and cip are the blade angular velocity,
the aircraft weight, and the incremental correction factor to
induced power. Utip, V0, DR denote the tip speed of the
rotor blade, the mean hovering rotor-induced velocity, and
the fuselage drag ratio.

2.3 Quality of Service (QoS) Metrics
To serve the desired slices, we consider three slice QoS met-
rics, namely the throughput, reliability and delay. First, the
overall throughput Rζf,i,s[t] of slice s, derived by summing
over the per-user throughput provided by the VNF instance
i of type f at node ζ at time slot t, is given by,

Rζf,i,s[t] =
∑
us∈Us

Bζ log2(1 + γζf,i,us
[t]) (9)

where Bζ is the bandwidth of a single resource block
allocated to one user at node ζ , Us denotes the set of end-
users belonging to slice s, and γζf,i,us

[t] is the SNR per user
expressed as,

γζf,i,us
[t] =

hζ,us [t]χ
2
ζ,us

[t]pζf,i,us
[t]

BζN0
(10)

where χζ,us
[t] and N0 are the Rician fading factor and the

noise power spectral density, respectively. Also, pζf,i,us
[t] de-

notes the transmission power allocated to VNF instance i of
type f at node ζ to serve user us at time slot t. In this work,
we assume that intra-cell interference can be overlook given
the unique features of maritime environment including the
low number of network nodes and the sparsely distributed
users. Moreover, we assume that frequency reuse is imple-
mented in our system to ensure that intra-cell interference
remains minimal. Moreover, the transmission reliability is
obtained using the outage probability defined as,

Pout = Pr[γζf,i,us
[t] ≤ γζ,min

f,i,us
] (11)

where γζ,min
f,i,us

denotes the minimum SNR value guarantee-
ing minimal link quality. Given that the channel modeling
includes the Rician fading factor χζ,us [t], following the
distribution in Eq (4) and assuming that σ = 1, the Pout can

be written in terms of the cumulative distribution function
(CDF) of a noncentral chi-squared distribution with two
degrees of freedom and noncentrality parameter ν2ζ,us

[t].
Hence, the transmission reliability W ζ

f,i,s[t] supported by
the VNF instance i of type f at node ζ to serve slice s at
time slot t is,

W ζ
f,i,s[t] =

1

|Us|
∑
us∈Us

Q1

νζ,us
[t],

√
BζN0γ

ζ,min
f,i,us

νζ,us
[t]

 (12)

where Q1(α, β) denotes the Marcum Q-function of first
order, given by,

Q1(α, β) =

∫ ∞

β
x exp

(
−x

2 + α2

2

)
I0(αx)dx. (13)

Furthermore, the total delay Dζ
f,i,s[t] of VNF instance i of

type f at node ζ serving slice s at time slot t is given by,

Dζ
f,i,s[t] = Dζ

P,f,i,s[t] +Dζ
T,f,i,s[t] (14)

whereDζ
P,f,i,s[t] andDζ

T,f,i,s[t] are the processing and trans-
mission delays expressed as follows:

Dζ
P,f,i,s[t] =

QP,f,i,s

cζf,i,s[t] + C
req
f,i

, Dζ
T,f,i,s[t] =

QT,f,i,s

Rζf,i,s[t]
(15)

where cζf,i,s[t] is the CPU capacity allocated to VNF
instance i of type f at node ζ to serve slice s at time
slot t. Creq

f,i and QP,f,i,s are the CPU capacity required to
deploy one VNF instance i of type f and the CPU capacity
needed to serve slice s. Also, QT,f,i,s denotes the data size
transmitted by i to serve slice s. In case of VNF migration,
the migration delay Dζ,ζ′

M,f,i[t] is added to the total delay and
it is given by,

Dζ,ζ′

M,f,i[t] =
QM,f,i

Rζ,ζ
′

f,i [t]
(16)

where QM,f,i is the data size of VNF instance i of type f
and Rζ,ζ

′

f,i [t] = Bζ log2(1 + γζ,ζ
′

f,i [t]) denotes the migration

throughput with γζ,ζ
′

f,i [t] =
hζ,ζ′ [t]χ

2
ζ,ζ′ [t]p

ζ,ζ′
f,i

BζN0
and pζ,ζ

′

f,i is the
transmit power needed for the migration of VNF instance i
of type f from ζ to ζ ′.

3 JOINT RAN SLICING AND VNF DEPLOYMENT
PROBLEM

To optimize the performance of the proposed maritime
network, we jointly consider RAN slicing and VNF de-
ployment. In particular, we make a VNF scaling and/or a
VNF migration decision while simultaneously allocating the
computing and communication resources to serve the de-
sired slices. Additionally, we design the non-tethered UAV
trajectory to optimize network operation. Consequently, the
optimization variables are defined as follows:

• ηζf,s[t] : Integer variable indicating the number of VNF
instances of type f to add or remove at node ζ to serve
slice s at time slot t.

• µζ,ζ
′

f,i,s[t] : Binary variable equal to 1 VNF instance i of
type f deployed at node ζ at time slot t− 1 migrates to
node ζ ′ at at time slot t to serve slice s, and 0 otherwise.
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• cζf,i,s[t]: CPU capacity allocated to VNF instance i of
type f at node ζ to serve slice s at time slot t.

• pζf,i,us
[t]: Transmission power allocated to VNF instance

i of type f at node ζ to serve user us belonging to slice
s at time slot t.

• Xn[t]: Position vector of the nth non-tethered UAVs at
time slot t.

To properly scale and/or migrate the VNF instances to
serve slice s, multiple constraints should be satisfied. On
the one hand, the computing and communication resource
constraints are defined as follows ∀ζ, ζ ′, ∀t:

C3 :
∑
s∈S

∑
f∈F

∑
i∈Λζ

f,s[t]

(1−µζ,ζ
′

f,i,s[t]) ·(c
ζ
f,i,s[t]+C

req
f,i ) ≤ C

total
ζ

(17)
C4 :

∑
s∈S

∑
f∈F

∑
i∈Λζ′

f,s[t]

µζ,ζ
′

f,i,s[t] · (c
ζ′

f,i,s[t] + C
req
f,i ) ≤ C

total
ζ′

(18)
C5 :

∑
s∈S

∑
f∈F

∑
i∈Λζ

f,s[t]

∑
us∈Us

(1−µζ,ζ
′

f,i,s[t])·p
ζ
f,i,us

[t] ≤ P transmit
ζ

(19)
C6 :

∑
s∈S

∑
f∈F

∑
i∈Λζ′

f,s[t]

∑
us∈Us

µζ,ζ
′

f,i,s[t] · p
ζ′

f,i,us
[t] ≤ P transmit

ζ′

(20)
where S and F are the sets of network slices and VNF
types. C total

ζ and P transmit
ζ are the total CPU capacity and

transmission power at node ζ , respectively, and Λζf,s[t] is
the number of VNF instances of type f at node ζ serving
slice s at time slot t. The constraints C3−C6 ensure that the
consumed resources do not exceed the available resources at
nodes ζ and ζ ′. It is worth noting that C3 and C4 guarantee
that the consumed CPU capacity remains less or equal than
C total
ζ′ in case of the migration of VNF instance i of type

f and C total
ζ in case of no migration. Equivalently, C5 and

C6 ensure the same conditions for the transmission power.
Moreover, since multiple VNF instance i of type f can be
deployed in different nodes, the total allocated computing
resources should meet the needs of the served slice s. This is
ensured by the following constraint ∀f ∈ F, ∀s ∈ S, ∀t:

C7 :
∑

ζ∈{N,M,K}

∑
i∈Λζ′

f,s[t]

µζ,ζ
′

f,i,s[t] · c
ζ′

f,i,s[t]

+
∑

ζ∈{N,M,K}

∑
i∈Λζ

f,s[t]

