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Abstract— Oxygen consumption (VO2) is a well-
established clinical and physiological marker of
cardiorespiratory functionality and exercise capacity.
Despite this, VO2 monitoring is predominantly restricted
to expensive equipment and specialized laboratory
environments, thus limiting its broader application. To
address this limitation, our study introduces an end-
to-end Temporal Fusion Convolutional Network (TFCN).
This model leverages easily accessible physiological
parameters, such as heart rate (HR), heart rate reserve
(HRR), minute ventilation (VE), tidal volume (VT), and
breathing frequency (BF), to accurately predict VO2
dynamics. We derive these variables from cardiopulmonary
exercise testing (CPET) data, which was collected from a
diverse group of 58 adults using a COSMED system (41
males, 17 females; 38 healthy, 20 smokers; average age:
30±15 years; height: 1.75±0.2m; weight: 90±30kg; VO2
max: 42±6 L/min). Each participant was subjected to an
incremental exercise protocol, facilitating a comprehensive
exploration of VO2 dynamics. Ultimately, our base TFCN
model demonstrated a robust performance with an RMSE
of 0.30 L/min and an R2 of 0.84. Notably, the refined
TFCN model further enhanced these results, achieving an
improved RMSE of 0.23 L/min and an R2 of 0.92. Our study
establishes the feasibility of predicting VO2 dynamics
using low-cost, readily available variables outside of a
laboratory setting. Additionally, we examined the weight of
each input variable for a comprehensive interpretation of
the final VO2 predictions. Our study illustrates the potential
of our model in delivering highly accurate VO2 predictions
in non-laboratory settings, enhancing its reliability and
interpretability in potential applications.

Index Terms— Oxygen Uptake, Deep learning, VO2 esti-
mation

I. INTRODUCTION

OXYGEN uptake (VO2) is the standard metric used to
gauge the shifts in an individual’s absorption, transporta-

tion, and utilization of oxygen as a response to variations
in exercise intensity. This indicator provides a quantifiable
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measure of how efficiently the body adapts to the oxygen
demands imposed by physical activity. VO2 measurement
is important due to numerous reasons. Studies measure the
instaneous VO2 to estimate energy expenditure (EE) that
improves the nutrition management of elderly patients who
need to enter intensive care units frequently [1], [2]. It also
serves as a biomarker in the medical research field, employed
by scientists to quantify the progression and current status of
a patient’s illness such as heart failure and even rare diseases
[3], [4].

VO2 max, obtained from instaneous VO2, representing
the peak VO2 an individual can absorb during incremental
exercise. VO2 max gives a benchmark of the athlete’s current
level of aerobic fitness, providing a quantitive indicator of
athlete’s aerobic capacity. Coaches could utilize it to design
tailored training plan that cater to each athlete [5].

The most commonly used and accurate way to measure
the VO2 is cardiopulmonary exercise testing (CPET), which
requires the people wear a mask or mouthpiece that connected
to a metabolic cart. Then the machine captures and measures
the volume and gas concentraions of inhaled and exhaled air.
However, the machine is huge that must be tested by profes-
sional experimenters to operate in lab environment. Therefore,
some commercial products have emerged to propose more
convenient alternative detection methods. Enterprises such as
COSMED and VacuMed have developed portable devices that
enable outdoor testing capabilities. However, the expensive
price and the requisite use of a facial mask that cling to
the head introduces limitation and unconvenience. Hence,
its application for extended durations during routine daily
activities remains constrained [6].

Based on these limitation, some researches try to measure
the VO2 max by establishing a multivariate equation based
on the input such as age, sex, weight and height of each
individual [7]–[10]. In addition, commercial products such as
Garmin and Samsung smartwatches also measure the VO2
max [11]. Nonetheless, these methodologies are limited to the
computation of singular VO2 values and their models lack
generalization to diverse, novel populations. Furthermore, the
high degree of error associated with these methods compro-
mises their applicability in realistic, everyday scenarios [8],
[11].

