JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Gradient Compression and Correlation Driven
Federated Learning for Wireless Traffic Prediction

Chuanting Zhang, Senior Member, IEEE, Haixia Zhang, Senior Member, IEEE, Shuping Dang, Senior
Member, IEEE, Basem Shihada, Senior Member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE

Abstract—Wireless traffic prediction plays an indispensable
role in cellular networks to achieve proactive adaptation for com-
munication systems. Along this line, Federated Learning (FL)-
based wireless traffic prediction at the edge attracts enormous
attention because of the exemption from raw data transmission
and enhanced privacy protection. However FL-based wireless
traffic prediction methods still rely on heavy data transmissions
between local clients and the server for local model updates.
Besides, how to model the spatial dependencies of local clients
under the framework of FL remains uncertain. To tackle this,
we propose an innovative FL algorithm that employs gradi-
ent compression and correlation-driven techniques, effectively
minimizing data transmission load while preserving prediction
accuracy. Our approach begins with the introduction of gradient
sparsification in wireless traffic prediction, allowing for signif-
icant data compression during model training. We then imple-
ment error feedback and gradient tracking methods to mitigate
any performance degradation resulting from this compression.
Moreover, we develop three tailored model aggregation strategies
anchored in gradient correlation, enabling the capture of spatial
dependencies across diverse clients. Experiments have been done
with two real-world datasets and the results demonstrate that
by capturing the spatio-temporal characteristics and correlation
among local clients, the proposed algorithm outperforms the
state-of-the-art algorithms and can increase the communication
efficiency by up to two orders of magnitude without losing
prediction accuracy.

Index Terms—Wireless traffic prediction, gradient compres-
sion, federated learning, intelligent networks.

I. INTRODUCTION

DGE intelligence, empowered by artificial intelligence
techniques (e.g., machine learning and deep learning),
is deemed one of the essential missing functionalities in the
current fifth-generation (5G) networks [1]-[3]. Consequently,
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Fig. 1. An example on model aggregation using FedAvg algorithm: (a) Milan
city boundary and three selected places; (b) Temporal dynamics of the three
selected places; (c) Aggregate models trained with similar traffic patterns
improves performance i.e., mean squared error (MSE) achieved by Ow; +
(1 — O)ws is lower than that by either w1 or wa; (d) Aggregate models
trained with distinct traffic patterns brings no performance improvements.

research communities from both academia and industry have
reached a consensus that edge intelligence will play notable
roles in the future sixth-generation (6G) communication net-
works [4]-[8]. By pushing part of the service-related process-
ing and data storage from the central cloud to edge nodes that
are geographically and logically close to the end users, the
communication efficiency, computational efficiency, and end-
to-end latency of the core network can be drastically improved.

Along this line, wireless traffic prediction [9]-[12] at the
edge is critical in supporting the realization of edge intelli-
gence, mainly because many intelligent network operations
such as self-organization and self-optimization heavily depend
on future traffic status. Though many works on wireless
traffic prediction have been conducted [13]-[23], almost all
of them fall into the realm of centralized model training,
which requires raw data transmission from edge nodes (local
client) to the central cloud. These edge nodes are located
in physically different places, and raw data transmission not
only consumes valuable bandwidth but also may incur privacy
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issues if attacked by malicious agents.

Thanks to the advancement of distributed machine learning,
particularly federated learning (FL) [24]-[33], both model
training and prediction can be performed at the edge. Under
the FL paradigm, multiple edge nodes train a global model
collaboratively under the orchestration of the central cloud.
Each edge node needs only to transfer the updated model or
gradient information instead of raw data to the central cloud.

Despite its promising advantages in model training, ap-
plying FL to wireless traffic prediction still faces many
challenges. First, although no raw traffic data transmission
is involved in the model training, the frequent exchange of
gradients or parameters between edge nodes and the central
server brings nontrivial communication overhead to the wire-
less network, especially when the model is large. Second,
edge nodes have different traffic patterns and complex spatial-
temporal dependencies induced by user mobility. Traditional
FL algorithms may not work, as Fig. 1 shows, since they
simply average the gradients of different edge nodes without
distinguishing their different contributions to the final global
model. More specifically, three edge nodes are selected from
our Milan dataset and their geographical locations and traffic
patterns are included. When two edge nodes have similar
traffic patterns, averaging their models improves prediction
performance. However, if their patterns differ, model aggre-
gation may not yield any benefits and could even degrade
performance.

To solve the above two challenges faced with wireless traffic
prediction, we design a novel federated learning algorithm
based on gradient compression and correlation. Specifically,
we introduce gradient sparsification [34] into wireless traffic
prediction to release the communication overhead between
local clients and the central server. As its lossy nature of
sparsification, we further propose using error feedback and
gradient tracking techniques [26], [35]-[37] to compensate
for the negative effects of gradient compression. Moreover,
we propose three personalized model aggregation strategies
derived from the gradient correlation matrix to capture distinct
spatial dependencies of local clients. To the best of the authors’
knowledge, this is the first work presenting such a distributed
architecture and the related methods incorporating spatio-
temporal characteristics for wireless traffic prediction. The
experimental results demonstrate that the proposed algorithm
equipped with gradient compression and correlation outper-
forms the state-of-the-art and can raise the communication
efficiency up to two orders of magnitude without loss of
prediction accuracy.