(1− µζ,ζ
′

f,i,s[t]) · c
ζ
f,i,s[t] = C

req
f,s,

(21)

where N , M , and K represent the set of non-tethered
UAVs, tethered UAVs, and marine buoys. Creq

f,s denotes the
resource requirement of CPU capacity for deploying the
VNF of type f to serve slice s. On the other hand, the
following slice constraints should be satisfied to fulfill the
QoS requirements of the infotainment and emergency slices
in terms of throughput, reliability and delay ∀s ∈ S, ∀t :

C8 :
∑

ζ∈{N,M,K}

∑
f∈F

∑
i∈Λζ′

f,s[t]

µζ,ζ
′

f,i,s[t] ·R
ζ′

f,i,s[t]

+
∑

ζ∈{N,M,K}

∑
f∈F

∑
i∈Λζ

f,s[t]

(1− µζ,ζ
′

f,i,s[t]) ·R
ζ
f,i,s[t] ≥ R

s
min,

(22)

C9 :
∑

ζ∈{N,M,K}

∑
f∈F

∑
i∈Λζ′

f,s[t]

µζ,ζ
′

f,i,s[t] ·W
ζ′

f,i,s[t]+

∑
ζ∈{N,M,K}

∑
f∈F

∑
i∈Λζ

f,s[t]

(1− µζ,ζ
′

f,i,s[t]) ·W
ζ
f,i,s[t] ≥W

s
min,

(23)

C10 :
∑

ζ∈{N,M,K}

∑
f∈F

∑
i∈Λζ′

f,s[t]

µζ,ζ
′

f,i,s[t] · (D
ζ′

f,i,s[t] +Dζ,ζ′

M,f,i[t])

+
∑

ζ∈{N,M,K}

∑
f∈F

∑
i∈Λζ

f,s[t]

(1− µζ,ζ
′

f,i,s[t]) ·D
ζ
f,i,s[t] ≤ D

s
max,

(24)

where Rsmin, W s
min and Ds

max denote the minimum through-
put, reliability, and delay requirements for slice s. While
meeting the QoS requirements of both slices, our goal is
to maximize the energy efficiency ΦEE[t] of the network,
defined as follows,

ΦEE[t] =
∑

ζ∈{N,M,K}

∑
s∈S

∑
f∈F

[
∑

i∈Λζ′
f,s[t]

µζ,ζ
′

f,i,s[t] ·
Rζ

′

f,i,s[t]

Pζ′ [t]

+
∑

i∈Λζ
f,s[t]

(1− µζ,ζ
′

f,i,s[t]) ·
Rζf,i,s[t]

Pζ [t]
]

(25)

where Pζ [t] is the power consumption (flight and ser-
vice) at node ζ expressed as,

Pζ [t] = P
flight
ζ · 1{N,M}(ζ) +

∑
s∈S

∑
f∈F

∑
i∈Λζ

f,s[t] ∑
us∈Us

pζf,i,us
[t] + Ω1

(
cζf,i,s[t] + C

req
f,i

)Ω2

 (26)

where Ω1 = 10−28 and Ω2 = 3 are parameters related to the
CPU model [34]–[36]. We formulate the optimization prob-
lem of the joint resource slicing, VNF scaling and migration
with UAV trajectory design, as follows,

(P) : max
ηζf,s[t],µ

ζ,ζ′
f,i,s[t],c

ζ
f,i,s[t],p

ζ
f,i,us

[t],Xn[t]

1

T

∑
t∈T

ΦEE[t] (27)

s.t C1 − C10, µζ,ζ
′

f,i,s[t] ∈ {0, 1}, ηζf,s[t] ∈ Z.

where T is the set of time slots. The optimization prob-
lem (P) can be simplified to consider either the VNF scaling
or the VNF migration with the resource slicing and the
UAV trajectory design. This yields two special cases with
problems (PS) and (PM),

(PS) : max
ηζf,s[t],c

ζ
f,i,s[t],p

ζ
f,i,us

[t],Xn[t]

1

T

∑
t∈T

ΦEE[t] (28)

s.t C1 − C3, C5, C7 − C10, ηζf,s[t] ∈ Z.

(PM) : max
µζ,ζ′
f,i,s[t],c

ζ
f,i,s[t],p

ζ
f,i,us

[t],Xn[t]

1

T

∑
t∈T

ΦEE[t] (29)

s.t C1 − C10, µζ,ζ
′

f,i,s[t] ∈ {0, 1}.
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4 DEEP REINFORCEMENT LEARNING-BASED
MARITIME NETWORK SLICING FRAMEWORK

Since the formulated problem is a mixed-integer nonlinear
optimization problem with multiple constraints, it is classi-
fied as NP-hard. In addition, the proposed integrated mar-
itime network is characterized by its large-scale topology,
dynamic environment, and time-variant traffic demand.
This increases the complexity of the joint optimization prob-
lem. Consequently, conventional model-based optimization
methods can no longer provide the necessary efficiency and
optimality. Hence, we develop a DRL-based framework to
tackle the problem of dynamic joint RAN slicing and VNF
deployment with UAV trajectory optimization.

4.1 Background on Reinforcement Learning
RL is a branch of machine learning that is based on se-
quential learning where an agent learns to make decision
by interacting with an environment, with the goal of max-
imizing a cumulative reward [37]. RL algorithms can be
categories into value-based methods and policy gradient
methods. On the one hand, value-based approaches, includ-
ing Q-learning and Deep Q-Networks (DQNs), utilize value
functions to implicitly optimize their policies. In fact, they
select the actions that maximizes the value function, which
is an estimation of the expected cumulative reward that the
agent can obtain from a specific state (or state-action pair),
under a particular policy. On the other hand, policy gradi-
ent methods, such as REINFORCE and Advantage Actor-
Critic (A2C), explicitly optimize a policy by representing it
as a parameterized function. The policy’s parameters are
updated it through gradient ascent in the direction of in-
creased expected reward. Traditional RL algorithms (e.g. Q-
learning and REINFORCE) struggle with high-dimensional
state-action spaces and dynamic environments. Thus, Deep
RL (DRL) was developed to overcome these limitations
and broaden the application range of RL [38]. DRL algo-
rithms, such as DQN, Deep Deterministic Policy Gradient
(DDPG), A2C, and Proximal Policy Optimization (PPO),
combine the concepts of RL with deep neural networks
(DNNs). In particular, DQN [39] was introduced as an
extension to Q-learning to handle high-dimensional state
spaces by employing DNNs as value function estimators.
Additionally, multiple variants of DQN were developed to
enhance its performance, including Double DQN (DDQN)
and Dueling DQN. For instance, DDQN uses an online
network for action selection and a target network for Q-
value evaluation, which addressed the overestimation bias
issue of DQN. Meanwhile, DDPG [40] was designed to
deal with continuous actions using a deterministic policy
gradient and an actor-critic architecture. DDPG also suffers
from overestimation bias which was handled by the Twin
Delayed DDPG (TD3) algorithm using two critic networks
for Q-value estimation. In addition, Soft Actor–Critic (SAC)
was designed for continuous actions using the TD3 twin
architecture combined with stochastic policies and entropy
regularization.

Although these off-policy algorithms alleviate the limi-
tations of traditional RL, they still face multiple challenges
that are better addressed by on-policy approaches. Table
2 compares the properties of these methods. In particular,

Property On-Policy Algorithms Off-Policy Algorithms
Policy update Learning through data

generated by the cur-
rent policy.

Learning through data
stored in the replay
buffer and generated
by different policies.

Training
stability

Higher stability
because policy
updates rely on freshly
collected samples.

Susceptible to instabil-
ity because policy up-
dates rely on data col-
lected under both new
and old policies.