Recent advance in wearable devices and artificial intelli-
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gence forged a new way for researchers. Studies have shown
the smartwatches could provide high-accuracy indicators such
as heart rate (HR), Electrocardiogram (ECG), oxygen satu-
ration (SpO2) and so on [12], [13]. Pertaining to respiratory
parameters, smart garments such as HEXOSKIN offer real-
time measurements of indices like Minute Ventilation (VE)
and Breathing Frequency (BF). Accordingly, the accuracy and
validity of these parameter measurements have been substan-
tiated by research [14]. Thus, some methods utilize the AI
methods to predict the VO2 with inputs from these low-cost
and easy-to-obtain variables such as HR, VE, BF, etc [15]–
[18]. However, these methods only focus on the continuous
variables derived from wearables, representing data that alters
over the time. While these anthropometric variables which are
not used by these methods, which could potentially harbor
a wealth of information, such as men typically exhibiting
higher VO2 values than women. Besides, they cannot provide
explainable insights to explain which input variable is most
important.

Thus, we propose a novel deep learning model, which
combines both variable variables and anthropometric variables
to predict the instaneous VO2. Our paper has the following
contributions:

1) We design a temporal fusion convolutional network
(TFCN) to provide the insights that we could use low-
cost parameters to estimate the instaneous VO2 in a non-
invaisve and long-time way.

2) We use more data(58), and different time span for
each sample to achieve the highest accuracy among the
existing methods.

3) Compared with other methods, we incoporate the anthro-
pometric variables such as gender, age, weight, height
and BMI as the enhancer of our model.

4) We are the first model that consider temporal behavior
including the time and workload.

5) We provide the explainable weights of each inputs vari-
ables, which provides insights for the future research.

II. RELATED WORKS

Within the corpus of related literature, numerous studies
have focused on predicting singular VO2 max values, em-
ploying a range of statistical techniques and machine learning
methodologies [19]. However, only a handful of these studies
have ventured into the realm of instantaneous VO2 prediction
[16]–[18]. Now our work intends to fill this gap by concen-
trating on the prediction of instantaneous VO2.

A. VO2 max prediction

Due to the importance of VO2 max, the early work adopt
the questionnaires to collect the basic information of each
individual. And then use mathematical modeling or machine
learning methods to build a predictive model. They utilize the
anthropometric variables such as age, height, BMI, weight,
gender, HR max to calculate the VO2 max [10]. Table I shows
the works and their related methods and input variables.

TABLE I
SUMMARY OF VO2 MAX PREDICTION METHODS

Study Methods Input Variables

Petelczyc et al.
2023 [7]

Differential
model

Gender, age, HR, HRmax, Workload

Abut et al.
2019 [9]

SVM,
GRNN,
SDT

Gender, age, height, weight, HRmax, time,
HR

Przednowek et
al. 2018 [8]

SVM,
MLP

Gender, distance, HRmax, recovery HR,
age, weight, height, waist, hip, waist to
height ratio, waist to hip ratio, BMI, fat
mass index, fat-free mass index, body adi-
posity index, body surface area, fat, fat-free
percentage, and total body water.

Abut et al.
2016 [10]

SVM,
MLP

Gender, age, MX-HR, SM-ES, Q-PFA

B. Instantaneous VO2 prediction

Predicting instantaneous VO2 presents more substantial
challenges compared to the estimation of a singular maximal
VO2 value. This complexity arises from the necessity to extract
and learn a greater volume of temporal features for instanta-
neous VO2 prediction. Furthermore, the instantaneous VO2

alterations across different exercises and diverse individuals
further complicates the prediction process. While VO2 max
is determined under peak exertion within a controlled test,
the measurement of instantaneous VO2 mandates continuous
monitoring during the course of exercise, posing significant
technical challenges. In this section, we concentrate on review-
ing recent methodologies aimed at predicting instantaneous
VO2. A summary of these methods is provided in Table
II. Finally, in response to the identified limitations of these
existing approaches, we propose our own study.

The initial attempts to quantify dynamic VO2 can be traced
back to the Su et al’s work published in the year 2007. They
used the Support Vector Regression (SVR) methods to estab-
lish a VO2 prediction model learned from the Pseudo-Random
Binary Sequence (PRBS) signal in the running activity [20].
However, the limitation lies in its sole reliance on treadmill
speed for predicting VO2, without considering inter-individual
differences. In other words, the same treadmill speed could
yield different VO2 values across individuals, reflecting the
unique physiological responses of each person.

