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Abstract—In this letter, we propose a power allocation scheme
for relayed orthogonal frequency division multiplexing with index
modulation (OFDM-IM) systems. The proposed power allocation
scheme replies on artificial neural network (ANN) and deep
learning to allocate transmit power among various subcarriers
at the source and relay nodes. The objective of the power
allocation scheme is to minimize the overall transmit power
under a set of constraints. Without loss of generality, we assume
all subcarriers at source and relay nodes are independently
distributed with different statistical distribution parameters. The
relay node adopts the fixed-gain amplify-and-forward (FG AF)
relaying protocol. We employ the adaptive moment estimation
method (Adam) to implement back-propagation learning and
simulate the proposed power allocation scheme. The analytical
and simulation results show that the proposed power allocation
scheme is able to provide comparable performance as the optimal
solution but with lower complexity.

Index Terms—Power allocation, index modulation, OFDM,
amplify-and-forward relaying, artificial neural network (ANN).

I. INTRODUCTION

TO cope with rapidly increasing data demand in next-
generation networks, orthogonal frequency division mul-

tiplexing with index modulation (OFDM-IM) is regarded as
one of the most promising modulation candidates [1]–[3].
Since the proposal of the canonical OFDM-IM scheme in [4],
many studies have been carried out to study the performance
and optimization of OFDM-IM. In [5], Wen et al. rigorously
proved the spectral efficiency advantage of OFDM-IM over
classic OFDM from the information-theoretical perspective.
Also, an enhanced OFDM-IM scheme is proposed in [6]
to provide a higher spectral efficiency and a diversity gain,
which paves the way to practical implementation of OFDM-
IM. Another method to raise the spectral efficiency is to in-
troduce multiple modes, which gives the multi-mode OFDM-
IM scheme [7]. Besides spectral efficiency, improving energy
efficiency and network coverage is also a direction of commu-
nication technology development, and it is not exceptional for
OFDM-IM [8]. To enhance transmit reliability and efficiency,
relayed OFDM-IM was first investigated through numerical
results in [9]. Currently, more studies are launched to further
substantiate the superiority of relayed OFDM-IM [10]–[14].

Meanwhile, power allocation can be implemented in con-
junction with cooperative relaying to further enhance the
performance of relayed OFDM-IM. Specifically, a convex
programming technique is proposed in [13] to perform power
allocation for FG AF relay assisted OFDM-IM. However, for
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the simplicity of simulation, most studies unify the simulation
environment parameters for all subcarriers. In practice, the
parameters of thermal noise are always different for different
subchannels, which are related to the ambient temperature and
the subcarrier bandwidth. As a result, the convex programming
aided power allocation scheme proposed in [13] might not
always be applicable to the cases with different parameters
for different subcarriers.

Different from canonical convex optimization techniques,
deep learning based on a well-designed artificial neural net-
work (ANN) can be used to emulate the brain-based reasoning
process and has the ability to learn from the previous samples
through a back-propagation mechanism so as to improve the
performance. Due to the powerful processing ability of deep
learning, we design an ANN and employ deep learning to pro-
pose an efficient power allocation scheme for relayed OFDM-
IM systems using subcarriers with heterogeneous statistical
properties. The objective of the power allocation scheme is to
minimize the overall transmit power allocated among active
subcarriers at both source and relay node subject to outage
and maximum transmit power constraints for relayed OFDM-
IM systems. The adaptive moment estimation method (Adam)
is leveraged in simulations to implement back-propagation
learning.

II. SYSTEM MODEL

To study relayed OFDM-IM, we employ a three-node
transmission scenario in this letter, in which the direct trans-
mission link is neglected in favor of simplicity. We denote
the set of N subcarriers as N , and a part of which, say T
subcarriers, will be activated and convey information. The
transmission of these T active subcarriers are sent from the
source, forwarded by a fixed-gain (FG) amplify-and-forward
(AF) relay, and received by the destination. In this letter,
we follow the classic OFDM-IM rules stipulated in [4] for
activating T out of N subcarriers so that a subcarrier activation
pattern (SAP) is formed. The SAP can also be used to
represent information, and the corresponding subset of active
subcarriers is denoted as T (k). As a result, the length of
the transmitted bit stream is B = blog2