The rest of this paper is organized as follows. We survey
related works in Section II and introduce the system model and
problem formulation in Section III. Our proposed algorithm
will be detailed in Section IV. After that, we empirically
validate the performance of our proposed algorithm in Section
V and conclude the paper in Section VI.

II. RELATED WORKS

Wireless traffic prediction has achieved considerable atten-
tion in recent years due to its critical role in advancing the

intelligence of future communication networks, such as intel-
ligent network management and optimization. Earlier works on
wireless traffic prediction mainly focus on traditional statistical
models such as ARIMA [38] and its variant [39], a-stable
[21], and entropy [22]. However, the performances of these
models are limited by their representation ability to capture
the nonlinear relationships of wireless traffic.

Thanks to the rapid advancement of artificial intelligence
techniques, notably machine learning and deep learning, they
have extensively expedited the development of wireless traffic
prediction. Many machine or deep learning based methods
have sprung out in the past several years. Methods based on
Bayesian process [11], [13], deep belief networks [40], long-
short term networks [20], and graph neural networks [18] are
all explored to solve wireless traffic prediction problems. In
addition, the encoder-decoder architecture can also be used to
capture the spatial-temporal dependencies in wireless traffic
prediction [15], [19].

For network-wide or city-scale wireless traffic prediction,
The authors in [14] proposed using convolutional neural
networks to capture the spatial and temporal dependencies si-
multaneously. They also considered different kinds of temporal
dependencies such as closeness and periodicity. [41] adopted
a three-dimensional convolutional network to enhance spatial-
temporal learning over wireless traffic. Besides, in [16], cross-
domain data, such as points of interest, have proven to be
helpful in improving prediction accuracy. Later, the attention
schemes are introduced into wireless traffic prediction [17],
[23] to reduce model complexity and improve representation
learning.

The above works mainly focus on wireless traffic prediction
in a centralized way, which consumes lots of bandwidth since
raw wireless traffic data must be transferred to a powerful node
for training. FL-based methods are starting to emerge to solve
this problem and train a prediction model at the edge. [42]
proposed a federated gated recurrent neural network for traffic
flow prediction. In addition, to solve the data heterogeneity
challenge confronted with FL, the authors in [43] designed
a dual-attention scheme named FedDA, which makes the
learning process aware of both local updates and prior global
knowledge. FedDA is designed particularly for wireless traffic
prediction and achieves state-of-the-art performance.

Our work also considers training a wireless traffic prediction
model under the FL paradigm, but it differs from all the
above works in two major aspects. First, we introduce gradient
compression into wireless traffic prediction to release the
communication overhead between local clients and the central
server. Second, we design personalized gradient aggregation
schemes derived from gradient correlation to capture the
spatial dependencies among different local clients.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We perform the study of wireless traffic prediction under the
scenario of distributed autonomous networks (DAN), which
is a promising network architecture for six-generation (6G)
wireless communications. The concept of DAN is introduced
on the left of Fig. 2, based on which we abstract a simplified
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Fig. 2. Left: The architecture of distributed autonomous networks (DAN); Right: An abstract and simplified DAN for wireless traffic prediction. DAN is a
promising 6G networking architecture that supports intelligent network elements such as network data analytics function (NWDAF). In our wireless traffic
prediction system, M SCUs train a robust prediction model collaboratively under the orchestration of a central cloud server in a communication-efficient way.

system model for wireless traffic prediction and show it
on the right of Fig. 2. The DAN architecture is designed
to support on-demand network customization, plug-and-play,
and flexible deployment through distributed and autonomous
features to meet the diverse needs of future 6G networks.
DAN has many distributed small cloud units (SCU) deployed
in different places to achieve underground communications,
ground communications, satellite communications, and marine
communications. Each SCU has both communication and
computing capabilities such as a baseband unit (BBU) pool
and smart edge engine, which makes them smart enough
to collect and analyze data by supporting the network data
analytics function (NWDAF). Our wireless traffic prediction
system model consists of M small cloud units (SCUs) at the
edge and one central cloud server at the mobile core network.
Based on different coverage demands, each SCU supports a
different number of base stations (BSs). The SCU monitors
and collects mobile traffic data from each BS in real-time
and stores them in its local database. With these datasets, the
SCUs train a prediction model w in a federated way to predict
the future traffic volume whilst performing load-aware traffic
management and network control. For instance, some of the
BBUs can be switched to an idle state to save power when
the predicted traffic volume is small.