Adaptability
to dynamic
environments

Higher adaptability
thanks to the reliance
on recent interactions
with the environment.

Lower adaptability be-
cause of the use of
old transitions from the
buffer.

Exploration
capability

Inherent exploration
thanks to the use of
stochastic policies and
entropy regularization.

Limited exploration
using mechanisms,
such as ϵ−greedy and
additive noise, relying
on external hyper-
parameters.2

Sample
efficiency

Lower sample
efficiency because
only fresh data is used.

Higher sample
efficiency because
data stored in the
buffer can be reused.

Sensitivity
to hyper-
parameters

Lower sensitivity to
hyper-parameter tun-
ing.

Higher sensitivity to
hyper-parameter tun-
ing.

Examples A2C, PPO, TRPO DQN, DDPG, SAC

TABLE 2: Comparison of off-policy and on-policy algo-
rithms [37], [39]–[43].

while they offer improved sample efficiency, off-policy al-
gorithms, such as DQN and DDPG, suffer from multiple
issues, in terms of stability, adaptability, and exploration,
especially when dealing with complex environments such as
in the considered problem. In fact, their reliance on experi-
ence replay buffers in the training process makes them more
prone to instability and prevents them from adapting to
complex dynamic environments. Specifically, the samples,
stored in the buffers, include data collected under both
new and old policies, which can destabilize the network’s
updates. This causes oscillations in the value estimates and
increases the algorithms sensitivity to hyper-parameters.
Moreover, they select actions based on deterministic or ϵ-
greedy mechanisms that require hyper-parameter tuning,
leading to limited exploration. Meanwhile, on-policy ap-
proaches, including A2C [41] and PPO [42], address these
challenges by learning using data generated by the current
policy, resulting in lower sample efficiency compared to off-
policy agents. These actor–critic algorithms employ stochas-
tic policies and entropy regularization, which improve their
exploration capabilities, allowing them to handle discrete
and continuous action spaces, as well as complex stochastic
environments. In addition, they update their policies with
newly collected rollouts, by running multiple environment
instances (workers) in parallel to accelerate sample collec-
tion and ensure data decorrelation, which improves their
sample efficiency. This also enhances their learning stabil-
ity, adaptability, and robustness to hyper-parameter tuning.
Consequently, on-policy algorithms are more suitable for
complex highly dimensional and dynamic environments
which is why they are commonly utilized in wireless com-
munication applications. Therefore, we propose two DRL
algorithms based on A2C and PPO in this work to tackle
the joint RAN slicing and VNF deployment problem.
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Fig. 2: Illustration of the maritime area in a 2D grid.

4.2 Proposed DRL-based framework
In this section, we present our DRL-framework for joint
RAN slicing and VNF deployment with UAV trajectory
optimization. First, the formulated problem in (3) considers
the individuals on the ships as the end-users. However,
this results in extremely large state and action spaces.
Meanwhile, these end-users are sparsely distributed in the
vast marine region, but they are also grouped in small
areas, forming dispersed clusters [44]. Hence, we exploit the
cluster property of the maritime environment and consider
the ships as the end-users in the Markov Decision Process
(MDP) formulation. Then, we formulate the proposed op-
timization problem as an RL problem by defining the state
and action spaces as well as the reward function. We also
explain the training process for the proposed A2C- and
PPO-based RAN slicing and VNF deployment algorithms.

4.2.1 The State space
At timeslot t, the state S[t] describing the environment is
composed of the 3D position vectors Xζ [t] of the UAVs,
T-UAVs, and buoys, the VNF instances placement δζf,i,s[t]
and the number of VNF instances Λζf,s[t] at each node. In
addition, the state includes the ships information consisting
of a 3D position vector Xus

[t] and a binary indicator Is[t]
associating the ship with the corresponding slice s. Thus, the
state is given by S[t] = {Xζ [t], δ

ζ
f,i,s[t],Λ

ζ
f,s[t], Xus [t], Is[t]}.

Moreover, we quantize the large maritime area into squares
forming a NG by NG grid, as illustrated in Fig.2. Then, we
represent the position vectors as a tuple (x, h) where x is
an integer indicating the square to which the ship us or the
node ζ belong and h is a binary indicating the sea and air
levels. This further simplifies the state representation.

4.2.2 The Action space
The actions of the RL agent involve the combinations of the
VNF deployment decisions, including the discrete scaling
actions ηζf,s[t] and the binary migration actions µζ,ζ

′

f,i,s[t],
the RAN slicing decisions consisting of the continuous
actions cζf,i,s[t] representing the CPU capacity and pζf,i,us

[t]
indicating the transmission power. Additionally, the action
space include the continuous actions X̃n[t] used for the

2. SAC is an exception among off-policy algorithms since it uses
stochastic policies and entropy regularization for exploration.

trajectory optimization of the nth non-tethered UAVs. Thus,
at timeslot t, the actions of the RL agent are defined as
A[t] = {ηζf,s[t], µ

ζ,ζ′

f,i,s[t], c
ζ
f,i,s[t], p

ζ
f,i,us

[t], X̃n[t]}. The ac-
tionsA[t] include both continuous and discrete components,
adding complexity when applying RL algorithms. Thus, we
discretize the continuous actions to address this issue and
simplify the action space representation. First, we exploit
the grid in Fig.2 simplifying the maritime area to convert
X̃n[t] to a discrete action describing the UAV movement
from one square to another. This results into five actions
X̃n[t] = {left, right, up, down, none} where the UAV can
travel dUAV at each timesolt t. Then, we quantize the RAN
slicing actions into two levels in an on/off fashion. So, the
RL agent can either select a minimum or a maximum value
for the computing and communication resource slicing. This
quantization step unifies the action space and facilitates the
use of RL algorithms.

4.2.3 The Reward function
We design the reward function R[t] to maximize the energy
efficiency at timeslot twhile satisfying the constraints, using
a weighted penalty method [45]. The reward is defined as,

R[t] = ωobj · ΦEE[t]−
∑
C∈Γ

ωc ·max{0, C[t]− Cmax} (30)

where ωobj and ωc are the weights balancing between the
objective function and the constraints. Also, C[t] and Cmax
represent the constraints when written in form of C[t] ≤
Cmax, and Γ is the set of constraints defined in Section 3.

4.2.4 Training process
A2C [41] and PPO [42] simultaneously train two neural
networks; an actor network, which selects actions based on
the learned policy using probability distribution, and a critic
network, which evaluates these actions by estimating the
value function. The two algorithms use advantage functions
At(st, at) to measure how beneficial an action at is given
a state st. A2C utilizes a short-horizon n-step trajectory to
compute At, while synchronously averaging the gradients
from the parallel workers for the policy update. This reduces
the gradients variance, accelerates the training, and allows
the policy to quickly adapt to the environment dynam-
ics. Meanwhile, PPO employs the Generalized Advantage
Estimation (GAE) to compute advantages through long-
horizon trajectories and introduces a clipping mechanism
that constrains policy updates. This prevents excessively
large steps improving learning stability and robustness at
the cost of longer convergence. These key differences in the
training process allow A2C to converge faster and present
better overall performance compared to PPO in our setting,
as demonstrated by the simulation results in the following
section.