With the ongoing advancements in wearable technology,
which can capture intricate physical parameters from the
human body, there has been a surge in studies that seek
to apply machine learning and statistical methods to data
gathered from these wearable devices [15]–[18], [21].

Altini et al. were pioneers in using accelerometer (ACC)
and HR sensor data to estimate nonsteady-state VO2 during
transitions between daily activities, including lying, sitting,
walking, biking, and running. By leveraging Support Vector
Machine (SVM) techniques, they developed a range of models
specifically tailored to predict VO2 for different activities and
their transitions [17]. Nonethelessness, the necessity to create
a new model for each state is a rather cumbersome process
and lacks universality. Then Cook et al. designed a algorithm
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TABLE II
SUMMARY OF METHODS FOR PREDICTING INSTANTANEOUS VO2

Study Data
size

Training
data

Testing
data

Methods Model inputs Device Protocols or exercise

Su et al. 2007
[20]

6 6 6 SVR PRBS and speed Treadmill Use PRBS to control the treadmill
protocol

Altini et al.
2015 [17]

22 21 1(LOOCV) SVM ACC, HR, anthropo-
metric features

ECG necklace,
ACC

Lying, sedentary, dynamic, walk-
ing, biking, running

Cook et al.
2018 [21]

42 28 14 IAA ECG, ACC, HR DREEM,
COSMED K4b2

Bruce protocol

Zignoli et al.
2020 [15]

7 7 7 LSTM HR, RF, P, ω power meter,
COSMED

Arbitrary protocols, Wingate test

Shandhi et al.
2020 [18]

17 16 1(LOOCV) XGBoost SCG, ECG, AP Custom-built
wearable patch

Treadmill protocol, outside proto-
col

Amelard et al.
2021 [16]

22 17 5 TCN HR, HRR, RF, VE Smart shirt One ramp-incremental, PRBS pro-
tocol

Our study 58 40 18 TFT Gender, age, height,
weight, BMI, HR,
HRR, VE, VT

COSMED Incremental exercise

Altini et al. 2015 [17] and Shandhi et al. 2020 [18], they use the Leave-One-Out Validation (LOOV) for testing; Zignoli
et al. 2020 [15] trained their model on two protocols per person and tested it on a different protocol for each.

combining HR and the integral of absolute acceleration (IAA)
to detect instantaneous VO2 [21].

To make the model more applicable in different exercises,
Shandhi et al. used a built wearable patch placed on the
mid-sternum to collect seismocardiography (SCG), electrocar-
diogram (ECG), and atmospheric pressure (AP) signals from
17 adults using both inside treadmill protocols and outside
protocols [18]. Later, they trained the eXtreme Gradient Boost-
ing (XGBoost) models on one protocol of each person and
validated the data from the other protocol and vice versa.

In addition, neural networks, especially deep learning mod-
els, demonstrate a robust ability to learn features directly
from raw data. As a result, there are also studies employing
Long Short-Term Memory (LSTM) networks to predict VO2.
[15]. This study collected the HR, breathing frequency (BF),
mechanical power output (P), and pedaling cadence (ω) of 7
amateur cyclists in 3 protocols (two arbitrary protocols and
the Wingate test). However, they used a power meter mounted
on the bicycle instead of a wearable sensor as the input, and
thus can only be applicable for cycling. During the process,
Two protocols of each person are used as the training set, and
the remaining protocol is used as the test set.

Amelard et al. is the first work using deep learning mode
temporal convolutional network (TCN) to predict VO2 based
on the smartshirt inputs. They first collected smart shirt data
(HR, HR reserve, BF, and minute ventilation(VE)) from 22
adults. Based on the temporal behavior of the data, they tried to
train a temporal convolutional network (TCN) on 17 adults and
test the model on the rest 5 adults [16]. This work shows the
great power of deep learning in prediction the instantaneous
VO2. However, the author ignored the physical and anthropo-
metric features of each individuals, which are very important
in deciding the VO2. Simultaneously, the model falls short in
providing explanations for its input factors and lacks extensive
validation to ensure its generalization capabilities.Furthermore,
the age variance among most participants in the study is less

than 10 years, weight variation is within 20kg, and height
disparity is less than 10cm. This suggests that the participant
group is homogeneous.