Given the M SCUs in the communication system, each SCU
m stores a wireless traffic dataset D™ = {«*, y/"}I'_,, where
vt = [vf", v, vl ] and Yt = of} . Specifically,
v denotes the wireless traffic volume at time slot ¢ of SCU
m and p is the selected sliding window size when constructing

training and test data samples.

We consider leveraging FL, or more precisely, cross-silo FL
to obtain the prediction model w. Our objective function can

be written as follows

. 1 &
arg min, {f(w) = Mﬂ;fm<w>}, M
where d denotes the dimension of model parameter and f,, (-)
the local objective function of client m. f,,(-) generally takes
the form of £(z}™, y™; w), in which ¢(-) measures the distance
between predictions and the ground truth value.

There are two fundamental steps to solve (1) in the tra-
ditional FL paradigm: local updates on the client and global
aggregation on the server side. Specifically, at the ¢-th commu-
nication round, the first step refers to local client m computes
the gradient information ¢ = V f,,,(w;) and sends it to the
server. The second step refers to the server updating the global
model based on the received gradients from local clients. The
classical weight update of FL algorithms, i.e., FedAvg [44],
can be written as

W41 = Wt

> g )

_n
|Mt| meM;

where 7 is the learning rate at the server and M, is a set of
local clients at communication round ¢. Besides, |- | represents
the cardinality of a set.

IV. OUR PROPOSED METHOD

This section introduces our proposed gradient compression
and correlation driven FL algorithm for wireless traffic pre-
diction problems. The overall idea will be given first, then the
detailed designs of each component will be introduced.
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Fig. 3. A demonstration of gradient sparsification. Original gradient vector
gy with 5 elements (left) and the corresponding compressed version when
v = 0.2 (middle) and v = 0.4 (right), respectively. Note that shadowed
elements are those that will be transferred and v = 1.0 indicates no
compression.

A. Key Insights

Different from (2), in this work, we try to solve (1) in a
robust and communication-efficient approach by re-written (2)
into the following

Ui

N D agel(gi)ls € M}, (3)

meMy

W41 = Wt —

where ¢(-) represents a compressor on the gradient, whose
purpose is to reduce the communication overhead during
model training. In addition, f,44(-) represents a family of
personalized aggregation strategies derived from gradient cor-
relation, aiming to capture the peculiar spatial dependencies
between client m and all the others. We elaborate the detailed
designs of ¢(-) and f,44(-) in the following.

B. Local Update on the Client

Gradient compression techniques are proposed to reduce the
communication overhead in distributed machine learning [34],
but compression negatively influences prediction performance,
especially when the compression ratio -y is large [26]. This is
because a majority of local gradient information is filtered out
during communications between local clients and the central
server, resulting in a limited number of local gradients involved
in the global model update. The scenario is even worse when
introducing gradient compression for wireless traffic prediction
problems since geographically distributed SCUs have diverse
traffic patterns. Relying only on the local gradient information
to update the local model could deviate the global model
from the optimum since the local gradient directions could
be highly different from the global gradient direction. To
solve the above issue, we resort to error feedback [37] and
gradient tracking techniques [26]. On the one hand, the error
feedback schemes make transferring all local gradients to the
server possible without increasing communications. On the
other hand, gradient tracking techniques enhance local model
training by monitoring the difference between local gradient
directions and the global gradient direction.

To explicitly describe our algorithm, consider the c-th local
update in the ¢-th communication round at the client m. We

first sample a batch of data samples By, with the size of b.
Then we obtain the corrected gradient information for this
local update, which is described by

gZLc = e;n + vfm(w?fc; Zlc) - h;n 4

In (4), ef* denotes an error feedback vector at client m in
round ¢ and represents the sum of the gradient information that
has been filtered out so far; V f,,, (wy",; By"..) is the gradient on
the current batch data samples; hj" contains the sum of the
difference between local client’s gradients and the globally
averaged gradients. e;* and h}" keep static during local updates
but vary over communication rounds.

Once we obtain g;", we can update the local model with
local learning rate € as follows

wz’fcﬂ = w;’fc — egffc. (5)

The final output after 7 steps of local updates is expressed as
w{f;. Having obtained this, we can calculate the accumulated
gradients during these 7 steps, which is g;" = (w;" —wj")/e.
After that, the local client sends a compressed version of g;”,
i.e., ¢(g™"), to the central server for global model optimization.

As for the form of ¢(-), there are normally two options,
i.e., sparsification and quantization. Here, in this work, we
consider the first option: we use gradient sparsification as
our compressor ¢(-). This is because sparsification possesses
more potential in gradient compression since it is not limited
by the integer representation of computer systems [34]. More
concretely, when the compression ratio is set to 7, then we
only transmit the top v of the gradient elements in terms of
their modulus. A demonstration of ¢(-) is shown in Fig. 3.