• Training process for A2C:
The A2C-based approach is presented in Algorithm 1. At

each timestep t, the agent selects an action at according to
its policy πα, given the current state st, as shown in lines
5–10. Specifically, the action selection of A2C is based on
stochastic policies where the agent samples an action at
from a discrete probability distribution πα(at|st) given by,

πα(at|st) =
exat∑
a e

xa
(31)
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where xat denotes the logit for action at. The logits are the
output of the actor network and represent non-normalized
scores for each action, which are transformed into proba-
bilities using the softmax function defined in (31). Then,
the agent receives a reward rt, and the next state st+1.
These trajectories (at, st, rt, st+1) are stored into batches for
updating the actor and critic networks, as shown in lines
11–16 in Algorithm 1. Then, the return GA2C

t , defined in
line 12, and the state-value function Vψ (st), estimated by
the critic, are used to derive the advantage function AA2C

t ,
given by,

AA2C
t (st, at) = GA2C

t − Vψ (st) (32)

Then, using gradient ascent, the actor network is updated in
line 14 by maximizing the policy objective given by,

LA2C
actor (α) = Et

[
AA2C
t (st, at) log πα(at|st)

]
(33)

where log πα(at|st) are the log probability of action at
given state st under the policy πα. Simultaneously, using
gradient descent, the critic network is updated in line 15 by
minimizing the critic loss expressed as,

LA2C
critic (ψ) = Et

[(
GA2C
t − Vψ (st)

)2]
(34)

• Training process for PPO:
The PPO-based approach is presented in Algorithm 2. Fol-
lowing similar training process as A2C, the PPO agent
interacts with the environment as shown in lines 5-10. Then,
the algorithm updates its actor and critic networks using
the collected batches of trajectories as shown in lines 11-16.
On the one hand, the PPO actor is updated in line 14 by
maximizing the policy objective, which includes the clipped
surrogate objective and the entropy loss term and given by,

LPPOactor (θ) = Et[min(ρt(θ)A
PPO
t , clip(ρt(θ), 1− υ,

1 + υ)APPOt )] + τexp Eπθ
[log πθ(a|st)]

(35)

where ρt(θ) = πθ(at|st)
πθold(at|st) represents the probability ratio

between the old and the new policies, τexp denotes the
entropy coefficient and υ is the clipping hyperparameter.
Moreover, APPOt is derived using GAE and given by [46],

APPOt (st, at) =
∞∑
k=0

(γPPOλGAE)
kδt+k (36)

where δt = rt + γPPOVϕ (st+1) − Vϕ (st). On the other
hand, the critic is updated in line 15 via the minimization
of the value loss LPPOcritic (ϕ), which has similar expression to
A2C, defined in (34), with GPPOt = APPOt + Vϕ (st). These
synchronous updates allow the actor to improve its action
selection and the critic to better estimate the value function.

4.3 Convergence and Complexity Analysis
As policy gradient algorithms, the theoretical foundation of
A2C and PPO is built on the Policy Gradient Theorem [37].
These methods learn a parameterized policy πβ(a | s) by
maximizing an objective J (β), which is a performance mea-
sure generally defined as the expected discounted return.
They update their policies through gradient ascent, which
requires the computation of the policy gradient ∇βJ (β).
As proven in [37], the Policy Gradient Theorem offers an

Algorithm 1: A2C-based RAN slicing and VNF
deployment algorithm

1: Input the environment and the hyperparameters
including the number of episodes Nep, the learning
rates ϵA2C

α and ϵA2C
ψ , and the discount factor γA2C .

2: Initialize the actor network πα, the critic network Vψ .
3: for episode = 1 to Nep do
4: Observe the initial state s1
5: for t = 1 to n do
6: Compute action probabilities πα(at|st) using (31).
7: Select the action at ∼ πα(·|st)
8: Receive the reward rt, and the next state st+1

9: Store the trajectory (st, at, rt, st+1) in D.
10: end for
11: for each trajectory in D do
12: Compute the return

GA2C
t =

∑n−1
k=0 γ

k
A2Crt+k + γnA2CVψ (st+n)

13: Compute the advantage AA2C
t using (32).

14: Update the actor network by maximizing the
policy objective LA2C

actor (α) in (33), using gradient
ascent:

α← α+ ϵA2C
α ∇αLA2C

actor (α)

15: Update the critic network by minimizing the critic
loss LA2C

critic (ψ) in (34), using gradient descent:

ψ ← ψ − ϵA2C
ψ ∇ψLA2C

critic (ψ)

16: end for
17: end for

analytic expression for ∇βJ (β) that is independent of the
specifics of the environment and it is given by,

∇βJ (β) = Es,a∼πβ
[∇β log πβ(a|s)Qπβ (a|s)] (37)

where Qπβ (a|s) is the action-value function under policy
πβ . In practice, the Q-values Qπβ (a|s) are estimated and
different algorithms employ different estimation techniques
such as using the critic network for actor-critic methods. In
fact, the Policy Gradient Theorem allows the replacement
of the Qπβ (a|s) with the advantage function At(s, a) in the
policy gradient (??) without changes in the expected gradi-
ent. This substitution reduces the gradients variance and im-
proves training stability. Furthermore, this theorem ensures
that the policy updates are in the ascent direction of the
objective J (β). Consequently, under the standard assump-
tions of the step size αt (i.e.

∑
t αt = ∞ and

∑
t α

2
t < ∞),

the stochastic approximation theory guarantees that these
algorithms converge almost surely to the stationary points
of J (β). Therefore, policy gradient algorithms, including
A2C and PPO, are guaranteed to converge to locally optimal
policies [37], [47], [48]. However, global optimality of these
methods, particularly when deep neural networks are used,
remain an open research issue.

The computational complexity of PPO and A2C is dom-
inated by the value function evaluation and the policy
update steps, which involve forward passes through the
critic and actor networks. Hence, the complexity depends
on their network architectures which are defined by the
state and action spaces dimensionality and the structure
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Algorithm 2: PPO-based RAN slicing and VNF
deployment algorithm

1: Input the environment and the hyperparameters
including the number of episodes Nep, the learning
rates ϵPPOθ and ϵPPOϕ , the discount factor γPPO, the
GAE parameter λGAE , the entropy coefficient τexp, and
the clipping hyperparameter υ.

2: Initialize the actor network πθ , the critic network Vϕ.
3: for episode = 1 to Nep do
4: Observe the initial state s1
5: for t = 1 to T do
6: Compute action probabilities πθ(at|st) using (31).
7: Select the action at ∼ πθ(·|st)
8: Receive the reward rt, and the next state st+1

9: Store the trajectory (st, at, rt, st+1) in B.
10: end for
11: for each trajectory in B do
12: Compute the advantage APPOt using (36).
13: Compute probability ratio ρt(θ) =

πθ(at|st)
πθold(at|st) .

14: Update the actor network by maximizing the
policy objective LPPOactor (θ) in (35), using gradient
ascent:

θ ← θ + ϵPPOθ ∇θLPPOactor (θ)

15: Update the critic network by minimizing the critic
loss LPPOcritic (ϕ) in (34), using gradient descent:

ϕ← ϕ− ϵPPOϕ ∇ϕLPPOcritic (ϕ)

16: end for
17: end for

of the hidden layers. The state size DS is given by (N +
M +K)(2 + SF + Λmax) + 3Us and the action size is DA

is given by (N + M + K)(2SF + 2Λmax(1 + Us)) + 5N ,
where Λmax is the maximum number of VNF instances per
network node. We assume that the two algorithms have
the same architecture where the actor and critic networks
include Ha and Hc hidden layers with Na,h, h = 1..Ha and
Nc,h, h = 1..Hc neurons, respectively. The complexity of
one forward pass of the actor and critic network is given
by Oactor = O(DSNa,1 +

∑Ha

h=1Na,h−1Na,h + DANa,Ha
)

and Ocritic = O(DSNc,1 +
∑Hc

h=1Nc,h−1Nc,h + Nc,Hc), re-
spectively. Therefore, the computational complexities of the
proposed A2C and PPO approaches are O(TA2C(O

A2C
actor +

OA2C
critic)) and O(TPPO(O

PPO
actor +O

PPO
critic)), respectively. TA2C

and TPPO are the number of timesteps per rollout for A2C
and PPO. Once the training is completed, only a single for-
ward pass through the trained models is needed for action
selection, given the network information. This computation
allows the algorithm to be executed with a negligible latency
that is compatible with the RIC control intervals.

