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Abstract—Reconfigurable intelligent surfaces (RISs) appear
as one of the most promising paradigms for future wireless
communications, because of their high adjustability for diverse
communication demands and the additional information-carrying
capability by reflecting patterns. This paper investigates the
capacity of RIS-assisted multiple-input multiple-output (MIMO)
symbiotic communications utilizing multiple reflecting patterns,
where each reflecting pattern is non-uniformly activated to carry
additional information. To enhance transmission performance,
the reflecting patterns, reflecting activation probability, and
the transmit covariance matrix are jointly designed. Since the
exact expression of the system capacity is intractable, the lower
and upper bounds on the capacity are derived and used for
optimization in this paper. Based on the lower bound on the
capacity, a gradient ascent algorithm is developed to find the
optimal reflecting patterns, reflecting activation probability, and
the transmit covariance matrix. By taking advantage of the
concise-form upper bound on the capacity, closed-form solutions
of the reflecting activation probability and transmit covariance
matrix can be derived after optimizing the reflecting patterns.
The superiority of the proposed design is investigated and verified
by computer simulations. Some selected numerical results demon-
strate that the proposed design can achieve a higher capacity than
the benchmark adopting only one reflecting pattern.

Index Terms—Reconfigurable intelligent surface (RIS),
multiple-input multiple-output (MIMO), symbiotic communica-
tions, capacity analysis.

I. INTRODUCTION

S fifth generation (5G) wireless networks are gradually

being deployed worldwide, the potential technologies
applied in beyond 5G or even sixth generation (6G) networks
attract researchers from both academia and industry [1]-[5].
The lifestyle of people becomes increasingly dependent on
network connectivity, raising the expectations of transmission
capacity, data rate, latency, coverage, and miscellaneous qual-
ity of service (QoS) requirements [1], [5]. To handle these

J. Ye, B. Shihada, and M.-S. Alouini are with Computer, Electrical and
Mathematical Sciences and Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia (e-
mail: {jia.ye, basem.shihada, slim.alouini} @kaust.edu.sa).

S. Dang was with Computer, Electrical and Mathematical Science and
Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia, and is now with Department
of Electrical and Electronic Engineering, University of Bristol, Bristol BS8
1UB, UK (e-mail: shuping.dang @bristol.ac.uk).

S. Guo was with Computer, Electrical and Mathematical Sciences and
Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia. He is now with Shandong
Provincial Key Laboratory of Wireless Communication Technologies and
School of Control Science and Engineering, Shandong University, Jinan
250061, P.R. China (e-mail: shuaishuai_guo@sdu.edu.cn).

challenges, various promising technologies have been pro-
posed, such as terahertz (THz) communications, various free-
space optical networks, and integrated satellite-to-terrestrial
systems. Among all prominent candidates, the reconfigurable
intelligent surface (RIS) has recently emerged as one of the
most promising paradigms to support the beyond 5G and 6G
wireless communications [6].

In essence, the RIS is a planar meta-surface composed of
a large number of passive and low-cost reflecting elements,
such as positive-intrinsic-negative (PIN) diodes, each of which
enables an independent phase shift and/or amplitude attenua-
tion to the incident signal [7]. With the support of the RIS,
the propagation environment between receiver and transmitter
becomes adjustable in a flexible manner for QoS improve-
ments corresponding to different communication scenarios and
demands [8]. The signals reflected by a well designed RIS
can be added at the receiver with other signals to increase the
received signal strength, suppress symbol error, and mitigate
co-channel interference [9].

Although the signal forwarding operation at the RIS sounds
like a traditional relay, the most distinguishable difference is
that the reflecting elements on the RIS are passive and without
transmitting/receiving radio frequency (RF) chains [10]. As a
result, an RIS operates in a much greener way with orders-of-
magnitude lower energy cost/hardware compared to traditional
active antenna arrays. Furthermore, due to the passivity, RISs
can easily operate in a full-duplex mode and offers a much
higher spectral efficiency (SE). As RISs are free of any antenna
noise and self-interference, the hardware complexity of passive
RISs is much lower than a conventional full-duplex relay,
which needs additional techniques and architectures for self-
interference cancellation [11]. Except for the aforementioned
advantages, RISs are also favorable by researchers and engi-
neers due to the high flexibility and superior compatibility for
practical implementations [12]. The lightweight and conformal
geometry of RISs enables the transparent integration into
existing wireless communication networks without any change
in the hardware and software architectures. Therefore, RISs
can be easily installed on facades of buildings, objects, ceiling,
and walls [13].

A. Prior Work

The promising advantages stated above envision the poten-
tial of RIS to significantly enhance wireless transmission in
an energy- and cost-efficient way. However, the performance
gain brought by RIS can only be realized under the precon-
dition that the RIS reflection coefficients are well designed.



Recently, a great number of researchers from both industry
and academia have been attracted by the peculiarities of RIS,
who have provided a large and growing body of literature
regarding system performance analysis and optimization from
the perspectives of received signal power [14], [15], chan-
nel estimation [16]-[18], symbol error rate [19], deployment
scheme [20], [21], physical layer security [22]-[24], and so
on. Apart from these emerging research directions, studying
the capacity of RIS assisted communication systems from
an information theoretic viewpoint is crucial to unveil the
upper bound on the performance gain brought by RISs. How-
ever, most existing works analyzing capacity of RIS assisted
communication systems focus on single-input single-output
(SISO) or multiple-input single-output (MISO) scenarios [25]-
[27], while the capacity analysis of RIS assisted multiple-
input multiple-output (MIMO) systems is still preliminary and
awaits in-depth investigations.

There are a couple of works laying the foundation for
the capacity analysis of RIS assisted MIMO systems. The
authors in [28] demonstrated the impact of RIS on the channel
capacity of an RIS assisted MIMO system, which can increase
the channel power gains as a direct result of the improved
channel matrix rank. The authors in [29], [30] made valuable
contribution for maximizing the capacity of RIS assisted
MIMO systems by jointly optimizing the transmit covariance
matrix and reflection coefficients. The capacity of a practical
RIS assisted MIMO system with transmitted symbols chosen
from discrete signal constellation was investigated in [31],
where the cut-off rate is adopted as the optimization objective
to replace the actual discrete input system capacity that is not
analytically tractable. The capacity maximization problem of
an RIS assisted full-duplex MIMO two-way communication
system was studied in [32], which has been solved efficiently
in closed form. The investigation into the capacity of the
RIS assisted MIMO system was also extended to higher
frequency bands. The authors in [33] maximized the capacity
of the RIS assisted MIMO system in an indoor millimeter-
wave environment, ignoring the line-of-sight (LOS) path by
only adjusting RIS reflection elements or jointly optimizing
the RIS reflection elements and a transmit phase precoder.
The authors in [34] converted the data rate maximization
problem of RIS assisted THz MIMO systems to a discrete
phase shift search problem and solved it. Moreover, RIS
assisted multi-user MIMO systems and RIS assisted MIMO
systems integrating other advanced communication techniques,
e.g., simultaneous wireless information and power transfer
(SWIPT) and cognitive radio (CR) have also been proposed
and investigated [21], [35]-[38].