Therefore, based on these limitation, as shown in Table II,
we collect a larger dataset with 58 participants (41 males, 17
females; 38 healthy, 20 smokers; average age: 30±15 years;
height: 1.75±0.2m; weight: 90±30kg; VO2 max: 42±6 L/min).
We aim to combine both anthropometric features (such as
gender, age, height, weight, Body Mass Index (BMI)) and the
temporal features that can be obtained from wearables (such
as WorkLoad, HR, HRR, BF, VE, VT) into a deep learning
model to accurately predict VO2. We validate that our model
can perform well and generalized on different separate groups
including the young and old, smoker and healthy groups.

III. METHODS

VO2 kinetics demonstrate an organized but intricate tempo-
ral pattern in response to exercise. Thus extracting temporal
information poses a significant challenge. Among prior studies
in Section 2, only Amelard et al. attempted to harness a TCN
to capture temporal dynamics [16]. Although TCN obtains a
good performance, it still can not give us som useful informa-
tion that which variables matters a lot to our predictions. To
enhance both the interpretability and performance, we have
developed a novel model called Temporal Fusion Convolu-
tional Network (TFCN), as illustrated in Fig. 1. This model
is built upon two sections including the feature embedding
and temporal extraction part. Inspired by [22], we built a fea-
ture embedding module that converts the anthropometric and
dynamic inputs into the input embeddings, and also includes
the importance of each variable. And then we established a
temporal extraction module that learn the temporal features
of the inputs sequences. In the next sections, we will have a
clearer understanding about the method implementation and
model structure.



4

A. Overview of the Method

Given a time-series input sequence x =
x1, x2, ..., xt, ..., xT ∈ Rn. For each input sequence, it
has T timesteps. At the current time t, xt represents the
input variables values at time t, which is a n-dimension
vector. n equals to the number of variables we used including
the dynamic and anthropometric variables (in this case, the
n = 11). The aim of the model is to predict the V O2(t)

value given the historical time-series x1, x2, ..., xt. After
concurrently processing all input sequence with the T
timesteps, the model would predict the according temporal
sequence ˆV O2 : y = y1, y2, y3, ..., yt, ..., yT ∈ R, and yt
represents the predicted ˆV O2(t) value at current t timestep.

ˆV O2(t) = yt = Model(x1, x2, x3, ..., xt) (1)

Overall, as the equation (1) shows, the model is trained to
minimize the difference between its predicted ˆV O2 values and
the true V O2 values.

B. Model Structure

Our Temporal Fusion Convolutional Network (TFCN)
model, depicted in Fig. 1, is primarily composed of three main
components: the feature selection part, the temporal extraction
part and the output generation part.

1) Feature Selection: Drawing inspiration from prior work
in interpretable time-series modeling [22], this component
comprises two independently parameterized variable selection
networks based on Gated Residual Network (GRN) - one
dedicated to static anthropometric features, the other for
dynamical signals. Each network embeds its respective input
variables into lower-dimensional spaces, allowing the model
to quantify the predictive importance of each original variable.
Specifically, the anthropometric network projects attributes
like age, sex and body dimensions, while the dynamic network
encodes time-series measurements including VE, VT, BF, HR
and HRR.

Crucially, the variable selection procedure assigns a nu-
merical importance weight to each embedded variable repre-
sentation. These weights indicate the relative contribution of
the original input features in informing the overall model’s
predictions. For example, variables assigned higher weights
can be interpreted as carrying more predictive information
regarding future VO2 levels. This module enhances model
transparency while facilitating discovery of key determinants
among the input variables.

2) Temporal Extraction: A crucial component of modeling
temporal data is adequately capturing the temporal dependen-
cies and dynamics within the inputs cariables. To address this,
our model incorporates a specialized Temporal Extraction Part
based on temporal convolutional networks (TCNs).