5 RESULTS AND ANALYSIS

In this section, we present the simulation results evaluating
the performance of the proposed DRL-based network slicing
framework. First, we consider a 25 Km2 maritime area
having 5 marine buoys that can be used for communication
purposes. We assume that the ships and the buoys have the

Parameter Value
Path loss exponents αAA, αAS , αSA, αSS 1.9, 2.2, 2.2, 2
Carrier frequency f 2 GHz
Noise power spectral density N0 −124 dBm/Hz
UAVs antenna gain Gn, Gm 20 dB
Buoys and ships antenna gain Gk , Gus 10 dB
UAV velocity V 10m/s

UAV weight wN 20N
Profile drag coefficient Pdrag 0.012
Blade angular velocity vblade 300 rad/s
incremental correction factor cip 0.1
Air density ρair 1.225 Kg/m3

Tip speed of the rotor blade Utip 120m/s
mean hovering rotor-induced velocity V0 4.03m/s
fuselage drag ratio DR 0.6
Rotor radius Rrotor 0.4m
Disc area Arotor 0.503m
Solidity Srotor 0.05

TABLE 3: Main simulation Parameters [32], [33], [50], [51].

same height zus
= zk = 2m, k ∈ K while the heights of the

tethered and non-tethered UAVs are zm = 112m, m ∈ M
and zn = 115m, n ∈ N , respectively. Also, we set the safety
distance between the UAVs to dsafe = 3m. Additionally, the
bandwidth, CPU capacity and transmit power of the buoys
are Bk = 2 MHz, C total

k = 109 (cycles/s), and P transmit
k = 30

dBm [49]. Moreover, the CPU capacity required to serve
one slice s and to deploy one VNF instance of type f are
C

req
f,s = 109 cycles/s and C

req
f,i = 2.5 108 cycles/s. The data

sizes required to serve the infotainment and the emergency
slice are 2 Mbits and 2 Kbits. The CPU capacity required by
one VNF instance i to serve one slice s is QP,f,i,s = 107

cycles/s. In case of migration, the data size of the migrated
VNF instance and the transmit power needed for it migra-
tion are QM,f,i = 100 Kbits and pζ,ζ

′

f,i = 16 dBm. The main
simulation settings are summarized in Table 3.

Furthermore, we consider a decision making timeslot of
length t = 10s, we train the DRL agents using Nenv = 8
parallel environments, and we evaluate their performance
by averaging over Nep = 20 episodes with T = 100 steps.
This captures the stochasticity of the environment while
offering accelerated training and effective lightweight eval-
uation. Regarding the DRL parameters, we fine-tune the hy-
perparameters of the proposed A2C- and PPO-based RAN
slicing and VNF deployment algorithms through extensive
experimentation. First, we adopt the same actor and critic
networks architecture for the two algorithms to ensure a
fair comparison. Specifically, both actor and critic networks
are designed using four layers with 128, 64, 64, and 128 neu-
rons. This architecture allows the RL agent to handle high-
dimensional state-action spaces and deal with the non-linear
dependency between the different actions. The learning
rates for the A2C actor and critic are ϵA2C

α = ϵA2C
ψ = 0.0007.

Meanwhile, we adopt an adaptive learning rate for PPO-
based algorithm, balancing between convergence and train-
ing speed. The learning rates for the PPO actor and critic
are ϵPPOθ = ϵPPOϕ = ϵinital · exp (−drate(1− E)) where
ϵinital = 0.0005 is the initial learning rate, drate = 0.99 is
the exponential decay and E training progress. Moreover,
we tune the discount factor γPPO = γA2C = 0.99, the
PPO entropy coefficient τexp = 0.005, and the PPO clipping
hyperparameter υ = 0.3. In our simulations, we solve the
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three problems of joint RAN slicing and VNF deployment
as discussed in Section 3. Throughout this section, we refer
to these cases respectively as Migration-based deployment
(PM), Scaling-based deployment (PS) and Hybrid deploy-
ment (P).

5.1 Convergence Performance
To understand the convergence of the proposed DRL-based
algorithms, we examine the average training reward for the
three problems, illustrated in Fig. 3 (a) and (b). First, we
observe that the A2C agent converges faster than the PPO
agent requiring about 2700 episodes. This aligns with the
training process of A2C that adopts short-horizon policy
update, as discussed in previous section. In addition, A2C
achieves a slightly higher total cumulative reward com-
pared to PPO agent. This is due to A2C’s policy updates
which are more rapid and aggressive than PPO, allowing
it to improve its policy in early training, take advantage
of the initial rewards, and adapt to the environment dy-
namics. Nonetheless, as A2C explores various policies, the
reward exhibits more fluctuations suggesting lower learn-
ing stability particularly in the Migration case. Meanwhile,
the PPO agent shows slower convergence taking up to
20000 episodes, which is due to the use of long-horizon
trajectories for policy updates. In addition, PPO presents
improved stability compared to A2C, which is caused by the
clipping mechanism that ensures the changes in the policy
remain conservative. This reduces the reward fluctuations
and stabilizes the learning at the cost of training time.
Furthermore, we compare the reward performance of the
proposed DRL-based algorithms with four benchmarks, as
demonstrated in Fig. 3 (c), (d), (e) and (f). In fact, since
the optimization problem formulated in Section 3 is NP-
hard, deriving a global optimal solution can be untractable
and inefficient. Thus, we consider a metaheuristic method
based on the genetic algorithm, a static baseline with one
VNF instance per slice and equal resource slicing, as well as
the greedy and random benchmarks. The DRL agents, after
convergence, achieve significantly higher reward compared
to all benchmarks. Specifically, the A2C-based and the PPO-
based approaches achieve an average reward of approxi-
mately +150 and around +100, respectively, whereas the
metaheuristic benchmark yields a highly fluctuating perfor-
mance with rewards oscillating around +50. Meanwhile,
the static baseline shows a consistently negative reward
around−70, while the greedy and random methods present
substantial variability and severely negative rewards, fre-
quently dropping below −50. This indicates persistent en-
ergy inefficiencies and constraints violations including re-
sources and QoS requirements. Consequently, these results
show the superiority of DRL-based solutions over relevant
benchmarks in solving complex dynamic optimization prob-
lems such as joint RAN slicing and VNF deployment in
integrated aerial-terrestrial maritime networks.

5.2 Impact of Aerial Network Settings
After training the DRL agents, we investigate the perfor-
mance of our model from a communication perspective.
Extensive simulations were conducted while varying the
types of UAVs (i.e. tethered, non-tethered) and their ratio

within a fixed total number of UAVs. For each simulation,
we focus on analyzing four network performance indicators;
energy efficiency, achievable throughput of the infotainment
slice, delay of the emergency slice and guaranteed reliability
to the emergency slice. To establish a fair comparison and
obtain accurate insights, we maintain the same total power
for the three scenarios, independently of the number of
network nodes. We begin by exploring the energy efficiency
of our integrated aerial-terrestrial maritime network as il-
lustrated in Fig.4. We notice that the A2C-based algorithms
offers superior energy efficiency gains compared to the PPO
agent. This is due to the rapid policy updates of the A2C
that allows it to better adapt to the environment dynamics
when the three approaches are considered across differ-
ent UAV deployments. In contrast, while it offers stable
learning, the clipping mechanism restricts the PPO-based
algorithms leading to lower efficiency. Moreover, when com-
paring deployment strategies, the Scaling-based approach
outperforms the Hybrid and the Migration-based schemes.
Specifically, the PPO’s long-horizon updates can effectively
handle the gradual changes in the environment introduced
by the scaling actions, but struggle to track the more abrupt
shifts caused by the migration actions.