(
N
T

)
c + T log2M ,

where M is the order of M -ary phase shift keying (M -PSK),
which is adopted as the amplitude-phase modulation scheme.
For the sake of simplicity, we assume that all incoming
bit streams are equiprobable. Applying N -point inverse fast
Fourier transform (IFFT) yields the independent OFDM block
written as x(k) = [x(m1, 1), x(m2, 2), . . . , x(mN , N)]T ∈
CN×1, where x(mi, i)x(mi, i)

∗ = 1 for active subcarriers, and
x(mi, i) = 0 otherwise.
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Then, with independent fading over different subcarriers,
the end-to-end received signal y(mi, i) transmitted over active
subcarriers becomes y(mi, i) =

√
Pr,iPt,ih1,ih2,ix(mi, i) +√

Pr,ih2,iw1,i + w2,i, where Pr,i is the ith subcarrier transmit
power of the relay node, which represents the amplification
gain and is controllable at the FG AF relay node according to
the statistical channel state information (CSI); Pt,i is the ith
subcarrier transmit power of the source; wj,i is the complex
additive white Gaussian noise (AWGN) that is characterized
by average noise power ηj,i = E{wj,iw∗j,i}; hj,i, ∀j ∈ {1, 2},
represents the channel fading gain at the link from the source
to the relay node and from the relay node to the destination
respectively for subcarrier i. Based on the assumed fading
environment, we can have the PDF and the CDF of the channel
power gain Gj,i = |hj,i|2 to be fj,i(ξ) = exp (−ξ/µj,i) /µj,i
and Fj,i(ξ) = 1−exp (−ξ/µj,i), respectively, where µj,i is the
average channel power gain. The independent end-to-end SNR
of an arbitrary active ith sub-carrier is expressed as γ(k, i) =
Pt,iPr,iG1,iG2,i

Pr,iG2,iη1,i+η2,i
, ∀ i ∈ T (k).

An outage event of an OFDM transmission block happens
if the end-to-end SNR of any active subcarrier is lower than
a preset outage threshold s. Therefore, the average outage
probability of the proposed relay assisted OFDM-IM with
independent fading over subcarriers can be written as [13]

P ∗o (s) =
1

Ξ

Ξ∑
k=1


1−

∏
i∈T (k)

(1− Φi(s))

 , (1)

where Ξ = 2blog2 (N
T )c is the number of legitimate SAPs;

Φi(s) is the outage probability for the ith subcarrier with
a uniform outage threshold s. Following the derivation
given in [15], Φi(s) is determined by Φi(s) = 1 −
2
√

sη2,i
µ1,iµ2,iPt,iPr,i

exp
(
− sη1,i
µ1,iPt,i

)
K1

(
2
√

sη2,i
µ1,iµ2,iPt,iPr,i

)
,

where Kv(·) denotes the vth-order modified Bessel function
of the second kind.

III. PROBLEM STATEMENT

From an energy-efficient perspective, a total transmit power
minimization problem for T active subcarriers is formulated
as follows:

minimize
∑

i∈T (k)

(Pt,i + Pr,i)

subject to P ∗o (s) ≤ Ψth,

0 ≤ Pt,i ≤ Pmax
t−sub,∀i ∈ T (k),

0 ≤ Pr,i ≤ Pmax
r−sub,∀i ∈ T (k).

(2)

It is required to maintain the average outage probability
below a predetermined threshold Ψth. Also, for each active
subcarrier, there exist upper bounds on allocated power at the
source and the relay, denoted as Pmax

t−sub and Pmax
r−sub, due to

the hardware constraints.
Observing (1), we can easily notice that the average outage

probability P ∗o (s) is non-linear in terms of average channel
power gains. This leads to the non-convexity of the formulated
power allocation problem. To obtain the optimal solutions
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Fig. 1: An example of the ANN architecture.

to non-convex problems, exhaustive and random searching
methods could be helpful. However, they normally demand a
huge amount of computational resource and time to converge
to the optima, which are not suited for the real-time opti-
mization. Recently, deep learning aided by ANN has exhibited
competence to solve NP-hard optimization problems in a rapid
and accurate manner [16]. We hereby introduce deep learning
and ANN to tackle the formulated power allocation problem
for relayed OFDM-IM systems.