TCNs are particularly well-suited for extracting meaningful
temporal representations from sequential data due to their
dilated causal convolutions which allow the model to learn
patterns over a wide effective historical context. In our im-
plementation, the Temporal Extraction Part contains a 3-layer
1D TCN architecture. Each layer doubles the receptive field

Fig. 1. Schematic representation of the Temporal Fusion Convolutional
Network (TFCN) model. The model is divided into three main sections:
Variable Selection uses two networks to process anthropometric and
dynamic variables from the input data. Temporal Extraction uses a
Temporal Convolutional Network (TCN) and a self-attention mechanism
to understand patterns and importance over time. The final part, Output
Generation, uses a feed-forward network to predict the ˆV O2 values.

size through an exponentially increasing dilation factor. This
recursive structure enables the network to identify patterns
spanning both short-term fluctuations and long-range trends
over the entire input sequence history.

By extracting multi-scale temporal features from the em-
bedded input variables, the TCN aids downstream predictive
and explanatory modeling. Its dilated architecture also helps
address the variable-length nature of real-world physiological
time-series.

3) Output Generation: After the Variable Selection and
Temporal Extraction parts process and transform the input
data, the extracted high-level feature representations are passed
to the final Feed-Forward Network (FFN). The FFN contains
multiple fully-connected layers that act as a regressor, pro-
jecting the encoded multi-dimensional feature space onto the
target variable space of ˆV O2 values. Specifically, the temporal
patterns learned by the earlier components are mapped through
the deep set of nonlinear activations within the FFN. By
fusing all available input information, the FFN performs the
classification task of predicting ˆV O2 using the linear layer.
This last step effectively ties together all the learnings and
transformations from the previous stages to produce the output
that we are interested in predicting.

Altogether, the inclusion of the FFN completes the end-to-
end predictive modeling pipeline. It ties together all the trans-
formations performed by the preceding interpretable variable
selection and representation learning stages to distill them into
informative V O2 forecasts. The full TFCN architecture is thus
highly effective for both prediction and interpretability.
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Fig. 2. For each specific anthropometric variable, the mean VO2 value was calculated within each group. These calculations revealed noticeable
disparities between the groups, indicating the distinct influence of each variable on VO2 values.

C. Loss function

Quantile loss function, is often used in time series prediction
when we are interested in predicting an interval estimate
(quantile) instead of a point estimate. Specifically, the quantile
loss function is designed to estimate the τ -th quantile of the
conditional distribution of the response variable. By varying
τ , the model can provide a different level of confidence in
its estimates, which can be very useful when dealing with
uncertainty and variability in time series data. The quantile
loss L i-th timestep can be represented as the equation (2).
For the total loss, the loss can be calculated by summing all
quantile loss, N is the total number of timesteps, τmax is the
total number of quantiles, and the double sum is taken over
all timesteps i and all quantiles τ as equation (3) shows.

Lτ (V O2(i), ˆV O2(i)) = τ ∗max(V O2(i) − ˆV O2(i), 0)+

(1− τ) ∗max( ˆV O2(i) − V O2(i), 0)
(2)

Lτ (V O2, ˆV O2) =

τmax∑
τ=1

N∑
i=1

Lτ (V O2(i), ˆV O2(i))

Nτmax
(3)

Quantile loss allows the model to predict a range of possible
outcomes, which can provide more information than a simple
point prediction. We use three various percentiles (e.g. 10th,
50th and 90th) at each timestep, which means the τ =
0.1, 0.5, 0.9, and finally we use the percentile the 50th as our
predictions.

D. Data Availability

1) Data Collection: Fifty-eight adults (41 males, 17 females;
38 healthy, 20 smokers; average age: 30±15 years; height:
1.75±0.2m; weight: 90±30kg; VO2 max: 42±6 L/min) vol-
unteered to be measured by COSMED in this study. The
experiment was under ...