On the other hand, the RIS considered in the above-
mentioned literature only functions as a passive reflector to
reflect received signals. Actually, antennas have already been
designed to realize passive information transfer through a
single-RF chain [39], [40] or an ambient backscatter [41], [42],
which motivate researchers to further explore the potential of
RIS for acting as an active modulator and piggybacking its
own information when helping the information transmission
between the transmitter and the receiver at the same time.
Karasik e al derived the capacity limit achieved by the RIS

assisted single-output multiple-input (SIMO) system in [43],
where the information is encoded in the transmitted signal
and the RIS reconfiguration. They recently implemented joint
encoding of the single-RF chain transmitted signal and the
RIS response in [44], [45], which has been shown to achieve
information-theoretic optimality of the RIS-based modulation.
This concept was also proposed and investigated by Basar in
[46], [47], who has analyzed the error performance of RIS-
based spatial modulation systems. Specifically, the effects of
blind phases and modulation orders on the error performance
of the RIS assisted system were studied. The proposed system
adopts the reflecting patterns that steer beams to a single re-
ceive antenna and therefore cannot harvest the receive diversity
gain. The authors in [48], [49] maximized the average signal-
to-noise ratio (SNR) at the receiver under the assumption that
the RIS can perform spatial modulation, and the reflecting
elements are capable of carrying information by their on/off
states. Recently, Guo et al in [50] laid a solid foundation in
this field by proposing a reflecting modulation scheme for RIS
assisted systems considering that the transmitter and RIS can
either jointly or independently convey information. Given a
signal candidate set and a reflecting pattern candidate set, a
discrete optimization based joint signal mapping, shaping, and
reflecting scheme was designed to minimize bit error rate,
which has been proven to outperform existing modulation
schemes. Furthermore, RIS-based modulation schemes have
been introduced and summarized in [51], [52], highlighting
the advantages of using RISs. These valuable findings revealed
that an extra transmission opportunity brought by RIS can be
provided, while the primary system performance is expected
to be improved at the same time. Due to the mutualistic
relationship between them, the concept of symbiotic communi-
cations is borrowed from biology, which not only supports the
RIS information transmission but also enhances the primary
transmission [53]-[56].

To the best of the authors’ knowledge, most published
works focus on analyzing the performance of MIMO systems
equipped with passive beamforming RISs, where RISs can
only reflect incident signals. Although RISs have already been
integrated into an increasing number of complex communi-
cation systems for performance enhancement, neglecting the
active role of RIS cannot fully exploit the potential of this
novel paradigm. The literature regarding RIS based spatial
modulation or information delivery mainly focuses on studying
the error performance and bit error rate [53]. Although the
authors in [43] studied the capacity limit of the RIS assisted
system enabling information encoding in the RIS configura-
tion, they only considered a special SIMO system with one
signal data stream transmitted only. The parallel transmissions
of multiple data streams make the analysis of the MIMO
channel capacity problem a great challenge, since the channel
gains corresponding to multiple spatial data streams should
be balanced by properly designing reflection coefficients. In
addition, the direct transmission link between the transmitter
and the receiver is also ignored in [43], [54], which might not
be practical and affects the designs of the covariance matrix at
the transmitter and the reflecting patterns. Moreover, a finite
alphabet for encoding is adopted in [43] to derive the capacity



limits, which cannot provide an upper bound with respect to
a Gaussian distributed input. To the best of our knowledge,
there is still no work jointly optimizing the reflecting patterns
and the transmit covariance matrix at the transmitter for RIS
assisted MIMO symbiotic communications through the capac-
ity maximization criterion, where the information is encoded
and carried by both reflecting patterns and transmitted signals.

B. Contributions

To bridge the gap of capacity analysis for RIS assisted
MIMO systems, we maximize the capacity of RIS assisted
MIMO symbiotic communication systems employing reflect-
ing patterns at the RIS to carry additional information. In
particular, the reflecting patterns are not uniformly activated
to encode information but follow a discrete probability dis-
tribution for capacity maximization purposes. This setting is
different from the uniform distribution of activation patterns
in the previous literature. In this way, the reflecting patterns,
reflecting set activation probability, as well as the transmit
covariance matrix can be jointly designed to maximize the
capacity. Since the exact expression of the capacity for MIMO
systems is intractable, we develop algorithms based on the
lower and upper bounds on capacity, respectively. For clarity,
we list our contributions as follows:

o We analyze the capacity limits of an RIS assisted MIMO
symbiotic communication system, where a multiple-
antenna transmitter serves a multiple-antenna receiver
with the help of an RIS. The transmitted information
is signified by both reflection patterns at the RIS and
transmitted data streams.

« We propose a new design of reflecting patterns at the RIS,
relying on a discrete and non-uniform distribution for
activation. In this way, the reflecting patterns with higher
power gain will be activated with higher probabilities,
leading to a higher capacity on average.

o« We propose schemes to jointly design the reflecting
patterns, reflecting set activation probability, and trans-
mit covariance matrix at the transmitter based on the
lower bound and upper bound on capacity. Based on
the lower bound on capacity, a gradient ascent algorithm
is proposed to find the optimal covariance matrix at the
transmitter, reflecting patterns, and their related activation
probabilities. Moreover, the reflecting patterns are also
optimized by taking the criterion of maximizing the
upper bound on capacity, and the closed-form solutions of
reflecting activation probability and transmit covariance
matrix are derived accordingly.

e« We carry out a thorough investigation of the proposed
design and algorithms by simulations. The superiority of
the proposed design and algorithms are verified through
the comparison to existing designs for optimizing ca-
pacity. In particular, we verify that the capacity of RIS
assisted MIMO systems can be improved by considering
the active role and information delivery functionality of
RIS.

C. Organization

The remainder of the paper is organized as follows. Section
IT describes the system model and formulates the capacity of
the considered system. Section III introduces the proposed
reflecting and precoding designs based on the lower bound
on capacity. In section IV, we jointly optimize the reflecting
patterns, reflecting set activation probability, and transmit
covariance matrix by maximizing the upper bound on capacity.
Numerical comparisons and investigations are presented in
section V, and conclusions of this paper are drawn in section
VL

D. Notations

In this paper, x denotes a scalar; x represents a vector; X
stands for a matrix. [|x||,, [[x[|,,, and ||x]|  represents I> norm,
I, norm and [, norm of x, respectively. || X|| » is the Frobenius
norm of X. Diag(x) is a diagonal matrix whose diagonal
entries are taken from vector x, and inversely, diag(X) is a
vector whose elements are taken from the diagonal entries of
matrix X. det (X) represents the determinant of square matrix
X. rank (X) denotes the rank of matrix X. arg (x) denotes
the angle of a complex number z. z; denotes the ¢th entry
of x, and z; ; is the element in ith row and jth column of a
matrix X; x; denotes the ¢th column of matrix X. ® denotes
Kronecker product. (-) is the conjugate transpose, and (-)”
denotes the transpose. (-)* = max{0, -} returns the positive
argument or zero, otherwise. X > 0 means that matrix X
is positive semidefinite. C stands for the complex domain,
and R represents the real domain. CA (p,X) stands for the
circularly symmetric complex Gaussian distribution with mean
p and covariance X. 1 represents an IV x 1 all-one vector and
Inxn denotes an NV x N identity matrix. Oy represents an
N x 1 all-zero vector, and O« 5 stands for an N x M all-zero
matrix. V denotes the vector differential operator (gradient)
of a function. E[-] returns the expected value of the random
variable/vector enclosed.