IV. POWER ALLOCATION FOR RELAYED OFDM-IM
SYSTEMS BY DEEP LEARNING AND ANN

A. ANN Architecture and Data Structures

Prior to devising a specific framework of deep learning for
our formulated problem, we first introduce the architecture
of ANN. As shown in Fig. 1, a typical ANN consists of a
hierarchical structure of layers, and these layers arrange the
neurons in the network. The neurons connected to the external
environment form input and output layers. Adjusting the
weights of links connecting neurons makes network input/out-
put behaviors consistent with the environmental behaviors. To
be specific, the architecture design of ANN involves an input
layer, R hidden layers and an output layer. The amount of
neuron nodes in the hidden layer is case-specific. In general,
a larger number of neurons implies a higher training efficiency.

For each neuron in the hidden and output layers, it receives
multiple signals from the neurons in the previous layer,
calculates a new activation level, and sends it through the
links connecting the neurons in the next layer. The output
signals from the neurons in the output layer are organized by
some post-processing techniques to yield the solution to the
problem of interest. One of the key property of an ANN is the
adopted activation function, which could be the sign function,
the step function, and the sigmoid function. Considering that
our formulated power allocation problem is not in a binary
structure, the sigmoid function S(·), mapping a real value to
another constrained real value between 0 and 1, would suit our
needs and is thus adopted to produce the ratios of allocated
power for all subcarriers at the source and relay.

Deep learning aided by a well-designed ANN can be used as
a powerful tool to extract knowledge from a sufficiently large
amount of empirical data. Therefore, a sub-optimal solution
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to the problem of interest can be produced. To utilize deep
learning and ANN in an efficient manner, we first need to
stipulate the data structures for the input and output layers.
For T active subcarriers, four categories of information, in-
cluding statistical CSI and average noise power, are taken into
consideration, which are {µ1,i}, {µ2,i}, {η1,i}, and {η2,i}.
For each group of samples, we employ the exhaustive search
to determine the optimal power allocation solutions, i.e., the
labels corresponding to the samples. Each group of samples
and the labels yielded by the exhaustive search can be written
in the matrix form as

V =

 µ1,1 . . . µ1,i . . . µ1,T

µ2,1 . . . µ2,i . . . µ2,T

η1,1 . . . η1,i . . . η1,T

η2,1 . . . η2,i . . . η2,T

 , (3)

and
U =

[
Pt,1 . . . Pt,i . . . Pt,T
Pr,1 . . . Pr,i . . . Pr,T

]
. (4)

Note that the numbers of entries of V and U are 4T and 2T ,
respectively. That is, we need to approximate 2T quantities by
4T quantities. As a result, we construct an ANN with 4T and
2T neurons in the input and output layers to produce the sub-
optimal solution based on a set of labeled training samples.

B. Model Training

With sufficient labeled training samples, the back-
propagation mechanism can be employed to train the ANN
model and gradually approach the optimal one with appro-
priate link weights. The whole training process is constituted
by a number of training epochs, and we group the training
samples in batches. The overall training process is carried out
in a supervised manner and we begin with a loss function in
this process.

For each training epoch, the optimizer needs to go through
all training samples batch by batch for each time step. Ac-
cording to the principle of supervised machine learning, the
link weights are fine-tuned based on the comparison between
the output of ANN and the label. The mean squared error
(MSE) between the output of ANN and the label is adopted
as the loss function for the comparison. Denote Ω(·, {θt}) as
the ANN output matrix with the input matrix argument and the
set of link weights {θt}. The output of Ω(·, {θt}) is a matrix
having the same dimension as U. Therefore, the loss function
of the tth time step is explicitly given by

ft(Ut,1, . . . ,Ut,D,Vt,1, . . . ,Vt,D, {θt−1})

=
1

D

D∑
d=1

‖Ut,d − Ω(Vt,d, {θt−1})‖2F ,
(5)

where Vt,d and Ut,d denote the dth group of samples and the
corresponding label in a single batch of the tth time step; D
is the batch size.