2) Data Preprocessing: In the initial stages of our analysis,
we began by procuring the raw data, which was subsequently
subjected to a visual examination to identify potential outliers.
Upon identification, these outliers were manually excised from
the dataset to ensure the integrity of further data processing
steps. Following the removal of outliers, we implemented a
data sampling strategy to systematically select representative
data points. This was achieved by resampling each point at
regular two-second intervals, utilizing linear interpolation to
estimate missing values where necessary.

While the aforementioned steps have addressed the issue
of obvious outliers, there remained the possibility of less
apparent anomalies or noise within the data. To tackle this,
we employed a data smoothing technique rolling window.
Specifically, a window size of two was chosen to average the
data points within each window, effectively reducing short-
term fluctuations and highlighting longer-term trends or cycles.
Suppose we have a time series x = x1, x2, ..., xn and we want
to apply a rolling window of size k. Then the smoothed value
yi at time i can be calculated as:

yi =
1

k

k−1∑
j=0

xi−j (4)

Unlike previous methodologies that collect data within a
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fixed temporal span [16], [18], thereby enforcing uniform
exercise and rest durations for all subjects, our data collection
approach embraces individual variability in time lengths. An
illustrative example of this variability can be observed in the
gender-based discrepancy where men often require more time
than women to attain their VO2max.

Our analytical framework leverages the sliding window to
accommodate these differing time lengths. Let us denote the
length of our sliding window as e, and the sequence length
of a specific individual as Si, with i serving as the unique
identifier for the individual.

The window initiates at the sequence’s commencement, en-
capsulating the initial e steps. Subsequently, the window shifts
one step to the right, a process which continues iteratively.
This procedure yields Si − e+ 1 samples for an individual i.
In this way, not only augments our dataset but also effectively
manages the inherent variability in sequence lengths across
our dataset.

Finally, we employed a stratified sampling approach for
our data split. In this method, we divided our dataset into
homogeneous subgroups based on different age groups (one
age group for every 10 years old). We then split each subgroup
into a training dataset and a test dataset, maintaining a ratio
of 0.7 to 0.3 respectively. This stratified approach ensures that
our training and testing sets accurately and comprehensively
reflect the overall age distribution of our dataset, allowing us to
better evaluate the performance of our model across different
age groups.

3) Data Distribution: The distribution of the entire dataset is
presented in Fig. 2, which illustrates the mean distribution of
the variable VO2 with respect to various parameters including
gender, age, height, weight, BMI. The figure provides a visual
representation of these anthropometric data characteristics,
facilitating a more comprehensive understanding of the dataset.

The proposition that VO2 is influenced by age, attributed
to the decrease in metabolically active tissue associated with
aging, has been in consideration since 1988 [23]. Concurrently,
sports scientists began to recognize the effect of factors such
as gender, weight, and BMI on VO2 [24]. This is intuitively
comprehensible, as a larger body necessitates a greater oxygen
supply for its functioning. Furthermore, it was observed that
men, on average, exhibit higher VO2 max values than women.
Consequently, these anthropometric parameters were utilized
into early methodologies for constructing estimations of VO2.
Given the distinct disparities observed among different groups
in Fig. 2, we decided to incorporate anthropometric variables
as prior knowledge into our model. This integration is designed
to improve the performance of the model by capturing the
influence of these factors.

E. Evaluation Metrics

The evaluation metrics we use are Root Mean Square
Error (RMSE) and the R-squared (R2). Suppose we have the
true value in the i-th timestep of V O2(i) and the predicted
value ˆV O2(i), the Root Mean Square Error (RMSE) could be
calculated by equation (5).

RMSE =

√√√√ 1

n

n∑
i=1

(V O2(i) − ˆV O2(i) (5)

R2 provides a quantitative measure of how well the pre-
dicted ˆV O2 values from a model align with the actual values
VO2. R2 is defined as the proportion of the variance in
the dependent variable (in this case, the true VO2) that is
predictable from the independent variable(s) (in this case, the
predicted ˆV O2). A higher R2 indicates a better fit of the model
and suggests that the model can better explain the variation in
the data. Firstly, we alculate the mean of the true VO2 values,
denoted as ¯V O2:

¯V O2 =
1

n

n∑
i=1

V O2(i) (6)