Furthermore, we investigate the performance of the DRL
agents in terms of the slice QoS requirements as illustrated
in Fig.5, Fig.6, and Fig.7. First, we examine the through-
put of the infotainment slice supported by the proposed
integrated maritime network. As shown in Fig.5, we notice
that increasing the ratio of tethered UAVs substantially
enhances the throughput for both DRL agents thanks to the
increased proximity of the UAVs to the end-users. Addi-
tionally, we observe that the three deployment schemes can
fulfill the infotainment slice needs, as long as one tethered
UAV is deployed, by providing throughput higher than
the minimum requirement Rsmin. Moreover, when the A2C
agent is used, the Scaling approach offers increased infotain-
ment slice throughput, as depicted in Fig.5.(a). Meanwhile,
when the PPO algorithm is applied, the Hybrid deploy-
ment shows improved throughput performance compared
to other schemes, as illustrated in Fig.5.(b). Second, we
study the delay of the emergency slice provided by the
integrated aerial-terrestrial maritime network. As shown in
Fig.6, we observe that the deployment of supplementary
non-tethered UAVs contributes reduced delays thanks to
their unrestricted mobility. On the one hand, the A2C agent
offers enhanced delay performance across the deployment
schemes compared to the PPO agent. Specifically, the three
approaches satisfy the emergency delay requirements where
the Scaling approach provides the lowest delay. On the other
hand, while the PPO-based Scaling and Hybrid schemes
present reduced delays, the Migration approach fails to
fulfill the emergency requirement with delays greater than
Ds

max. This is due to the additional delay necessary to
migrate the VNF instances between the network nodes.
Third, we investigate the reliability of the emergency slice
supported by the integrated maritime network. As demon-
strated in Fig.7, the Migration-based deployment is the
only approach that successfully meets the reliability require-
ments for both DRL algorithms. This is expected as the VNF
instances can be migrated towards the network nodes that
are closer to the end-users belonging to the emergency slice.
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(a) A2C-based Algorithm (b) PPO-based Algorithm

(c) Metaheuristic Benchmark (d) Static Benchmark

(e) Greedy Benchmark (f) Random Benchmark

Fig. 3: Average reward over episodes for DRL-based algorithms and benchmarks.
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Fig. 4: Energy Efficiency vs. UAVs’ Ratio.

Moreover, the deployment of supplementary tethered UAVs
marginally improves the reliability by around 1% under this
scheme since the agent does not receive additional reward
once the reliability requirement W s

min is satisfied.
Although all the approaches aim to maximize the energy

efficiency, each converges to a distinct policy that accounts
for the QoS constraints differently. This is because the
scaling and migration actions have different impact on the
overall reward and the agents policy updates. In fact, scaling
actions produce smooth reward changes that are suitable for
both A2C and PPO agents. In contrast, migration actions
cause abrupt reward fluctuations that can be captured by
the rapid updates of A2C, whereas the long-horizon clipped
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Fig. 5: Infotainment Slice’s Throughput vs. UAVs’ Ratio.

updates of PPO struggle to adapt. Consequently, these dif-
ferences lead each agent to prioritize the QoS requirements
differently, yielding diverse QoS satisfaction levels. In par-
ticular, the A2C-based scaling approach shows superiority
in terms of infotainment throughput and emergency delay,
while the A2C-based migration scheme achieves improved
reliability performance.

5.3 Impact of QoS Requirements’ Stringency
In this section, we investigate the impact of the stringency
of QoS requirements on the previously studied network
performance indicators. First, we consider the infotainment
slice throughput by increasing the required Rmin form
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Fig. 6: Emergency Slice’s Delay vs. UAVs’ Ratio.
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Fig. 7: Emergency Slice’s Reliability vs. UAVs’ Ratio.

500Mbps to 700Mbps and 1000Mbps respectively. Exten-
sive simulations indicate that this variation has an insignif-
icant impact on energy efficiency. However, the emergency
slice indicators are deteriorated as depicted in Fig.8. This is
due to the fact that the network resources are predominately
allocated to the infotainment slice to satisfy its increasing
needs. Specifically, we notice that the average delay of
the emergency slice increases and its reliability decreases
while meeting the QoS requirements. Notably, the A2C-
based algorithm converges to a policy that achieves a lower
delay, while the PPO agent guarantees higher reliability.

Moreover, we increase the stringency of the QoS require-
ments of the emergency slice by decreasing the maximum
delay Dmax form 0.05 s to 0.03 s and 0.01 s and increasing
the minimum reliability Wmin from 0.9 to 0.99. Extensive
simulations reveal that this variation has a negligible impact
on energy efficiency. Nonetheless, the infotainment through-
put is affected as depicted in Fig.9. Specifically, we notice
that the average throughput decreases when the QoS re-
quirements get more stringent in terms of delay or reliability.
We note also that the A2C-based algorithm guarantees the
required throughput Rsmin under more stringent delay con-

500 700 1000

Required Throughput by

 Infotainement Slice (Mbps)

 

(b)

99.65

99.66

99.67

99.68

99.69

99.7

99.71

99.72

A
v
e
ra

g
e
 R

e
lia

b
ili

ty
 o

f 
E

m
e
rg

e
n
c
y
 S

lic
e
 (

%
) A2C

PPO

500 700 1000

Required Throughput by 

Infotainement Slice (Mbps)

 

(a)

0

0.005

0.01

0.015

0.02

0.025

0.03

A
v
e
ra

g
e
 D

e
la

y
 o

f 
E

m
e
rg

e
n
c
y
 S

lic
e
 (

s
)

A2C

PPO

Fig. 8: Impact of Infotainment Slice Requirements’ Strin-
gency.

0.01 0.03 0.05

Required Delay by Emergency Slice (s)

 

(a)

0

100

200

300

400

500

600

700

800

900

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t 
o
f 
In

fo
ta

in
m

e
n
t 
S

lic
e
 (

M
b
p
s
)

R
min

s

PPO

A2C

99 99.9

Required Reliability by Emergency Slice (%)

 

(b)

0

100

200

300

400

500

600

700

800

900

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t 
o
f 
In

fo
ta

in
m

e
n
t 
S

lic
e
 (

M
b
p
s
)

R
min

s

Fig. 9: Impact of Emergency Slice Requirements’ Stringency.

straints, while it fails when reliability constraints are more
demanding. Contrarily, the PPO-based algorithm achieves
the required throughput Rsmin under more strict reliability
constraints, while it fails when delay constraints become
more stringent. These findings suggest that the A2C-based
algorithm converges to a policy that maximizes the energy
efficiency while prioritizing delay constraints. Meanwhile,
the PPO-based algorithm converges to a different policy
focusing on reliability.

5.4 Impact of UAVs Trajectory Optimization

In this section, we investigate the effect of non-tethered
UAV trajectory optimization on the network performance.
Specifically, we notice that the total power consumption
can be substantially saved as illustrated in Fig.10. In fact,
both algorithms can save around 24% in small-scale mar-
itime network (i.e. 5 ships) and 22% in large-scale mar-
itime network (i.e. 15 ships), where the hybrid approach
presents the highest power-saving capabilities as depicted
in Fig.10.(a). In addition, we study the impact of increasing
the emergency traffic on power savings in Fig.10.(b). We
pinpoint that the adoption of the A2C-based algorithm helps
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Fig. 10: Impact of UAVs Trajectory Optimization.

to increase power saving by 4% compared to the PPO-based
algorithm, when more ships are in emergency.