The local clients will update the error feedback vector e}*
and the gradient tracking vector h}" respectively after finishing
the gradient compression. The updates are given by

et =ef + 91" — olg"), (6)

m m 1 m
ht+1 =h{" + ;(¢(Qt ) = gt), @)

where g, denotes the averaged gradient information at commu-
nication round ¢, which is calculated as I/V%\ D meM, o(gm).
Note that, in Eq. (7), the central server also needs to broadcast
gt to each local client to update the local gradient tracking
vector. Besides, calculating e and h will bring a little bit of
complexity, but it can solve the challenges of data heterogene-
ity and gradient compression. The details to obtain ¢(g}™) will
be explained in the next subsection.

C. Personalized Aggregation Strategies with Gradient Corre-
lation

When we receive all the local gradient information at the
central server, we can proceed to the global model optimiza-
tion. As a previous study [45] reveals that simply averaging
the local gradient information without distinguishing their
different contributions to the final global model yields poor
predictions, especially for wireless traffic prediction problems
[43]. Thus in this subsection, we propose three personalized
gradient aggregation strategies derived from gradient correla-
tions of different local clients.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Gradient Correlation Matrix p
A B C D E

1.0 0.9 0.2 0.1 0.7
0.9 1.0 0.1 0.1 0.3
k-relevant 0.2 0.1 1.0 04 038 all-correlated
1.0 0.9 0.2 0.1 07| |01 01 041007 ¥16 09 0.2 0.1 0.7
0.9 1.0 0.1 0.1 0.3 |07 03 08 0.7 1.0f 1909 1.0 0.1 0.1 0.3
0.2 0.1 1.0 0.4 08 S-threshold ~ [0.2 0.1 1.0 0.4 0.8
01 0.1 0.4 1.0 0.7] [1.0 0.9 0.2 01 0.7 0.1 0.1 0.4 1.0 0.7
0.7 0.3 0.8 0.7 1.0 (0.9 1.0 0.1 0.1 0.3 0.7 0.3 0.8 0.7 1.0
0.2 0.1 1.0 0.4 0.8
d(g0) < o) +6a8) 101 01 04 1.0 07| 0e7) < D ipmelg")
0.7 0.3 0.8 0.7 1.0 "

b(gP) « d(g?)

Fig. 4. A toy example of our personalized aggregation strategies on client
D. We set k = 2 in the k-relevant strategy and § > 0.8 in the §-threshold
strategy. Besides, p denotes the softmax version of p.

Based on the received and compressed gradient information
of the local clients, we measure their similarity using the Pear-
son correlation coefficient. The obtained gradient correlation
coefficient matrix p is denoted as

P11 P1,2 P1,| My
P21 P2,2 P2, | M|

p= . . ) (®)
PIM.|1 PIM,|,2 PIM,|,| M,

For any given client m and s and their corresponding gradients
d(gi™) and ¢(gf), their correlation is computed as

_ cov(@lg), 6(97))

To(gp)T(er)
where cou(-) denotes the covariance, and o is the standard
deviation.

Intuitively, p measures the distances of gradients among
different local clients, it also reflects the similarities of wireless
traffic patterns, i.e., the spatial dependencies of local clients.
To be blunt, if a client is highly correlated with the others,
then its contribution to the final global model should be
enhanced, otherwise, it should be weakened. This is because
if a client has very small correlations with other clients, then
it belongs to the category outliers, whose gradient information
may considerably affect the global optimization. Thus based
on this principle and the correlation matrix p, we propose a
family of personalized gradient aggregation strategies, which
can be expressed as follows

45(9?"”) = fagg{9(gi)|s € My},

where f,44(-) represents different functions to assist a client m
in incorporating gradient information from others. Specifically,
we design three strategies on the basis of the gradient correla-
tion matrix, i.e., k-relevant, d-threshold, and all-correlated. A
toy example of these three personalized aggregation strategies
can be found in Fig. 4 and the details are given in the following
paragraphs.

9

m,s

(10)

Algorithm 1: Gradient compression- and correlation-
driven FL for wireless traffic prediction

Input: Local datasets {D™}M_,, number of
communication rounds 7°, number of local
updates 7, learning rates n and e, initial global
model wy and aggregated gradients gg, error
feedback eg, and gradient tracking hg

Output: Global model w

1 while ¢ < T do
2 Sample a subset clients M,
> Client side

3 for each m € My in parallel do
4 Initialize local model wi’y = w;
5 forc=0,1,--- ,7—1do
6 Sample a batch data samples By,
7 gte = €' + Vim(wie; Bl.) — hi®
8 w?,/chrl = ’U)ZLC - eg;tmc
9 Calculate the accumulated gradient by
gi" = (wi* —wy™,)/e and send ¢(g;") to the
central server
10 Update error feedback:
eftr = e + 9" — o(gr")
11 Update gradient tracking:
hity = hi* + 1 (6(97") — g¢)
12 Update global model locally: w1 = w; — ng;
> Server side
13 Choose a strategy foqq(-) from (11), (12), or (13)
14 for each m € M, do
15 L ?(91") = fagglo(gi)ls € My}
16 Server aggregates local gradients by

g = Wlt\ ZmeMt ¢(g"™) and broadcast it to

each local client

1) k-relevant strategy: In this strategy, we select the gradi-
ent information of k clients in total, based on the strength
of the correlation. As shown in Fig. 4, when k£ = 2, the
most correlated two clients for client D are E and itself. Thus
client D will incorporate the gradient information of client
E. Generally speaking for any client m, this strategy can be
described as

o(g¢")

Z L(pm,s = maxk(pm)) - ¢(g5),

SEM;

(1)

where maxk(-) calculates the k-th largest value of a vector
and the indicator function I(-) = 1 when pg,, > ¢ and 0
otherwise.