Compute the total sum of squares (TSS), which is the sum
of squares of the difference between the true VO2 value and
the mean of true VO2 values. It quantifies the total variance
in the data:

TSS =

n∑
i=1

(V O2(i) − ¯V O2)
2 (7)

Then calculate the residual sum of squares (RSS), which is
the sum of squares of the difference between the true VO2

value and the predicted ˆV O2 value. It quantifies the variance
left unexplained by the model:

RSS =

n∑
i=1

(V O2(i) − ˆV O2(i))
2 (8)

Finally, based on the (7) and (8), we could calculate R2

using the formula:

R2 = 1− RSS

TSS
(9)

IV. RESULTS

A. Comparison with other methods
In prior research, various studies have explored the uti-

lization of LSTM and TCN for the prediction of VO2 [15],
[16]. However, a conspicuous gap in the literature is the
lack of available code for these predictive models, thereby
limiting comparative analysis of their performance. In this
study, we implemented the LSTM and TCN for the predic-
tion of instantaneous VO2 using two different inputs sets:
dynamic-variables only, dynamic variables and anthropometric
variables. For each model, two distinct models were used for
this purpose:

• the "Base model": the model designed to use only
dynamic variables inputs.

• the "model": the model formulated to use both dynamic
and anthropometric variables as inputs.

The performances of these models were compared in terms
of their RMSE and Coefficient of Determination R2 values,
as shown in Table III. Among the various methods tested, our
TFCN model exhibited state-of-the-art performance, achieving
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Fig. 3. We present the selected optimal scenarios across three age groups (20-30, 30-40, 40-50). The TFCN (yellow) demonstrates superior
regression performance to the true VO2 values (black) compared to the other two models (TCN: purple; LSTM: pink). It’s noteworthy that all three
models were supplied with identical inputs, encompassing both dynamic and anthropometric variables.

TABLE III
COMPARISON OF RMSE(L/min) AND R2 FOR VO2)

Methods R2 RMSE

Base Stacked LSTM 0.837 0.248

LSTM 0.690 0.300

Base TCN 0.626 0.402

TCN 0.802 0.273

Base TFCN 0.840 0.303

TFCN 0.916 0.234
TFCN model achieve the best performance than other methods, and the
inputs including the anthropometric variables (gender, age, weight, height,
BMI, workload) and the dynamic variables (HR, HRR, VE, VT, BF)

the lowest RMSE and highest R2 values. And we tested
our all the models on the 18 testing files, Fig. 3 shows the
food scenarios in three different age groups, TFCN shows the
robustness compared with other modesl.

Apart from superior accuracy, our model offers explana-
tory insights into anthropometric and dynamic variables, the
weights are obtained by averaging each sample importance
as demonstrated in Table IV. The importance value assigned
to each input variable serves as a measure of its significance
to the final VO2 prediction. As shown in Section methods,
we quantify our variable importance by analyzing the variable
selection weights which were calculated in the module feature
selection.

An examination of the anthropometric variables reveals that
height and weight each contribute nearly equal importance

Fig. 4. This figure shows the importance of anthroupometric variables
(left) and dynamic variables (right) separately.

(approximately 0.5) to the accuracy of the predictions, as
depicted in Figure 4. Among dynamic variables, VT holds
the most importance, outweighing other variables in obtaining
the final predictions. It is notable that the HRR variable was
assigned the least importance compared to other variables
in the time series prediction model. This finding can be
reasonably explained by considering how the HRR metric
is calculated. Specifically, the HRR is derived from three
key heart rate measurements: HRactivity, the heart rate value
recorded during each activity; HRrest, the average heart rate
during rest periods; and HRmax, the maximum heart rate
observed. As the HRR is effectively an aggregated and nor-
malized metric computed from these underlying HR variables,
it contains less unique predictive power on its own compared
to HR variable.

The observations from analyzing the weights and predictive
importance values assigned to each variable in the model
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demonstrate its ability to provide quantifiable explanations for
predictions. This level of interpretability is crucial, as it allows
researchers to verify that the model is operating as expected
based on domain knowledge.