5.5 Impact of Integrated Maritime Network Scalability

In this section, we investigate the scalability performance
of the proposed DRL agents. First, we vary the number of
aerial nodes and we examine its impact on energy efficiency,
as depicted in Fig 11.(a). We observe that the energy effi-
ciency improves in case of the A2C-based scaling approach
when the number of UAVs increases. This is due to the
short-horizon policy updates of A2C that allows it to explore
various actions that increase the throughput, when more
UAVs are deployed, with minimized power consumption,
leading to energy efficiency gains. In contrast, the PPO-
based algorithm shows minor variations which is caused
by the clipping mechanism that limits the agent’s ability
to benefit from the additional UAVs. Second, we increase
the number of maritime end-users by varying the number
of ships, as shown in Fig 11.(b). We note that the energy
efficiency is substantially deteriorated when the PPO-based
algorithm is applied, whereas the A2C-based agent shows
stable performance with minimal degradation as the num-
ber of ships increases. This is expected since the integrated
network is required to serve additional maritime users
using the same resources. Hence, we can deduce that the
A2C agent offers superior network scalability performance
compared to the PPO-based approach.

6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we proposed an AI-based network slicing
framework for O-RAN integrated aerial-terrestrial maritime
networks that offers ubiquitous connectivity and satisfies
various maritime users requirements. We improved the
energy efficiency of the proposed O-RAN maritime network
while meeting the requirements of two heterogeneous slices
in terms of throughput, reliability and delay. Our findings
are twofold. From a DRL perspective, our results highlight
the superiority of the A2C-based RAN slicing and VNF
deployment. Specifically, the A2C-based algorithm offers
better network indicators performance in terms of energy
efficiency and it satisfies all the QoS requirements of the
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Fig. 11: Impact of Network Scalability.

infotainment slice and the emergency slice. Therefore, we
recommend adopting the A2C-based algorithm for real-
world implementation. From a communication perspective,
our results show that the migration approach is the most
suitable for real-world deployment, as it satisfies all QoS
requirements, whether the A2C-based algorithm or PPO-
based algorithm is used. This approach comes at the cost
of increased delay for the emergency slice and reduced
throughput for the infotainment slice, as the reliability
of the emergency slice is prioritized. Our future work
will focus on the extension of the proposed O-RAN in-
tegrated aerial-terrestrial maritime network to a satellite-
aerial-terrestrial networks in order to improve connectivity
in under-connected maritime areas. We plan to consider
satellites mega-constellations capable of offering ubiquitous
connectivity in the open-sea to serve efficiently large cargo
and cruise ships besides fishing boats and small vessels.
In addition, we intend to adopt a multi-agent hybrid DRL
approach to handle the continuous and discrete actions
of the RAN slicing and VNF deployment problem, and a
distributed learning scheme to deal with network scalability.

REFERENCES

[1] F. M. Insights. Marine communication market outlook (2023
to 2033). [Online]. Available: https://www.futuremarketinsights.
com/reports/marine-communication-market

[2] J. Lindner. Must-know cruise ship sinking statistics. [Online].
Available: https://gitnux.org/cruise-ship-sinking-statistics/

[3] F. S. Alqurashi, A. Trichili, N. Saeed, B. S. Ooi, and M.-S. Alouini,
“Maritime communications: A survey on enabling technologies,
opportunities, and challenges,” IEEE Internet Things J., vol. 10,
no. 4, pp. 3525–3547, 2023.

[4] P. Hadinger, “Inmarsat global xpress the design, implementation,
and activation of a global Ka-band network,” in ICSSC, 2015, p.
4303.

[5] M. Messmer, B. Kiefer, L. A. Varga, and A. Zell, “UAV-assisted
maritime search and rescue: A holistic approach,” in IEEE ICUAS,
2024, pp. 272–280.

[6] S. Ammar, O. Amin, and B. Shihada, “Tethered UAV-based com-
munications for under-connected near-shore maritime areas,” in
IEEE BlackSeaCom, 2024, pp. 42–47.

[7] L. Liu, B. Lin, and Y. Che, “Joint UAV-BS deployment and power
allocation for maritime emergency communication system,” in
IEEE WCSP, 2021.



15

[8] N. Nomikos, A. Giannopoulos, A. Kalafatelis, V. Özduran,
P. Trakadas, and G. K. Karagiannidis, “Improving connectivity in
6G maritime communication networks with UAV swarms,” IEEE
Access, vol. 12, pp. 18 739–18 751, 2024.

[9] G. Mildh, E. Myhre, H. Flinck, C. Mannweiler, L. Wan, C. C. Chen,
and G. Ericson, “Architecture principles for a cloud-friendly future
6G RAN architecture,” O-RAN Next Generation Research Group
(nGRG), Tech. Rep. RR-2024-01, 2024.

[10] C.-L. I and S. Katti, “O-RAN: Towards an Open and Smart RAN,”
O-RAN Alliance White Paper, no. WP-2018, October 2018.

[11] B. Agarwal, R. Irmer, D. Lister, and G.-M. Muntean, “Open ran
for 6g networks: Architecture, use cases and open issues,” IEEE
Communications Surveys & Tutorials, 2025.

[12] Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey
of intelligent network slicing management for industrial IoT:
integrated approaches for smart transportation, smart energy, and
smart factory,” IEEE Communications Surveys & Tutorials, vol. 24,
no. 2, pp. 1175–1211, 2022.

[13] L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong,
“Network slicing: Recent advances, taxonomy, requirements, and
open research challenges,” IEEE Access, vol. 8, pp. 36 009–36 028,
2020.

[14] M. Dubey, A. K. Singh, and R. Mishra, “Ai based resource man-
agement for 5g network slicing: History, use cases, and research
directions,” Concurrency and Computation: Practice and Experience,
vol. 37, no. 2, p. e8327, 2025.

[15] S. Ammar, C. Pong Lau, and B. Shihada, “An in-depth survey on
virtualization technologies in 6G integrated terrestrial and non-
terrestrial networks,” IEEE Open J. Commun. Soc., vol. 5, pp. 3690–
3734, 2024.

[16] M. Gharbaoui, B. Martini, S. Noto, A. L. Ruscelli, P. Pagano,
and P. Castoldi, “Experimenting SDN/NFV solutions for flexible
maritime transport & logistics (T&L) services,” in IEEE NFV-SDN,
2023, pp. 27–33.

[17] A. Celik, N. Saeed, B. Shihada, T. Y. Al-Naffouri, and M.-S.
Alouini, “A software-defined opto-acoustic network architecture
for internet of underwater things,” IEEE Commun. Mag., vol. 58,
no. 4, pp. 88–94, 2020.

[18] T. Yang, J. Li, H. Feng, N. Cheng, and W. Guan, “A novel
transmission scheduling based on deep reinforcement learning in
software-defined maritime communication networks,” IEEE Trans.
Cogn. Commun. Netw., vol. 5, pp. 1155–1166, 12 2019.

[19] O. M. Bushnaq, I. V. Zhilin, G. D. Masi, E. Natalizio, and I. F. Aky-
ildiz, “Automatic network slicing for admission control, routing,
and resource allocation in underwater acoustic communication
systems,” IEEE Access, vol. 10, pp. 134 440–134 454, 2022.

[20] C. Zhu, W. Zhang, Y. H. Chiang, N. Ye, L. Du, and J. An, “Software-
defined maritime fog computing: Architecture, advantages, and
feasibility,” IEEE Network, vol. 36, pp. 26–33, 2022.

[21] F. Zhang, H. Lu, F. Guo, and Z. Gu, “Traffic prediction based vnf
migration with temporal convolutional network,” in Proceedings -
IEEE Global Communications Conference, GLOBECOM, 2021.

[22] X. Yu, R. Wang, J. Hao, Q. Wu, C. Yi, P. Wang, and D. Niyato,
“Priority-aware deployment of autoscaling service function chains
based on deep reinforcement learning,” IEEE Trans. Cogn. Com-
mun. Netw., 2024.