2) O-threshold strategy: In this strategy for arbitrary client
m, we select the clients that have correlation coefficients
higher than threshold §. Take also the client D in Fig. 4 as
an example. The personalization will not change its gradient
information when we set 6 = 0.8, since all its correlations with
the other clients are smaller than this threshold. As a result,
its personalized version of the gradient information remains
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TABLE I
STATISTICS OF THE TWO REAL-WORLD CELLULAR TRAFFIC.

Milan Trentino
Time span From Nov. 1, 2013 to Jan. 1, 2014
Time interval 10 minutes
# of BSs 4,222 1,466
# of SCUs 88 223
Average traffic volume 7,250 MB 608 MB
Coefficient of variation 1.1377 2.3410

the same as before. We describe this strategy as

sEM;

o(gi") = 12)

where I(-) is also an indicator function that returns 1 when
Pm,s = 0 and O otherwise.

3) All-correlated strategy: In this strategy, each client
aggregates all the other client’s gradient information using
a weighted average and the weights are derived from the
correlation matrix p. Take client D in Fig. 4 for example.
Client D will update its gradient and take all other clients’
information for consideration but weigh the importance of
clients C and D since they have larger correlations with client
D. For any client m, the general update rule for this strategy

1S
O(g") = > hmsd(g]),

seMy

(13)

with p,, s obtained by
~ epvn,s
pm,s - ~ .
ZUEMt ePm,v

Having obtained the personalized gradient information for
each client, the final global optimization at the server can be

performed as follows
> blar).

meM;

(14)

W41 = Wy (15)

_.n
M
The whole updates and procedures are summarized in

Algorithm 1.

V. EXPERIMENT RESULTS

In this section, we perform experiments on two real-world
wireless traffic datasets. We first describe and analyze the two
datasets briefly. Then, we provide a detailed explanation of
parameter settings, evaluation metrics, and the corresponding
baselines. Lastly, we present the prediction performance of our
proposed algorithm and its comparisons with state-of-the-art
models.

A. Datasets Description

The datasets adopted in this study are Call Detail Records
(CDRs) from the city of Milan, Italy and the province of
Trentino, Italy, collected every 10 minutes over a two-month
time span and released by Telecom Italia [46]. In the following

(b)

Fig. 5. Average traffic distribution of the two real-world datasets. (a) Milan;
(b) Trentino. The darker the color, the larger the traffic volume.

description, we denote them as Milan and Trentino, respec-
tively. The raw CDRs are geo-referenced, anonymized and
aggregated Internet traffic data based on the location of BSs.
Specifically, a CDR record is logged if a user transfers more
than 5 MB of data or spends more than 15 minutes online.
For the convenience of understanding, we use MB as the unit
of the data. Table I shows the detailed statistics of these two
datasets and Fig. 5 gives the spatial distribution of the averaged
wireless traffic. Note that though the average traffic volume of
the Milan is 7,250 MB, which is much higher than that of the
Trentino, from the perspective of the coefficient of variation,
the Trentino dataset is larger than the Milan dataset, indicating
high heterogeneity among different SCUs.

B. Baseline Algorithms and Evaluation Metrics

We compare our method with the following state-of-the-art

algorithms.

o FedAvg [44]. This is the seminal work on federated learn-
ing from decentralized data. The clients perform local
SGD multiple times and send the obtained gradients or
updated parameters to the server, where the aggregation
is performed to yield the final model.

o FedProx [28]. It was proposed to stabilize the training of
FedAvg on Non-IID data by adding a proximal term on
the objective function of local clients.
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TABLE I
PREDICTION PERFORMANCES OF DIFFERENT ALGORITHMS ON THE MILAN AND TRENTINO DATASETS. THE BEST PREDICTION RESULTS ARE MARKED
AS BOLD FOR EASY COMPARISON. AC' SHOWS THE TOTAL TRANSFERRED DATA BYTES BETWEEN LOCAL CLIENTS AND THE CENTRAL SERVER
MEASURED IN MB.