II. SYSTEM MODEL AND CAPACITY ANALYSIS

As depicted in Fig. 1, we consider an (N, N, N,) RIS
assisted MIMO system, where N;, N, and N, represent
the numbers of transmit antennas, reflecting elements, and
receive antennas, respectively. The transmitter equipped with
N, antennas leverages an RIS of IV reflecting elements for
the purpose of enhancing the data transmission to a receiver
equipped with N, antennas over quasi-static fading channels.
The information is conveyed per channel use not only by the
transmit signal vector, but also by the index of the reflecting
pattern ®; € W; ®; is the kth reflecting pattern at the RIS,
which is a diagonal matrix defined by (®x),, € {0} U
{10 e R}, Vne {1,2,--- ,N}; ¥ ={®, Py, -, Px}
represents the reflection pattern candidate set with size |¥| =
K. The channel between the transmitter and the receiver can
be estimated through the training sequences fed back from the
receiver by leveraging the channel reciprocity of the channel
between two devices [57]. In our analysis, we assume that all
involved channel state information (CSI) has been perfectly
known at the transmitter and the receiver by adopting the
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Fig. 1: A typical MIMO system assisted by an RIS with a
control link connecting to the transmitter.

channel estimation techniques proposed in [16], [58], [59].
Thus, the received vector y € N, x 1 with activated ®;, can
be expressed as

y =+ (H2®.Hy + Hy) x5, + n, (D

where v is the average receive SNR; H, € CN-*V ig

the channel coefficient matrix characterizing the channels
between the RIS and the receiver; H; € CN*Nt is the
channel coefficient matrix characterizing the channels between
the transmitter and the RIS; H,; € CNr*Nt is the channel
coefficient matrix characterizing the direct channels between
the transmitter and the receiver '; n ~ CA (Oy,,In, xn, ) is
the additive white Gaussian noise (AWGN) vector with each
entry abiding a zero-mean unit-variance complex Gaussian
distribution; x;, € CNtX! denotes the transmitted signal
vector when ®;, is activated with zero mean and covariance
matrix Qg, i.e., x; ~ CN (On,, Q). It is assumed that all
signal vectors are subject to a unit average power constraint
E{Tr (Qx)} <1 for simplicity.

Since ®;, is activated not only for assisting transmissions
between the transmitter and the receiver, but also for carrying
additional information, it becomes challenging to quantify
the channel capacity in this case. To simplify the following
discussion, the channel matrices, phase shift matrix, and the
transmitted data stream are built in the new forms as follows
[50]:

K

H, = [Hy,H,, -, Hy| € CN KN )

'Here, we do not give any specific channel model, which means the
following developed design can be applied to any channel model, including
traditional Rayleigh, Rician, Nakagami-m, and even the recently proposed
spatially correlated Rayleigh fading model for RIS-assisted systems [60].

Ql 0[\;><A:\/' ONX]\"
Onxn P2 0NN 7
6 = € CKNXEN (3
Onxn Onxn B
Hl ONX]Vt 0]\“'><Nt
~ ONXN,, H1 OLVXN,, ;
H] - c (CKNXAN(,’
ONXN,, Oj\rth . H1
4)
K
I:Id = [Hd,Hd7 . 7Hd] c (CNTXKNt7 (5)
and
% =gr®x; € CHN, (6)

where gj, € CK*1 is the kth vector basis with all zeros except
the kth entry being one. As a direct result of these expressions,
the received signal vector can be rewritten as

y = v (Ha + FOH ) %+ n, @)

It can be proven in a straightforward manner that X also
satisfies the power constraint as follows:

BT ()} = B {7 (g1 0 (81 2 x0)”)
=E{Tr ((gret’) ® (axf))} < 1.

Denoting H = H, + H,6H,, the channel capacity of the
RIS assisted MIMO system detailed above can be derived by
maximizing its mutual information [61], which is given by

[(xy) = H(y) - H(y | H,x)
= E[-log, f (y)] — Ny log, (me)
where H(-) and H(:|-) represent the entropy and conditional
entropy of the enclosed; f(-) denotes the probability density

function (PDF) of the enclosed. Accordingly, the channel
capacity can be expressed as

(®)

(©))

€= E{Trgjb}f()}gl I(X; Y)
k=g ®xp
(10)
= I N
X (XK, 8K3Y) s

SH fay (m1)=1

where fg, (gr) stands for the activation probability of the
kth reflecting pattern. For denotation simplicity, we use a
general discrete distribution @ = 1, aa, - - - , ] to represent

{fe. (gx)} and let

fgk (gk):a (11)
subject to
K
Y ap=1 (12)
k=1



With these denotations, the unit average power constraint can
be written as

K
Z AL Tr (Qk) S 1.
k=1

Defining Q = {Q1,Qo, - ,Qx}, weuse R (a, ¥, Q) to rep-

resent the achievable capacity. Supposing Gaussian distributed

signals as inputs, we can derive the mutual information be-

tween x and y as [62]

13)

R ¥, Q) =~ [ [fly)logy f(y)dy — N:log,(me),
o (14)
where y follows a Gaussian mixture distribution with mixture
coefficients {cy, }, which can be explicitly written as

K
)= onf(ylk), (15)
k=1

where f(y |k) is the conditional distribution of y following a
complex normal distribution with zero mean and covariance
matrix Dy, given by,
1
k)= —~———— -y"D;! 16
fy|k) ¥ dot (D) exp (—y"D;ly),  (16)
with
Dy = In, xn, + 7H:QHY,

where H;, = Ho®, H; +H,. However, the capacity expressed
in (14) cannot be solved in closed form, while it can only be
evaluated via numerical integration methods, e.g., Monte Carlo
sampling [63], which incurs prohibitive complexity for prac-
tical applications. Therefore for the mathematical tractability,
we provide closed-form expressions of the lower and upper
bounds on R (a, ¥, Q) in Theorem 1 as follows, which are
denoted as R” (o, ¥, Q) and RY (a, ¥, Q), respectively.

a7

Theorem 1. Closed-form lower and upper bounds on the
achievable SE of the proposed RIS assisted MIMO system
are given by

K K
R (, ¥, Q) = — Z oy, log, (Z oqzk,l> — N, log,(e),
k=1 =1

(18)
and
K
RY (0, ¥,Q) = o (logy (det Dy) — logy(ax)),  (19)
k=1
where z;; = (det (Dy + Dy)) 7t
Proof. See proof in Appendix A. O

It should be noted that the lower bound can be negative in
the low SNR regime. However, it will be always positive and
tight in the low and high SNR regimes by adding a constant
gap N, (log, e — 1), which has been proven in [64]. Since the
constant is independent of the three optimization variables,
i.e., reflecting activation probability «, reflecting patterns
P, and the transmit covariance matrix O, the optimization
objective function can be both RE (a, ¥, Q) given in (18)
and RE (, ¥, Q) + N, (logy e — 1). The upper bound is tight

in the high SNR regime, which has been proven in [65]
and [66]. The tightness of both capacity bounds will also be
numerically investigated and verified via simulations in the
sequel. The closed-form lower bound R* (a, ¥, Q) and upper
bound RY (e, ¥, Q) proposed by Theorem 1 in this paper
enable computationally efficient evaluation and optimization of
RIS assisted MIMO systems by jointly designing the reflecting
patterns, activation probability, and covariance matrix of input
signals. We will present the details and show their usefulness
in the following sections.

III. LOWER BOUND BASED OPTIMIZATION

In this section, relying on the derived lower bound, we find
the optimal phase shift set ¥, activation distribution a, and
transmit covariance matrix set Q to maximize the capacity
lower bound and obtain insights into the designs for the
proposed RIS assisted MIMO system.

A. Problem Formulation

Based on the derived expression of lower bound
REY (a, ¥, Q), the optimization problem can be formulated as

(P1): max RE (a,¥,Q)
a¥,, 0
st.: 1ha=1,
(07 Z OK:
@k (4,4)] = 1, (20)

K
Z AL TI‘ (Qk) S 1,
k=1

Qi = 0.

Obviously, (P1) is a non-convex optimization problem since
the uni-modular constraint on each reflection coefficient
®,, (i,1) is non-convex, and the objective function is shown
to be non-concave over the reflection matrix ®; in ¥. As
a consequence of this non-convexity, it is difficult to solve
(P1) because the activation probability ¢ and the transmit
covariance matrix set Q are coupled with ¥ in the objective
function. To simplify the problem, we first re-express the non-
convex constraint on the reflection matrix ®;, in the next step.