Adam, proposed in [17], is considered as the mainstream
back-propagation method in both academia and industry and
is thereby adopted in this letter. Developing from the stochastic
gradient descent method, Adam computes individual learning
rates for different parameters. Aiming at adapting the learning

Algorithm 1 Back-propagation algorithm of Adam.

Input: β1, β2 ∈ [0, 1) (two hyper-parameters), ε, ∆ (step size)
Output: θt

Initialisation: m0 = 0, v0 = 0, t = 0;
1: while θt does not converge do
2: t← t+ 1;
3: gt ← ∇θt−1ft (∇θt−1 represents the gradient operator

with respect to weights {θt−1});
4: mt ← β1mt−1 + (1− β1) gt, vt ← β2vt−1 +

(1− β2) g2t ;
5: m̂t ← mt/(1− βt1), v̂t ← vt/(1− βt2);
6: θt ← θt−1 −∆m̂t/(

√
v̂t + ε)

7: end while
8: return θt

rate for each weight, the estimates of the first and second
moments of the gradient are used for adaptation purposes.
Similar to the stochastic gradient descent method, the adaptive
algorithm of Adam is shown in Algorithm 1.

V. ANALYSIS OF COMPUTATIONAL COMPLEXITY

To clarify the motivation and reveal the technical contri-
bution analytically, we perform the analysis of computational
complexity for the power allocation scheme using ANN in this
section. For an ANN with R hidden layers and ρr neurons in
the rth layer, the data matrix in hidden layer r is denoted
as Qr; the weight matrix between rth layer and (r + 1)th
layer is denoted as Wr (Here, we refer the 0th layer to the
input layer for notational simplicity). Regarding the invoking
process of the ANN model as a feedforward pass process,
from layer r to layer r+ 1, we can have Qr+1 = WrQr and
then apply the activation function in an entry-wise manner
to have the mapping relation: Qr+1

S(Qr+1)−→ (0, 1)q
R
r+1×q

C
r+1 ,

where qRr+1 and qCr+1 denote the number of rows and columns
of Qr+1. In this way, we can determine the computational
complexity of this operation in the ith layer as O(ρrρr+1 +
ρr+1) = O((ρr + 1)ρr+1) = O(ρrρr+1). Taking all R
hidden layers into consideration, the computational complexity
of the entire feedforward propagation process is given by
O(4Tρ1 +

∑R
r=1 ρrρr+1 + 2TρR).

For comparison purposes, we also analyze the computa-
tional complexity of exhaustive search depending on searching
accuracy δ. If we simplify the function seeking the optimized
solution as F(A) where A denotes the set of object data,
including Pr and Pt. For a sub-linear convergence problem,
the optimal solution F∗ should satisfy F (Aκ) − F∗ ≤ ε√

κ
,

where κ is the number of searching rounds; ε is set as a
constant associated with platform configurations. Let ε√

κ
≤ δ,

resulting in O
(

1
δ2

)
as the computational complexity of ex-

haustive search.
From the above analysis, it is obvious that the computational

complexities pertaining to neural computing and exhaustive
search depend on different constructions. By property adjust-
ing the setups of an ANN, it is entirely possible that a low-
complexity power allocation scheme can be provided by neural
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Fig. 2: Relative errors of nine independent training cases.

computing, which outperforms exhaustive search in terms of
computational complexity.

VI. SIMULATION RESULTS AND KEY OBSERVATIONS

We investigate the effectiveness of the ANN based power
allocation scheme for relayed OFDM-IM systems by compar-
ing with the optimal benchmark given by exhaustive search. In
this study, we consider an example of ANN architecture with
six hidden layers, and each layer has 128 artificial neurons.
We fix the system setup and performance threshold as follow:
Ψth = 10−2, s = 1, N = 4, and T = 2. As a result,
eight inputs are taken into consideration, including µ1,1, µ1,2,
µ2,1, µ2,2, η1,1, η1,2, η2,1, and η2,2. After randomly generating
6561 groups of input training samples of these eight inputs
in the range of1 [0.5, 5], we utilize exhaustive search to seek
corresponding 6561 groups of labels for Pt,1, Pt,2, Pr,1, and
Pr,2 and then obtain a set of labeled training samples. In
addition, we set the batch size as 32 to speed up the training
process. In ANN parameter setup, especially for Adam back-
propagation method, two hyper-parameters β1 and β2 are fixed
to be 0.9 and 0.999 respectively. In addition, we let ∆ = 10−4,
ε = 10−8, set the number of training epochs to be 105, and
denote the set of optimized link weights as {θ∗}.