Milan

Trentino

Method Notes AC (MB)
RMSE MAE R? Score  RMSE MAE R2 Score

FedAvg [44] - 0.1401  0.0965 0.9371 1.0504  0.5834 0.7871 126.27/322.68
w=0.01 0.1398  0.0960 0.9373 1.0057  0.5581 0.8129

FedProx [28] p=0.1 0.1400  0.0963 0.9373 1.0402  0.5774 0.7936 126.27/322.68
p=1 0.1339  0.0869 0.9446 1.1615  0.6475 0.7114

FedAtt [45] - 0.1357  0.0898 0.9431 0.9194  0.5269 0.8637 126.27/322.68
p=1 0.1339  0.0816 0.9466 0.7391  0.3933 0.9264 126.30/322.74

FedDA [43] =10 0.1308  0.0795 0.9493 0.7823  0.4188 0.9143 126.55/323.39
» =100 0.1301  0.0790 0.9493 0.7711  0.3918 0.9217 129.06/329.81

FedCOMGATE [26] - 0.1438  0.1027 0.9317 0.7427  0.3849 0.9273 14.373/38.449
k-relevant 0.1299 0.0788 0.9501 0.6935 0.3621  0.9431

Proposed 5-threshold 0.1301  0.0797 0.9486 0.6943  0.3638 0.9423  3.1494/7.5843
all-correlated  0.1300  0.0795 0.9483 0.7048  0.3805  0.9499

o FedAtt [45]. By this method, the server performs a
weighted aggregation instead of a simple average, and
the weights are obtained based on the Euclidean distance
between the global model and the local model.

o FedDA [43]. This method represents a dual-attention
based federated optimization algorithm. When updating
the global model, the server considers the Euclidean
distances between local models and the global model and
the quasi-global model.

o FedCOMGATE [26]. This is the state-of-the-art FL algo-
rithm with gradient compression techniques. It provides
theoretical guarantees on the convergence of FL when
introducing gradient compression. FedCOMGATE is de-
signed for general machine learning problems, not for
wireless traffic prediction.

To quantitatively evaluate the performances of different
wireless traffic prediction algorithms, we adopt three widely
used metrics in the following experiments, i.e., Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and R
Squared (R?) score. RMSE and MAE denote the difference
between predictions and ground truth. Smaller values denote
better prediction results. R squared score provides a measure
of how well predictions are replicated by the model, based on
the proportion of total variation of predictions explained by the
model. The higher the values, the better the prediction results.
Additionally, we also compare the amount of transferred
gradients (AC') between local clients and the central server
of different algorithms.

C. Experiment Settings

The experiment results are obtained with the following
settings. We first utilize a sliding window scheme to construct
training and test datasets. Specifically, data from the first seven

weeks are used to train the model, and all remaining data are
used to test prediction performance. The window size p is set
to 6, that is, we use one-hour Internet traffic as feature input to
predict the traffic volume of the next time slot. To accelerate
training, all data samples are standardized by subtracting the
mean and dividing by the standard deviation for each SCU.
Considering the necessity to minimize the extra computing
and communication burdens of model training on wireless
networks, a relatively lightweight prediction model is preferred
for edge clients. Thus a three-layer MLP architecture is
designed with hidden neurons of 128, 128, and 1, respectively.

As for the setting of hyper-parameters involved in FL,
we follow the instructions in previous works [26], [43],
[44]. Specifically, we use stochastic gradient descent (SGD)
as the optimizer to train our model and train it with 200
communication rounds in total. For the learning rate of local
updates, i.e., €, we start with 0.1 and decay it by 10 using
a multi-step learning rate scheduler with milestones of 100
and 150. The learning rate at the server, 7, is set to 1.0.
Before sending the gradients to the server for aggregation,
we update the local model via 5 steps of SGD with a batch
size of 20 and compression ratio of 0.01. In our k-relevant
and J-threshold strategies, we set k 4 and 9 0.5
unless otherwise specified. Note that in order to make fair
performance comparisons, all prediction models, including
our model and all the baseline models, use exactly the same
network architecture and parameter settings. We implement all
algorithms using PyTorch [47] library and run the script on a
desktop running a CentOS system.

D. Overall Prediction Performance

Table II reports the achieved prediction performances of
different algorithms. It is worth noting that in FedP rox, there
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Fig. 6. Convergence and communications on the two datasets: (a) Loss versus communication rounds on the Milan dataset; (b) Loss versus transferred gradient
size on the Milan dataset; (c) Loss versus communication rounds on the Trentino dataset; (d) Loss versus transferred gradient size on the Trentino dataset.

is a parameter p that balances the significance of the proximal
term. Similarly, FedDA holds a parameter ¢ to control how
many augmented data samples should be transferred to the
server for quasi-global model training. We consider different
choices of these parameters and report the corresponding
results in Table II.

From this table, it is evident that our proposed algorithm
achieves predominantly better prediction results than all the
baselines. More specifically, different algorithms perform a
kind of similar on the Milan dataset, but they vary a lot on the
Trentino dataset. Take the MAE metric on the Milan dataset as
an example, the best prediction result is 0.0788, obtained by
our method with the k-relevant aggregation strategy. FedDA
achieves the second best MAE result, that is, 0.0790, when
transferring all the augmented data samples (¢ = 100) to the
server side. This indicates our method gains approximately the
same performance as the best baseline algorithm. For the R?
score achieved on the Milan dataset, our best result is 0.9501,
which is comparable to the second-best one (0.9493) achieved

by FedDA.