Since ®;, is a diagonal matrix, we define ¢, = diag (®y)
and stack them into vector § = [¢],--- ,¢£]T € CVEXx1,
To handle the non-convex constraint |§;| = 1, we re-express it
to be the [, constraint, which leads to the following new set

{6 eCVEX 5 =1,Vi=1,.., NK}

_ {5 € CNKX1 ¢ (66H> = NK,|§] . < 1}. @D
It should be noted that the second set satisfies two conditions.
One is ||6]|,, < 1, which indicates max;—1,... Nx |[0;] < 1,
while the other one tr (67 ) = NK means that fof 82 =
N K. Tt can be observed that there exists only a unique solution
of §;, that is, |§;] = 1, which exactly equals the first set.



Based on this transformation, the optimization problem can
be reformulated as

(P2): max R' (a8, Q)
,6,Q
st.: lha=1,
o 2 0]('7
r (&sH) — NK,
6]l <1,

(22)

K
Zak Tr (Qk) S 1,
k=1

Qi = 0.

Since the ¢, constraint is non-differentiable, we can exploit
the ¢, approximation with a gradually increased large p,
leading to lim [|d]|, = [|4][,, during the optimization process
p—o00

[64].

Moreover, we then consider the optimization of Q, given
é and a. Given 4, the reflecting patterns and {Hj} are
equivalently given. Provided that {H;} and a are known,
(P2) is a convex optimization problem over Qg, and the
optimal Qy, is given by the eigenmode transmission. In details,
denoting the maximum number of data streams that can be
transmitted over Hy, as Ny = rank (Hy) < min{N;, N, }, and
the singular value decomposition of Hj, as

H, = U,Z, VI, (23)

we express the transmit covariance matrix as Qi =
V. Diag{\;}V#, where V, is the right-singular matrix;
M = Mo, Mew.]” with enries Ay ; representing the
optimal amount of power allocated to the jth data stream.
By defining w = [AT,--- ,/\};]T and 8 = a ® 1y,, we can
re-express the unit average power constraint to be 87w < 1.
It should be noted that because of the monotonicity of the
achievable capacity with power, R” (o, 8,w) is maximized
when the power constraint is met with strict equality. There-
fore, we transform the inequality power constraint to be the
equality power constraint 87w = 1. Accordingly, (P2) can
be transformed to be

(P3): maxR (a,d,w),

a,b,.w

s.t.: 1?(01 =1,
a > 0]{7
r (66H) - NK,
6]l <1,
Blw=1,
w > 0.

(24)

B. Transmitter and Reflector Designs

To solve (P3), we resort to the barrier method and incor-
porate the non-negative constraint with the logarithmic barrier
function I (u) to approximate the penalty of violating the £,

1ln(u), u>0 )
, where ¢ is used

constraint, i.e., I (u) =
—00, u <0,

to scale the barrier function’s penalty [67]. Then, (P3) can be
rewritten as

(P4) : m?xf (a,0,w)
t: 1Za =1,
S K™ ) (25)
r (55H ) — NK,
Blw=1,
where the objective function f (e,d,w) is given by
f (@6,w) = R" (a,8,w) + 1 (1-5]],)
K K N, (26)
+ZI(Oék)+ ZI(Am)

Accordingly, the gradient of f (a,d,w) with respect to a is
derived to be

Vaf (a,é,w) = [vouf(aa‘svw)?' e avaxf(avavw)}Tv

27
where
1
Vo, f (@,6,w) =V, RY (o,8,w) + o (28)
k
and
K
Vo RF (a,6,w) = —log, (Z aizkﬂ)
=1 (29)
1 Q25 k
ErT D IE S
In2 j=1 Dim1 %)

The gradient of f (e,d,w) with respect to § can be expressed
as

Vsf (0, 8,w) = [V, RY (0,8,w) -+ , Vg, R (a,8,w)]"
181, 7" ps

t(1-1ol,)

(30)

where p; €  CENXL js given by ps =
T

—2 —2 —2
[d)m ApralP s N kN [ dR NI



Therefore, Vg, RY (@, 8,w) can be determined as

Vg, R (a,8,w) Za]V¢k log, <Z 24 >
= —a;Vy, log, <Z ozizk)i>

i=1
K
— Z a;Vg, log, (ZO”ZJ 1)
jzl,jik
K
1 Zfil @iV, Zhi die 1a1v¢kzjl
o | e 5 o Bt Vet

K
D i1 Zkyl j=1,j#k Zl 1 Q%
[ K K
Lo i1 @iV 2k, Z Ve Zjk
T e | K T
In2 D1ty kg T Yz

K
1 Z akaiv,ﬁkzm +

ok Ve, Zjk

K K )
In2 | i=1 D=1 Mk j=1,j#k D11 Uz
(31
with
V¢k 2 = Zk’iTl‘ [(Dk + Dl)71 V¢ka} . (32)
Since D; = In, xn, +
v (Hg + Ho®, Hy) Qp (Hy + H2<I>kH1) , Dp can be

further expanded to be
Dy, =1y, v, + YHiQeHY +yH,Q H{ @ HY
+H®,H,QHY + yH,®,H,Q, HI &/ HY.
(33)
Omitting the irrelevant terms in the above form, Vg, Dy can
be recast as
V. Di =7V, Ho® Hyg + Vs, HE, @ HEY
+ Vg, Ha® H, Q HY @ HY
where H;;, = H; Qngl . We can easily obtain

Vo, HI®HHLY = 0 and the gradient of Ho®,Hiq
respect to the ith element of ¢y, as

Vo, Ho® Hig = hy;hi,,,

(34)

(33)

where hy ; is the ¢th column of Hy and hy4 ; is the ¢th column
of Hle.

Similarly, the gradient of Hy®,H;Q,H®/H
to ¢y, can be calculated as

Vo, Ho® H1 Q H®HY =h, ;hi Q. H'®,HY,

(36)

where hy ; is the ith column of HY. Thus, Vi, z; can be
finally obtained as

respect

Vo 2ki = ki diag |H14 (Dg + Dl)_l H,

(37)
+ H,QH®//HY (D, + D)) 'H,|.
The gradient of f (a,d,w) with respect to w can be ex-

pressed as

vw (07550‘)) = 7v)\Kf (avsaw)]T7

(38)

[v)\lf (av(s?w) "

where
1
Vaf (@,8,w) =V, R (@,6,w) + Svk,  (39)
T
vie= [Ach Ak (40)
and the derivation of Vj, Rl (a,8,w) is similar to
Ve, RY (a,8,w) given in (31), which is given by
1 K ki Vi, 2
Va, RY (@,6,w) = —— SR Y A <kt
' In2 ; YLy iz
(41)

Qjak Va2 k

+ K
j=1,j#k > im0

i

and

V)‘kz;mv = VZk,i diag [VkHHkH (Dk + Di)_l Hkvk:| . (42)

To meet the equality constraints 17.a =1 and 7w = 1,
we introduce the following projections:

Aa = Alvaf (aa(svw) ) 43)

and

Aw = (Ign,xxn, — 1kn.B") Vo f (@, 6,w), (44)

which ensure 12.Aa = 0, bTAa = 0, and BTAw = 0
T
with b =[S Ao N M| Ar = T -

BT (BB”) 'B,and B = [1x b]" if b # 15 or B = 1%
if b = 1k. Then, the iteration process for updating & and w
can be designed as

alth)

o+ Aa, (45)

and

WD W@ o Aw®, (46)
where 7; and 73 are the step sizes. It should be noted that
the searching steps may be small if some entries of a and
w approach zero in the iteration process, while leads to local
optima of & and w. To avoid being trapped in local optima,
we adopt a gradient modification scheme proposed in [65].