[23] S. Agarwal, F. Malandrino, C. F. Chiasserini, and S. De, “Vnf
placement and resource allocation for the support of vertical
services in 5g networks,” IEEE/ACM Transactions on Networking,
vol. 27, pp. 433–446, 2 2019.

[24] T. V. Le, M. V. Nguyen, T. N. Nguyen, H. N. Nguyen, and
S. Vu, “Optimizing resource allocation and vnf embedding in
ran slicing,” IEEE Transactions on Network and Service Management,
2023.

[25] H. Shen, Q. Ye, W. Zhuang, W. Shi, G. Bai, and G. Yang, “Drone-
small-cell-assisted resource slicing for 5G uplink radio access
networks,” IEEE Trans. Veh. Technol., vol. 70, pp. 7071–7086, 7 2021.

[26] G. Zhou, L. Zhao, G. Zheng, S. Song, J. Zhang, and L. Hanzo,
“Multi-objective optimization of space-air-ground integrated net-
work slicing relying on a pair of central and distributed learning
algorithms,” IEEE Internet Things J., 2023.

[27] J. Li, W. Shi, H. Wu, S. Zhang, and X. Shen, “Cost-aware dynamic
sfc mapping and scheduling in SDN/NFV-enabled space-air-
ground-integrated networks for internet of vehicles,” IEEE Internet
Things J., vol. 9, pp. 5824–5838, 4 2022.

[28] M. Pourghasemian, M. R. Abedi, S. S. Hosseini, N. Mokari, M. R.
Javan, and E. A. Jorswieck, “AI-based mobility-aware energy

efficient resource allocation and trajectory design for NFV enabled
aerial networks,” IEEE Trans. Green Commun. Netw., vol. 7, pp. 281–
297, 3 2023.

[29] X. Feng, M. He, L. Zhuang, Y. Song, and R. Peng, “Service function
chain deployment algorithm based on deep reinforcement learn-
ing in Space–Air–Ground integrated network,” Future Internet,
vol. 16, 1 2024.

[30] Y. Peng and B. Di, “Joint VNF deployment and resource allocation
in integrated terrestrial-aerial access networks enabled by network
slicing,” in IEEE EUC, 2022, pp. 74–80.

[31] J. Wang, H. Zhou, Y. Li, Q. Sun, Y. Wu, S. Jin, T. Q. Quek, and
C. Xu, “Wireless channel models for maritime communications,”
IEEE Access, vol. 6, pp. 68 070–68 087, 2018.

[32] A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins,
“A survey of channel modeling for UAV communications,” IEEE
Commun. Surv. Tutor., vol. 20, no. 4, pp. 2804–2821, 2018.

[33] Y. Zeng, J. Xu, and R. Zhang, “Energy minimization for wireless
communication with rotary-wing UAV,” IEEE Trans. Wireless Com-
mun., vol. 18, no. 4, pp. 2329–2345, 2019.

[34] R.-J. Reifert, H. Dahrouj, A. A. Ahmad, A. Sezgin, T. Y. Al-
Naffouri, B. Shihada, and M.-S. Alouini, “Rate-splitting and com-
mon message decoding in hybrid cloud/mobile edge computing
networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 5, pp. 1566–
1583, 2023.

[35] Z. Yang, C. Pan, K. Wang, and M. Shikh-Bahaei, “Energy efficient
resource allocation in UAV-enabled mobile edge computing net-
works,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4576–4589,
2019.

[36] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consump-
tion modeling: A survey,” IEEE Commun. Surv. Tutor., vol. 18, no. 1,
pp. 732–794, 2015.

[37] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd edition. MIT press Cambridge, 2018.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforce-
ment learning,” arXiv preprint arXiv:1312.5602, 2013.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016, pp. 1928–1937.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[43] S. V. Albrecht, F. Christianos, and L. Schäfer, Multi-Agent
Reinforcement Learning: Foundations and Modern Approaches. MIT
Press, 2024. [Online]. Available: https://www.marl-book.com

[44] T. Wei, W. Feng, Y. Chen, C.-X. Wang, N. Ge, and J. Lu, “Hybrid
satellite-terrestrial communication networks for the maritime in-
ternet of things: Key technologies, opportunities, and challenges,”
IEEE Internet Things J., vol. 8, no. 11, pp. 8910–8934, 2021.

[45] Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in
model-free reinforcement learning: A survey,” in IJCAI, 2021.

[46] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage esti-
mation,” arXiv preprint arXiv:1506.02438, 2015.

[47] M. Holzleitner, L. Gruber, J. Arjona-Medina, J. Brandstetter, and
S. Hochreiter, “Convergence proof for actor-critic methods ap-
plied to ppo and rudder,” in Transactions on Large-Scale Data-and
Knowledge-Centered Systems XLVIII: Special Issue In Memory of Univ.
Prof. Dr. Roland Wagner. Springer, 2021, pp. 105–130.

[48] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in
neural information processing systems, vol. 12, 1999.

[49] M. Dai, C. Dou, Y. Wu, L. Qian, R. Lu, and T. Q. Quek, “Multi-UAV
aided multi-access edge computing in marine communication
networks: A joint system-welfare and energy-efficient design,”
IEEE Trans. Commun., 2024.

[50] D. W. Matolak and R. Sun, “Air–ground channel characterization
for unmanned aircraft systems—part I: Methods, measurements,
and models for over-water settings,” IEEE Trans. Veh. Technol.,
vol. 66, no. 1, pp. 26–44, 2016.



16

[51] J. Xu, M. A. Kishk, and M.-S. Alouini, “Space-air-ground-sea in-
tegrated networks: Modeling and coverage analysis,” IEEE Trans.
Wireless Commun., vol. 22, no. 9, pp. 6298–6313, 2023.

Sahar Ammar received her Diplôme
d’ingénieur from Ecole Polytechnique de
Tunisie, Tunisia, in 2020 and her M.Sc. degree
in electrical and computer engineering in 2022
from King Abdullah University of Science and
Technology (KAUST), Saudi Arabia. She is
currently pursuing her Ph.D. degree in electrical
and computer engineering with the Networking
Lab at KAUST. Her research interests include
next-generation wireless networks, network
virtualization technologies, and optical wireless

communications.

Wiem Abderrahim (S’14 - M’18) received her
Doctoral Degree in Information and Communi-
cation Technologies from the Higher School of
Communications of Tunis (Sup’Com), Carthage
University, Tunisia in 2017. In 2019, she joined
King Abdullah University of Science and Tech-
nology (KAUST),Thuwal, Saudi Arabia as post-
doctoral fellow within the Computer, Electri-
cal and MathematicalSciences and Engineering
(CEMSE) Division. Since 2023, she holds the
position of assistant professor at Ecole Nationale

d’Ingénieurs de Gabès (ENIG) and she is a research fellow at the
MEDIATRON Lab within Sup’Com, Carthage University, Tunisia.

Basem Shihada (M’04-SM’12, IEEE) obtained
his Ph.D. in Computer Science from the Univer-
sity of Waterloo, Canada, in 2007. Shortly after
completing his studies, Prof. Shihada joined King
Abdullah University of Science and Technology
as a Founding Faculty member in 2008. His ex-
pertise lies in developing cutting-edge wireless
systems, where he has made groundbreaking
contributions across various domains, including
intelligent wireless systems, wireless underwa-
ter systems, molecular communication systems,

and non-terrestrial systems. Prof. Shihada’s notable achievements are
the creation and successful demonstration of Aqua-Fi, the world’s first
underwater Wi-Fi. Sun-Fi, the world first communication via building
glass, and communication via breath. Prof. Shihada’s work has been
recognized with several best paper awards at renowned conferences
within his field. His invaluable contributions have also been published
in prestigious scientific journals such as Nature Electronics and many
IEEE Transactions. In 2023, he become an area editor and received the
exemplary editor award from the IEEE Communications Letter journal.