TABLE IV
IMPORTANCE

Anthropometric
variable

Importance Dynamic variable Importance

Height 0.34 VT 0.5
Weight 0.25 HR 0.23
Sex 0.15 VE 0.10
Age 0.11 BF 0.09
BMI 0.07 HRR 0.04
WorkLoad 0.06 - -
This table represents the importance of each variable to get the final VO2

prediction

B. Ablation Study

As previously discussed and demonstrated in Table III and
Table IV, the inclusion of anthropometric variables signifi-
cantly improves the performance of our TCFN model and the
TCN model. This enhancement is further visualized in Fig. 5,
where each model’s performance is compared both with and
without the inclusion of anthropometric variables.

Incorporating these variables imparts prior knowledge to
both the TCFN and the TCN models, leading to a reduction in
RMSE by 0.07L/min and 0.13L/min, respectively. This is
a clear indication of the substantial performance improvement
these variables bring to the TCN model.

Contrastingly, an increase in the number of variables results
in a decrease in the performance of the LSTM model. This
could potentially be due to the simpler structure of the LSTM
model, which may inhibit its ability to effectively learn and
process the information contained within the incorporated
variables.

In sum, these findings substantiate, to a considerable degree,
that both our model and the TCN model have successfully
integrated and learned from the prior knowledge provided by
the anthropometric variables.

V. CONCLUSION AND DISCUSSION

Our proposed model demonstrates the ability to take in
CPET data of varying time lengths as input and produce
accurate VO2 values along the time. Using a limited set of
easy-to-measure features including VE, VT, BF, HR, HRR,
and basic anthropometrics, the model achieves state-of-the-
art predictive performance. A key finding of this work is
the importance of incorporating anthropometric variables for
precise VO2 estimation, highlighting the need to consider both
physiological responses and individual characteristics for the
future work. Meanwhile, the parsimony of inputs required
by our model (many of which can be collected via portable
devices) suggests promising applications for expanding VO2

monitoring beyond laboratory settings.
For example, integration with a wearable spirometry like

MiniSpir to gather VE, VT and BF alongside smartwatch

Fig. 5. This figure compares the performance of three models, both
with and without the inclusion of anthropometric variables. The black
line depicts the actual VO2 values. Upon inspection, it is evident that for
both the TFCN and TCN, the incorporation of these variables facilitates
a more accurate learning of the temporal behavior of VO2. Conversely,
for the LSTM model, the addition of these variables appears to have an
adverse effect on its performance

collection of HR and HRR parameters could enable minimally-
burdensome and affordable predictive testing in field contexts.
This has implications for increasing access to VO2 profiling,
and enabling investigation of metabolic responses under real-
world conditions rather than confined laboratory protocols.

While prior work has predominantly focused on prediction
performance, many of these existing methods can be char-
acterized as ”black-box” models that provide little insight
into the relationships learned. In contrast, the current study
incorporated a variable selection mechanism allowing the
model to explicitly determine the relative predictive impor-
tance of different features. Such interpretability is valuable,
as it provides useful insights for researchers in the domain.
For example, through analyzing feature attention weights and
importance metrics, we found variables like VT to be more
influential in predictions than other features like BF and HRR.
This finding aligns with theoretical understandings of the
key physiological determinants of cardiorespiratory responses.
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Being able to reveal predictive relationships in a transparent,
quantifiable manner can guide future data collection efforts to
target the most salient metrics.

Moreover, interpretability facilitates iterative model devel-
opment. The model’s predictions can be scrutinized against
current physiological knowledge to identify potential areas for
refinement. Optimization of model architecture, hyperparam-
eters or learning objectives can then be informed by domain
expertise. Over time, this process of post-hoc analysis and
targeted improvement promises to yield increasingly accurate
and well-calibrated forecasts.

Overall, our results demonstrate the potential for inter-
pretable AI to leverage wearable-accessible indicators as a
pathway to advancing non-exercise VO2 assessment. With
further validation and interface with adjunct technologies,
forecasting cardiorespiratory fitness from sparsely sampled
signals collected during activities of daily life may become
feasible. We believe the current work presents an exciting step
toward more transparent, collaboratively optimized methods
for VO2 analyses in medical and health domains.
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