For non-linear equality constraint tr (&SH ) = NK, we
project the search direction of § into its constrained tangent
plane vertically by

<v6f (avéaw) 76> 6
115

AS = Vsf (a,6,w) — ; 47)

which also ensures that 87 A§ = 0. After that, we renew & as

. ) AS@®
80D cos (12) 8@ + sin (1) \/NKL,

(43)




where 7, € [0,Z] is the step size. This update step
makes sure that the renew solution satisfies equality constraint

tr (5(”1) (6(”1))}[) = NK, which can be proved as
tr (5(i+1) (5(i+1))H> _ (5(i+1)>H5(i+1)

H
. A
_ . (@) o g v/ i
= <c05 (n2) 6% + sin (12) NKHAts(i)H)

, AS®
~ @) 4 si VNEK ———
" (C% (i) 077+ () el ) (49)

N\NH
= cos (12)° (6(1)) 8@ 4 sin ()’ NK

) A\ H AS®
+ 2cos (n2) sin (12) (6()) HAJ(Z_)H

= cos (12)> NK +sin (12)> NK
= NK.

Combining these obtained gradients and projections, we
develop a gradient ascent algorithm to maximize the lower
bound on channel capacity as stipulated in Algorithm 1. It
should be noted that the amplitude of RIS elements in each

iteration does not satisfy |¢y ] = 1 due to the constraint
relaxation given in (21) and the £, approximation. Therefore,
Pien

is

an element-wise normalization for 6* by ¢, =

*
¢k.n|

added to the output by Algorithm 1 to ensure the feasibility of
the obtained solution. The normalization is also conditioned
on that the objective function is not much sensitive to the
normalization to achieve favorable performance.

C. Convergence and Complexity Analysis
The converge of our proposed algorithm can be observed
from the updating process of e, §, w in each iteration, that is,

f (a(z‘+1)’5(i),w(i)) —f (a(“,&(i),w(i)) >0, (54

f (a(i+1)’6(i+1),w(i)) —f (a(i“),é(i),w(i)) >0, (5%
and

¥ (a<i+1>75<i+1>7w<i+1>) _ (a<z‘+1>75<i+1>,w<i>) 0.
(56)
The proofs of (54) and (56) have been provided in [65], while
the proof of (55) is given in [19]. With these three inequalities,
it can be ensured that the value of the objective function
increases in each iteration and is upper bounded, which proves
the convergence of our proposed algorithm.

The complexity of the proposed algorithm is dominated by
the calculation of the gradients by (27), (30) and (38). In
each iteration, the calculation of the gradient with respect to
w needs K? calculations of the matrix determinant of size
N, x N,. The calculation of the gradient with respect to w
and & requires K> calculations of matrix determinant, matrix
inversion, and matrix multiplication of size N, x N,.. Thus,
the overall complexity is given by O (K 3N73)

Algorithm 1 Gradient ascent algorithm maximizing the lower
bound on channel capacity.

1: BEGIN

2: Initialization: Set a feasible initial solution & (0), a(© with

o = %, w® with A, ; = 1, halting criterion € > 0, and
iteration index ¢ = 0.

3: Search and wupdate o: Compute the gradient
Vaf (a(i),é(i),w(i)) and carry out the projection
to obtain Aa(?). Use backtracking line search and update

(50)

2D o) 4 pr A,

where 7] is computed by a line search process to satisfy
the Wolfe conditions.

4. Search and update 6: Compute the gradient
Vsf (a1 60 w®) and carry out the projection
to obtain A§(). Use backtracking line search and update

A&

(i+1) *\ £(7) . *
é +—cos(n3) 8 +sm(772)\/NK7HA6(i)H,

elong] £ (@ (00 ) )

; ; : ©)
and R (6@, n2) = cos (n2) 6% + sin () \/NKHi‘;W.

5: Search and update w: Compute B30+ = (it @ 1.
and the gradient V,, f (@+1,§(0+1) w() and carry out
the projection to obtain Aw(). Use backtracking line
search and update

&1y

where 75 = arg max

W) @ L prAw®, (52)

and

14— 1+1, (53)
where 73 is computed by a line search process to satisfy
the Wolfe conditions.

6: Iteration: Go to Step 6 if nj [|[Aa®)|, < €[la®],,
33 A6, < €[50, and 75 | A, < e )]
or go to Step 2, otherwise. .

7: Output: Normalize the optimized §* by ¢ ,, = ‘z’; ,

k,n

ke{l,--- ,K},ne€{1,2,---,N},; use the normalized
6* and the optimized w* to obtain ¥ and Q; output the
optimized a* as the final outcome.

8: END

IV. UPPER BOUND BASED OPTIMIZATION

Except for the lower bound on channel capacity, we can
also resort to maximizing the upper bound derived in (19)
to obtain the optimized phase shift set, activation distribution
a, and transmit covariance matrix set. Detailed optimization
procedure and analysis based on the upper bound are presented
in this section.

A. Problem Formulation

Observing from the expression of the upper bound on chan-
nel capacity given in (19), we cannot obtain the optimal phase
shift set through traditional gradient optimization approaches.
This is because the gradient of each ¢y, is independent and will



converge to the same optimal value by an adequate number
of iterations. In this case, the phase shift set is composed
of K identical phase shift matrices, which will not provide
additional information anymore. To avoid this dilemma, we
design the optimal phase shift set to maximize the equivalent
channel capacity CY, which maximizes the mutual information
between re-shaped transmitted signal vector X defined in (6)
and the received signal vector y:

el = max  I(x;y).

OE{Tr(x%H)}<1 57

By reshaping the channel matrices, phase shift matrix and, the
transmitted data stream derived in (2)-(5), CY can be explicitly
expressed as

QU = log, det (INMNT 4 y(H, + H.0H,)Q(H, + H.0H,)

(58)
where Q) is the unit constrained transmit convariance matrix.
We can see that the equivalent channel capacity CU is related
to the reshaped phase shift matrix © and transmit convariance
matrix Q. Therefore, both © and Q should be jointly opti-
mized when maximizing channel capacity. Since the channel
capacity CV is not related to distribution probability a and
the transmit covariance matrix set Q, the formed optimization
problem relying on CY can be written as

(P5): maxCY
S.t. : |2/JZ’1|:1,Z:1,,NK, (59)
Q) <1,
Q=0,

where ; ; denotes the ith diagonal element of ©. The main
purpose of the proposed problem (P5) is to find the reshaped
phase shift matrix ©, where each reflecting coefficient is
constrained by a uni-modular constraint. Although we do not
need the optimized Q in the following optimization process,
Q is still needed to be jointly optimized with © to achieve
the maximum channel capacity CY. By finding ©, we can
subsequently obtain each ®. Since the optimization problem
(P5) is independent of the activation probability a and the
covariance matrix set Q, the obtained optimal solution ©*
from (P5) generates the optimality of the phase shift, which
do not need to be jointly optimized with & and Q.

With the optimized phase shift set, we can resort to the
upper bound on channel capacity given in (19) to optimize the
distribution probability e and the transmit covariance matrix
set Q. By transforming the optimization problem regarding the
transmit covariance matrix set Q to the problem related to the
vector w in the same way as applied for the lower bound based
optimization, the upper bound based optimization problem can
be formulated as

(P6) : maxRY (a,w)

aw

st.: 12a=1,
a > Ok,
Blw=1,
w > 0.

(60)

The constraints imposed on activation probability & and power
allocation vector w is same as that in the lower bound based
optimization problem, i.e., (P3). Overall, the optimal reflect-
ing patterns ¥ can be directly obtained from the solution to
optimization problem (P5), while the activation probability «
and the covariance matrix set Q can be directly obtained from
the solution to optimization problem (P6). In the following,
we give the solutions to optimization problems (P5) and
(P6), respectively.