Meanwhile, on the Trentino dataset, our algorithm achieves
noticeable performance improvements over baselines. For in-
stance, the best MAE result of our algorithm is 0.3621,
obtained under the scenario of k-relevant aggregation strategy.
This indicates there is at least a 5.9% MAE improvement over
the best baseline’s MAE result, which is 0.3849 obtained by
FedCOMGATE algorithm. Likewise, our algorithm improves
the R2 score from 0.9273, achieved by FedCOMGATE method,
to 0.9499, obtained by the all-correlated aggregation strategy.

Besides the accuracy performance, we can also observe
the communication performances of different algorithms in
Table II. To be more concrete, FedProx and FedAtt have
the same communications as FedAvg since all of them
need only transfer the gradients of each SCU to the server
and no extra communications are required. Though FedDA
achieves the best prediction performance among all baselines,
it requires slightly more communications to transfer part of
the augmented data samples to the server for quasi-global
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Fig. 7. Comparisons between the predicted and ground truth values: (a) Quintosole (upper) and Roserio (lower); (b) Prediction error analysis for Quntosole
and Roserio; (c) Andalo (upper) and Bocenago (lower); (d) Prediction error analysis for Andalo and Bocenago.

model training. Our algorithm only needs to transfer the
compressed gradient and the corresponding gradient indices,
thus it is more communication-efficient when compared to
FedDA. Moreover, our algorithm has a lower communication
complexity than the classical federated compression algorithm
FedCOMGATE, which also needs to transfer a control variable
for gradient update. Though FedCOMGATE achieves the low-
est communication complexity among all baselines, its predic-
tion performance is still inferior to ours since the personalized
aggregation strategies enable our algorithm to capture the non-
uniform spatial correlations of different SCUs. Consequently,
our proposed algorithm achieves better prediction performance
than FedCOMGATE.

E. Convergence and Communication Efficiency Analysis

In this subsection, we analyze the convergence and com-
munication efficiency of our algorithm in terms of training
loss and transferred gradient size, respectively. The obtained
results are displayed in Fig. 6. Note that we only compare our
algorithm with FedAvg for simplicity. As the compression
ratio influences the performance of our algorithm the most,
we report the communication efficiencies under different com-
pression ratios, that is, v € {0.01,0.05,0.1}.

We can see from Fig. 6a and Fig. 6¢ that our algorithm
achieves a larger loss than FedAvg at the initial phase of
model training (e.g., less than 50 rounds). This is because
FedAvg involves no gradient compression, thus it sends all

the gradient information to the server for federated opti-
mization, which results in faster convergence and a lower
training loss. However, as the training continues, our algorithm
gradually approaches FedAvg and finally outperforms it since
not only all gradient information will be sent to the server, but
also the spatial correlations of different SCUs are captured by
our personalized aggregation strategy.

As illustrated in Fig. 6b and Fig. 6d, under certain training
loss constraints, our algorithm can relieve a large portion of
bandwidth when training models. Considering the Trentino
dataset as an example. Our algorithm needs approximately
3 MB (y = 0.01), 4 MB (y = 0.05), 13 MB (y = 0.1)
communications to reach the loss of less than 0.2. However,
the bandwidths required for achieving the same performance
by FedAvg is over 30 MB. A similar phenomenon exists on
the Milan dataset, and we omit the detailed explanations here.

E. Prediction Performance on Different Single SCUs

The above subsection demonstrates the superiority of our
proposed algorithm from the perspectives of both prediction
performance and communication complexity. But what is the
prediction performance of our algorithm on a single SCU?
In this subsection, we go one step further and answer this
question by reporting the comparisons between predictions and
ground truth values on different SCUs randomly selected from
the two datasets.
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Without loss of generality, two SCUs per dataset are se-
lected. The two selected SCUs for the Milan dataset are
located in Quintosole and Roserio, respectively. In the mean-
time, for the Trentino dataset, the two selected SCUs are
located in Andalo and Bocenago, respectively. The predictions
versus ground truth comparisons for these four SCUs are
illustrated in Fig. 7. Note that these SCUs are randomly
selected without considering their similarities or geographical
locations. The Cumulative Distribution Functions (CDF) of
absolute prediction errors for different SCUs are also included
in Fig. 7. Note that we only compare our algorithm with
FedAvg and FedDA, for the sake of clarity. Besides, all the
results pertaining to the proposed method are obtained by the
k-relevant aggregation strategy, unless otherwise specified.