B. Transmitter and Reflector Designs

y\Based on the formulated optimization problems above,

(P'5) should first be solved by alternatively optimizing the
phase shift matrix © and transmit covariance matrix Q. The
covariance matrix Q is then optimized by fixing the phase
shift matrix ©, and the phase shift matrix © is subsequently
optimized given the covariance matrix Q. The optimized phase
shift matrix © is used to generate the phase shift set and solve
(P6) to produce the optimal solutions of @ and w.

Given phase shift matrix ©, the regenerated transmit co-
variance matrix Q by (P5) is also given by the eigenmode
transmission. Specifically, the re-shaped channel matrix can be
truncated singular value decomposed as H = fId—i—fIngll =
UAVH where U € CN~*% denotes the left-singular vectors
of H, V € CVt*E represents the right-singular vectors of H,
and R = rank (H) is the maximum number of data streams
that can be transmitter over H. As a result, the optimal Q is
given by

Q = VDiag (p) V¥, (61)

where p € RI*! represents the optimal power allocation
vector following the water-filling strategy. Therefore, the ¢th
element of p, denoted as p;, V ¢ € {1,---,R}, can be
determined as

1 1 i

i = -—= . (62)

P <§1n2 vy [A]fz)

with ¢ satisfying the following constraint:

R +

1 1
-] =1 (63)
i; <51n2 V[Aﬁ)

where [A], ; denote the ith singular value selected from H.
Having obtained covariance matrix Q, the phase shift can be
optimized through the following steps.

To facilitate the f9110wing analysis and description, we
denote H' = HU@X} with Q = UgEqU{ as the truncated
singular decomposition of Q; we also denote hy ; as the ith
column of Hj and fl’“ = EéUgflLi with 1:1{{1 as the ith row



of H. Consequently, we can derive the following relations
among these matrices/vectors:

KN

% ! N P/ H
Ai:INTXNT+7 H + Z 1/1]',]‘1’127]' <h17j)
J=1,57
KN R R H (64)
< | B+ > by () ,)
J=1,j#i

~ N H ~
+ 7h2,i (hllyl) hlLihQ’i7

and

. s \H N
B, = 1hs, (h’l’i) 1 G N A o I (%)

j=1,j#i

Therefore, the phase shift matrix © with given Q can be
optimized through the same algorithm applied in [29], and
the solution is given by
Vi =exp{—jarg{pi}}, (66)

where ¢, denotes the sole non-zero eigenvalue of A; B,
Therefore, Q and © can be alternatively optimized through
(61) and (66) until a certain level of convergence has been
reached. As stated before, we only adopt the optimized ©
to generate the optimized phase shift set ¥ and solve opti-
mization problem (P6) related to o and w. According to this
optimization strategy, matrix Q is only obtained to derive the
optimized © and is not related to the following optimization
process.

The solution to optimization problem (P6) has been pro-
posed in [65], where the optimal o* and A} are given by

det (D3
a;;:](e(—k),kzl,...’[( (67)
> 1 det (D)
and
* * * T
M= [N AN (68)

where A} ; 1s given by

+
1 1
A= =1, , N, 69
k.j (£k1n2 ,YO_]%J> s J ) y ( )

and oy, ; is the jth element of Xy, = diag (ox 1, -+, 0%, N, )s
which is the diagonal matrix composed of non-zeros singular
values of Hj, defined in (23); &, is an optimization parameter

satisfying
+
= §rn2  yop

With the optimized reflecting patterns W derived from
optimization problem (P5), and the activation probability «
and the covariance matrix set Q derived from optimization
problem (P6), the proposed optimization algorithm can be
summarized in Algorithm 2.

(70)

Algorithm 2 Proposed algorithm maximizing the upper bound
on channel capacity.

1: BEGIN

2. Initialization: Set a feasible initial solution ©(®), Q(®),
and iteration index j = 0.

3: Update © and Q: Compute AEJ ) and BEJ ) according to
(64) and (65) from 7 = 1 to ¢ = NK and obtain the
optimal ©U+1) and QU+1) according to (66) and (61).

4: Iteration: Go to Step 4 if the convergence criterion is
met, or let j <— j 4+ 1 and go to Step 2, otherwise.

5: Optimize probability distribution and transmit covari-
ance matrix: Use the optimized ©* to obtain ¥* and
compute the optimal power allocation Ay ; according to
(69) based on the optimized phase shift set. Use derived
A7 and optimized phase shift set to generate Q; as well
as Dj, and compute a* according to (67).

6: Output: Output the optimized ¥*, Q*, and a*.

7. END

C. Convergence and Complexity Analysis

As stated in Algorithm 2, the optimal phase shift set is
obtained by iteratively updating Q and solving optimization
problem (P5). This result is then followed by the optimized
probability distribution and transmit covariance matrix ob-
tained by (67) and (68) through the solution to (P6). Since
the optimal activation probability a* and optimal transmit
covariance matrix set Q* are closed-form solutions, the con-
vergence of Algorithm 2 is mainly dependent on the phase
shift set optimization. Because the phase shift set optimiza-
tion algorithm makes the objective function of (P5) non-
decreasing and bounded over iterations, the monotonic nature
of the phase shift optimization process is guaranteed. Also, any
limit point of © and Q in each iteration satisfies the Karush-
Kuhn-Tucker (KKT) condition, because the objective function
of (P5) is differentiable, and both © and Q are not coupled
in the constraints. Therefore, Algorithm 2 is guaranteed to
converge to at least a local optimum.

Based on the description given above, we can easily find that
the complexity of Algorithm 2 is dominated by the complexity
incurred by the phase shift set optimization, the water-filling
power allocation, and the computation of a. It can be shown
that the complexity of optimizing ¥ is O (K?N2), and the
complexity of power allocation is O (K N;). The optimization
of a requires K calculations of matrix determinate of size
N, x N, leading to the complexity of O (K Nf’) Therefore, it
can be summarized that the overall complexity of Algorithm
2 is O (K2N?) by neglecting the low-order terms. Here, it
should be noted that no iteration is needed for optimizing a
and Q.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented to illustrate
and discuss the performance of the proposed RIS assisted
MIMO system with N; = 2 and N,. = 4, in which information
is carried by both of the reflecting patterns at the RIS and by
the transmitted signals.
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Fig. 2: Illustration of channel capacity and various capacity
bounds, given N = 20, and K = 6.
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Fig. 3: Performance and convergence of Algorithm 1 and
Algorithm 2, given N = 20, and K = 6.

First, we validate the derived bounds on channel capacity
from Theorem 1 in Fig. 2 by plotting the exact capacity,
capacity bounds of the proposed system with N = 20 and
K = 6. As shown in Fig. 2, the lower bound adding a
constant gap N, (log, (e) — 1) is tight over the whole SNR
regime, while the upper bound is only tight in high SNR
regime. However, the objective function CV of the optimiza-
tion problem (P5) is not tight but provides an easy-to-obtain
solution of the reflecting patterns. Due to the tightness of
the derived capacity bounds, it equivalently indicates that the
exact capacity optimization can be achieved by maximizing
the lower bound and upper bound on channel capacity. This
verifies the effectiveness of the proposed algorithms.

To show the effectiveness as well as the convergence of the
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Fig. 4: Performance of Algorithm 1 and Algorithm 2, given
N =20 and K =6.

proposed algorithms, we evaluate the performance of a/("), §(),
and w(® of iteration 4 in Algorithm 1 and ©U) in Algorithm
2, given the SNR of 1 dB, N = 20, and K = 6. We calculate
the values of the objective functions 2* (V) 6("), w(") given
in (P4) and CY (©'7)) defined in (P5). The simulation results
given in Fig. 3 demonstrate that both algorithms converge fast,
where the iteration numbers for both algorithms are less than
10. It also can be observed that Algorithm 2 converges faster
than Algorithm 1.

In the following, the two proposed algorithms are compared
and investigated under various system setups operating in
standard Rayleigh channels. The algorithm proposed in [29]
aiming to maximize the classic RIS assisted MIMO system is
adopted in the simulations as the benchmark, which is denoted
as ‘Ref. [29] in the following data plots. In these data plots,
the exact capacity achieved with parameters updated through
Algorithm 1 based on the lower bound on channel capacity
is denoted as ’Algorithm 1°, while the one with parameters
updated through Algorithm 2 based on the upper bound on
channel capacity is denoted as ’Algorithm 2’. Moreover, in
the following figures, 'Random design’ denotes the case con-
sidering the value of each reflecting element randomly chosen
from (0, 27], while *Without RIS’ represents the conventional
point-to-point MIMO system without the assistance of RIS.

In Fig. 4, we compare the capacity yielded by our proposed
system design and algorithms to the benchmark proposed in
[29] under the same channel realizations, given N = 20
and K = 6. We can see from the figure that our proposed
designs achieve higher capacities than that produced by the
benchmark. This verifies that the capacity of the RIS assisted
MIMO system can be improved by incorporating the active
information delivering functionality at the RIS. In particular,
there are about 2-3 dB performance gains by employing 6
reflecting patterns at the RIS. Moreover, there is only a tiny
difference between the capacities yielded by optimizing the
lower and upper bounds. Hence, it can be confirmed that the
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Fig. 5: Effects of the number of reflecting patterns K on the
channel capacity, given N = 32.

lower bound based algorithm would be better because of its
complexity advantage. Compared with K identical random
phase shift patterns at the RIS with the optimal transmit
covariance matrix and reflecting patterns activation probability,
we can observe that an appropriate phase shift design for the
RIS is crucial for achieving a higher capacity. More than 5 dB
gains can be brought by the well designed reflecting patterns.
Fig. 4 also proves that the system performance can be greatly
enhanced by involving an RIS, which brings about 20 dB
performance gains in comparison with the canonical MIMO
system without the assistance of RIS.

The effect of the number of reflecting patterns on the
capacity is shown in Fig. 5, given N = 32. As illustrated
in this figure, the channel capacity can be greatly improved
by increasing the number of reflecting patterns K, where 2"
reflecting patterns bring about n dB gains in our proposed
system compared to the classic RIS assisted MIMO system.
The numerical results also verify that the channel capacity
of the proposed system can be improved by incorporating
more reflecting patterns with optimized activation probabili-
ties. However, more available reflecting patterns at the RIS
also lead to higher computational complexity. Therefore, there
exists a trade-off between capacity and computational com-
plexity.

In Fig. 6, we show the influence of the number of reflecting
elements N on the channel capacity, given K = 6. There
are an approximate-6-dB performance gain with 20 more
reflecting elements and an approximate-12-dB performance
gain performance gains with 40 more reflecting elements if
the transmit covariance matrix at the transmitter, reflecting
patterns, and reflecting patterns activation probabilities have
been jointly optimized in a proper way. In Fig. 7, we plot the
achievable capacity versus /N to obtain more insights from the
relationship between the achievable capacity and the number
of reflecting elements. To summarize, the channel capacity can
be significantly increased by allowing more reflecting elements
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Fig. 6: Effects of the number of reflecting elements N on
channel capacity, given K = 6.
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Fig. 7: Effects of the number of reflecting elements N on
channel capacity, given K =4 and v =1 dB.

at the RIS, where 10 x 2" reflecting elements brings about a
4n-dB gain to the proposed system.

Although the perfect CSI acquisition is assumed in the
previous simulations for simplicity, the challenge of accurate
channel estimation in practice should never be underestimated,
especially when the number of elements/components in com-
munication systems increases [68]. Considering this practical
challenge, the capacity of the proposed system and designs
subject to channel estimation errors is shown in Fig. 8. The
channel estimation errors are modeled by H, = H, + H.,,
where ¢ € {1,2,d}, and H., is the error matrix whose entries
follow an independent and identically distributed (i.i.d.) cir-
cularly symmetric complex Gaussian distribution CN (0, o)
[57], [69]. As expected, the channel capacity decreases with
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Fig. 8: Comparison of the capacities yielded by different
optimization algorithms in the presence of imperfect CSI,
given N = 40.

the increasing severity of channel estimation errors, and the
capacity of the proposed system corresponding to K = 4 is
even lower than that yielded by the benchmark. Fortunately,
the channel capacity of the proposed system can still be
raised by increasing the number of reflecting patterns K under
the assumption of imperfect CSI. The proposed system with
K = 8 and estimation error variance o, = (.1 achieves a
higher capacity than that of the classic RIS assisted MIMO
system with perfect CSI. What is better, the proposed system
with K = 16 and estimation error variance o, = 0.2 has even
a 2 dB performance gain over the classic RIS assisted MIMO
system. These results imply that the capacity degradation
caused by imperfect CSI can be compensated by the active
information delivery functionality of RIS.

It should be noted that although the proposed symbiotic
system achieves a higher capacity than the conventional one
without additional information carried by reflection patterns,
the fronthaul link in the symbiotic systems also consumes
more capacity compared to the conventional one. Therefore,
there is a trade-off between the achieved capacity and the
resource consumed by the fronthaul link. To better understand
it, we take the transmission between the transmitter and RIS
controller into consideration and assume a simplified transmis-
sion process within a fixed channel coherence time 7,,;,. The
whole transmission process is composed of two parts. One
is the fronthaul transmission phase between the transmitter
and the controller, and another is the information transmission
phase between the transmitter and receiver assisted by an RIS.
Specifically, well-designed reflecting patterns will be sent from
the transmitter to the controller once they are computed at
the transmitter through the proposed algorithms. Assuming
the phase of each reflecting element to be continuous during
the computation process, they will be quantized as b phase
resolution in number of bits [70], , that is, (Py) cF &

n,n

13

b
{eXp (j22”bm) }2 1, before transmission. In the conventional
system, there ism(;r(l)ly one reflecting pattern with Nb bits to
be transmitted, while there are K reflecting patterns with
N Kb bits to be transmitted in the symbiotic system. Moreover,
since different activation probabilities are assigned to different
reflecting matrices, the activation pattern is also needed to be
transmitted to the controller before information transmission.
Here, we assign b, bits to each activation probability, which
indicates that we need to transmit additional (K — 1)b,.; bits
from the transmitter to the controller. Denoting the channel
between the transmitter and the controller as H.,,,, the channel
capacity between the transmitter and the controller can be
calculated as

Ccon = 10g2 det (IN,G(‘”'XN;E""’ + Wcoanochoann) )

(71)
where NS is the receive antenna at the controller; Q.
is the transmit signal covariance matrix for the control link,
which can be optimally solved by the water-filling algorithm,
and 7., represents the average receive SNR for the fronthaul
link. Therefore, part of the coherence time is used for the
fronthaul transmission, while the remaining time is assigned to
the information transmission between transmitter and receiver.
Consequently, the total bits that can be transmitted within the
channel coherence time can be calculated as

NEKb+ (K — )byt
CCOTLB ’

where B is the bandwidth, and C is the achievable channel
capacity of the proposed system. Similarly, the total bits can
be transmitted through the conventional RIS-assisted MIMO
system can be obtained as

I=CB |:Z:0h - (72)

(73)

Nb
Ibench, - CbenchB |:Tcoh, - :| )

CCUTLB
where Cpenern 1S the achievable channel capacity of the con-
ventional RIS-assisted MIMO system with the RIS design
proposed in [29]. Here, we neglect the propagation time
between the transmitter the receiver since they are the same
for both systems.