For the two SCUs in the city of Milan, we can notice from
Fig. 7a that all three algorithms achieve excellent performances
since the predictions and the ground truth values are matched
well for both peak and non-peak hours. Technically speaking,
our method achieves a slight improvement over FedAvg and
FedDA algorithms, and it can be quantitatively reflected in
Fig. 7b. Take Roserio as an example, the percentages of
prediction errors that are less than 100 for FedAvg, FedDA,
and our algorithm are 66%, 70%, and 72%, respectively. For
the two selected SCUs in the province of Trentino, we can
observe from Fig. 7c and Fig. 7d that our algorithm predicts
the traffic values accurately, especially for the peak traffic
values. The performance of FedAvg is not satisfying due
to its inability to cope with the data heterogeneity problem.

FedDA algorithm achieves better predictions than FedAvg,
particularly for peak-hours traffic prediction, as it has prior
knowledge of the data distribution and partially solves the
data heterogeneity challenges. But FedDA is still inferior
to our algorithm since it failed to capture the personalized
spatial correlations among different SCUs, which is of great
importance for spatial temporal wireless traffic prediction. The
results of Fig. 7 coincide with previous results of Table II,
thus again demonstrating the effectiveness of our algorithm in
solving wireless traffic prediction problems.

G. Parameter Sensitivity

Several parameters in our algorithm will affect the final
prediction performance, notably the compression ratio and
input feature size. In this subsection, we report how different
choices of these values influence the prediction results in Fig.
8. Note that we only show the RMSE results on the Trento
dataset in Fig. 8, since MAE and R? score have very similar
behaviors with the RMSE results on both datasets and their
results are excluded in this figure to simplify the understanding
of these parameters.

1) Compression ratio: The compression ratio affects pre-
diction performance the most since it indicates how fast the
server learns the complete gradient information of local clients.
We consider different compression ratios like in Section V-D
and report the achieved results of our three personalized
aggregation strategies in Fig. 8a. From this figure, we can
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observe that with the increase of compression ratio, for ex-
ample, from 0.01 to 0.1, the RMSE performance improves
gradually as more and more gradient information is transferred
from the local client to the server. The server can learn
the prediction model well when it receives enough gradient
information. However, keeping an increase of compression
ratio does not necessarily bring more performance gains as
the generalization ability of the prediction model does not
improve. Experimentally, a compression ratio of 0.1 achieves
relatively good performance.

2) Aggregated clients k and threshold 0: The results of
different choices of k and § are shown in Fig. 8b and Fig. 8c,
respectively, when setting compression ratio as 0.1. We can
see from both figures that when too many clients are involved
in model aggregation, performance is degraded. For example,
when & = 6 or 6 = 0.4, the RMSE results are worse than
k = 3 and § = 0.7, respectively. On the contrary, too few
clients selected for model aggregation (k = 1 or § = 0.8)
are not beneficial to performance as very limited information
is used for model personalization. Thus there is a trade-off
between performance and client involvement.

3) Input feature size: The input feature size also affects
the predictions of our algorithm, and the results are displayed
in Fig. 8d. We can understand from this figure that both too
short and too-long input lengths are not suited for model
training. Too short an input length may not properly reflect
the relationships between the input and the target. In contrast,
too long an input length may bring severe noise, making the
model hard to learn. In our case, the prediction performance
is relatively better when we use one hour’s traffic (n = 6) as
input to predict the next time slot’s traffic.

4) Number of local updates T and local batch size: Fig. 8e
and Fig. 8f show the results of RMSE regarding the number
of local updates 7 and local batch size. These two parameters
control a trade-off between communication and computation.
A large 7 or batch size results in more computations at local
clients and thus reduces communications between local clients
and the server. On the other hand, too much local computation
may lower down the convergence rate or make the training
not converge at all as each client goes too far towards its own
gradient update direction. This could result in a poor-quality
aggregated model distributed for training at local clients in
the next ground. For example, in both figures of Fig. 8e and
Fig. 8f, our model’s prediction performance degrades when
increasing 7 from 6 to 8 or batch size from 20 to 40.

From the above discussions, it is clear that there always
exist trade-offs when setting parameters for the proposed FL
framework and the relevant algorithms. In real-world tests and
implementations, the optimal values of the above parameters
can be obtained by applying grid search strategies.

VI. CONCLUSION

In this work, we studied the distributed wireless traffic
prediction at the edge for future communication networks and
proposed a gradient compression- and correlation-driven FL
algorithm to solve the formulated problem. Gradient com-
pression, or more concretely, gradient sparsification techniques

were introduced in our algorithm to release the communication
overheads between local clients and the central server. In
addition, we proposed using gradient correlation to reflect the
traffic pattern similarities of geographically distributed local
clients and derived three personalized gradient aggregation
strategies, i.e., k-relevant, -threshold, and all-correlated, for
modeling spatial dependencies of different clients. We val-
idated our proposed algorithm on two real-world datasets,
and the results we obtained demonstrated the superiority of
our algorithm over state-of-the-art methods in terms of both
accuracy and communication for wireless traffic prediction.
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