We can observe from (72) and (73) that the proposed
symbiotic system yield less time for information transmission
compared to the conventional system within the same channel
coherence time due to the transmission of more than one
reflecting patterns and the activation patterns. However, since
the proposed system can achieve higher channel capacity
than the conventional ones, the proposed system is possible
to transmit more bits within the channel coherence time
when the achievable capacity is high enough or the fronthaul
transmission time only occupies a small part of the whole
coherence time. Theoretically, we can derive the condition that
the proposed system outperforms the conventional system:

C [NKb + (K — l)bact] — NbChench
CconB [C - Cbench] .
To verify the above reasoning and derivation, we conduct

several experiments and present the results in Figs. 9 and 10.
We can observe that the conventional system outperforms the

Tcoh > (74)
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Fig. 9: Effects of the number of reflecting patterns on total
transmitted data, given N = 20 and v = 7y¢op, = 1 dB, N5°" =
4, bger = 8 bits.

symbiotic system when the channel coherence time is short,
but the symbiotic system performs better once 1., surpass
a certain value, which is in agreement with the condition we
derived before. Increasing the number of reflecting patterns
yields a negative impact on the information transmission
when the channel coherence time is small. Also, the total
transmitted data in the symbiotic system increases firstly but
then decreases as K increases. This is because the increased
achievable capacity can compensate for the time used for
additional fronthaul transmission due to the increase of K
when K is small. However, as K increases, the fronthaul
transmission requires most of the channel coherence time,
and therefore it transmits fewer data due to the limited time,
albeit with an improved achievable capacity. In summary,
the symbiotic system would be a better choice when the
channel coherence time exceeds a threshold (c.f. (74)), which
is dominated by several system parameters, including channel
condition, the number of reflecting patterns and reflecting
elements.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed a novel RIS assisted MIMO
symbiotic system and studied its channel capacity through
several derived bounds. The proposed RIS assisted MIMO
system is capable of not only assisting in delivering the
information from the transmitter to the receiver but also acti-
vating different reflecting patterns for piggybacking additional
information. Two optimization algorithms were proposed to
optimize the reflecting patterns, reflecting patterns activation
probability, and transmit covariance matrix based on the lower
bound and upper bound on the exact channel capacity of
the proposed system. Simulation results demonstrated that
our proposed system equipped with the optimization designs
can achieve a higher capacity than the classic RIS MIMO
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Fig. 10: Effects of the channel coherence time 7,,;, on total
transmitted data, given N = 40 and v = 7¢op, = 1 dB, N°" =
4, byer = 8 bits.

system. Meanwhile, through simulation results, it has also been
found that the channel capacity can be raised by increasing
the number of reflecting patterns. Furthermore, the robustness
of the proposed system against imperfect CSI has also been
verified through simulations. This outcome opens up the
opportunity to effectively compensate the capacity degradation
caused by channel estimation errors by increasing the number
of reflecting patterns.

This initial study on the classical point-to-point communi-
cation system also leaves us the following research directions:

o The control link in the considered symbiotic system costs
more capacity than a conventional RIS assisted system
with only a single fixed reflection pattern. Therefore,
there is a trade-off between the achieved capacity and
the resource consumed by the control link, which is worth
investigating in depth.

o The analysis and design can be extended to multi-user
application scenarios to study and minimize the impact
of the mutual interference. In addition, the proposed
communication paradigm integrating with other advanced
communication techniques, e.g., non-orthogonal multiple
access techniques, millimeter-wave or THz communica-
tions, and non-terrestrial communications, are expected
to be investigated.

o Continuous controllable phase shifts of RIS elements
are assumed in this work. As an ideal assumption, it is
necessary to analyze the effect of hardware imperfections
in a realistic phase controller that can only switch to a
finite number of phase shifts.

o No specific channel model is assumed in this work.
The channel assumption with certain distributions and
properties considering spatial correlation, like Rayleigh,
Rician, and Nakagami-m, can facilitate the analysis and
design, and thereby worth further investigating.



o Our current analysis is based on the perfect CSI availabil-
ity assumption, while only imperfect CSI or statistical
CSI is available in reality. The impacts of imperfect
and statistical CSI on the achievable capacity remain
unknown and should be explored.

APPENDIX A
PROOF OF THEOREM 1

By substituting f(y) given in (15) into (14), the capacity
term can be re-expressed as follows:

R (e, ¥, Q) = —N, logy(me)

K K
e [ s, (Zalﬂyu)) dy. (%)
k=1 CNr =1

1

Since log, (+) is a concave function, and according to the
Jensen’s inequality, the integration operation of I is upper
bounded by

K
I= /Nr f(y |k)log, (Z azf(Yll)> dy
< log, <Zaz fy k) f (YIl)dy> :

Substituting the conditional distribution f(y |k) given in
(16) into (76), we obtain the upper bound on [ as

(76)

I <log, (Z oq/N N det D det (Dr) exp (_yHDlzly)

1 Hpy-1
—_— -y°'D d
TN det (D)) e (—y"D;y) y)

K

(67
o (Y

o (DyD;)det (D' +D; )
<.
CNr

det (D' +D; ")
=lo i il
= 982\ 2L 7N et (D4 D) det (Dy, + D;)

exp (—y" (D' +D; ) y) dY>

-
=1

K
y
= —N, log, (1) + log —_—
2 2 ;det (Dy. + D)

77
By applying the upper bound on I, we can obtain the lower
bound on the channel capacity as

K

R (a, ¥, Q) > —N, log,(me) + Z ai N, log, ()
k=1

K

—~ ZK:ak log, <Z

Dk+Dl)>

= —N, log,(e Zak log, (Z det ( Dk T Dl))
(78)

which is exactly the lower bound R (a, ¥, Q) given in (18).

To prove the upper bound on the channel capacity,
we should look back on the integration operation of I
in (75). Since log, (-) is a non-decreasing function and
Z{il arf(y|l) > axf(y|k), it is obvious by the monotonic-
ity of logarithmic functions that the following inequality is
valid:

K
log, (Z af(yll

=1

)) > logy (e f(ylk)), (79

which leads to

K
=[x k>102< f |Z>>d
/<ch y g ;l y
> [ vl logs (o (y 1)) dy

= log, (o) + - f(y [k)logy (f(y|k))dy
1

log, (ax) + /«:NT 7 det (Dr)
1 Hpy—1
x log, <7rNrdet(Dk) exp (*y D, Y)> dy

log, () + logy <

exp (—yHDlzly)

E (y"D;'y).
(80)

S R
7Nr det (Dy) In2

where the expectation E (y”#D; 'y) can be calculated as

=u (E(yy”)D;") (81)

where the third line of the equation is obtained by exchanging
the operator of expectation and the trace based on the linearity
of the trace operator. Therefore, the lower bound on I can be
further reduced to be

1 N,
I >log, (o) + logy [ ——— | — —
> log, (k) +logy (7TN" det (Dk)> In2
In eV
= log; () = Ny logs () — log, (det (D)) — 1
= log, (ax) — Ny log, (me) — log, (det (Dg)) -
(32)

Therefore, the channel capacity can be upper bounded by

Z ay log, (a)
K
(me) + Z ay, log, (det (Dy))

R (a, ¥, Q) < —N, log,(me)

K

+ E o Ny log,y
k=1

K K

- Z ay log, (ag) + Z ay log, (det (Dy,)) .

k=1 k=1

(83)



Since both terms summing from & = 1 to K involve the
same factor o, it can be further simplified as

K
R(a,¥,0Q) < Z (ag log, (det (Dy)) — ay logs (ax))
k?;l
= 3 logy (det (D) — logy ()
k=1

(84)

which is exactly the upper bound RY (a, ¥, Q) given in (19).
This completes the proof of Theorem 1.
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