We mainly compare the differences between the proposed
ANN approach and the exhaustive search method. In ad-
dition, considering the over-fitting hazard and the algorith-
mic generality, we generate another L = 1000 groups of
samples to test the accuracy of the trained ANN model.
Although the loss function defined in (5) is appropriate for
training purposes, it might not be quantitatively comparable
for different groups of samples. For clarity, we introduce
the relative error E as a metric for illustration purposes:

1According to [18], the channel gain coefficient is standardized to be
µj,i = 10−12.8λ−αµ̃, where λ denotes the distance between transmitter
and receiver; α is the path loss exponent; µ̃ represents a random variable
abiding the Rayleigh distribution with unit mean. As for the noise power,
ηj,i = kbTcB, kb denotes Boltzmann’s constant

(
1.38× 10−23 J/K

)
;

Tc is the thermodynamic temperature in Kelvins (290 K set in most civil
application scenarios); B is the bandwidth in Hz (available values for receiver
bandwidth range from about 5-100 kHz). Based on these two formulas, for
general cases, µj,i and ηj,i are comparable in quantity. To study the effects
of different coefficients, we set the distribution ranges of both parameters as
[0.5,5] without loss of generality, where the value of upper bound is 10 times
as value of the lower bound.
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Fig. 3: Relative errors by different numbers of neurons in each layer.
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Fig. 5: Relative errors by different outage thresholds.

E = 1
L

∑L
l=1

(
1
2T

∥∥∥abs(Ûl − Ω(V̂l, {θ∗})
)
./Ûl

∥∥∥
1

)
, where

abs(·) returns a matrix/vector with the same dimension as
the argument and the absolute values of the matrix/vector
entries; ./ is the right array division that divides each entry
of the dividend by the corresponding entry of the divisor;
V̂l and Ûl denote the lth group of validation samples and
the corresponding label. We plot the relative errors of nine
independent cases in Fig. 2. It can be seen in Fig. 2 that the
relative error E gets lower with the increase of training epoch
and approaches 7.5% which is acceptable for most practical



5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

75

80

85

90

95

9900 9920 9940 9960 9980 10000

90

90.5

91

91.5

(a) Example 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

75

80

85

90

95

9900 9920 9940 9960 9980 10000

90.5

91

91.5

92

(b) Example 2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

76

78

80

82

84

86

88

90

92

9900 9920 9940 9960 9980 10000

89.2

89.4

89.6

89.8

90

90.2

90.4

90.6
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Fig. 6: Total transmit power of three independent cases yielded by the proposed ANN approach and exhaustive search.

applications. Moreover, by demonstrating the training perfor-
mance for nine cases with different samples, the generality
of the proposed power allocation scheme based on ANN and
deep learning can be validated.

Focusing on ANN architecture itself, we also provide some
simulations for comparison purposes by varying the number
of layers and the number of neurons in each layer. To reveal
the statistical nature by the law of large numbers, we average
the relative errors for all cases by 1000 repeated trials with
different channel realizations to produce smooth curves. As
shown in Fig. 3, when we fix the number of layers to be six,
average training efficiency has been obviously increased with
an increased number of neurons in each layer. We demonstrate
the effects of the number of layers on the average training
performance in Fig. 4 by fixing the number of neurons in each
layer to be 128. Surprisingly, a smaller number of layers brings
an even higher training efficiency at the beginning, whereas the
relation reverses as expected when converging toward training
limits.

We also vary the outage constraint in the range from 10−4

to 10−2 to study its impact on the average relative error.
Fig. 5 demonstrates that a higher outage constraint generally
leads to a faster converging process. However, there is not a
necessarily monotone relation between the outage constraint
and the relative error when converging toward training limits.

Meanwhile, as the optimization objective of the proposed
optimization problem, total transmit power is also studied
and simulated. We demonstrate the total transmit power of
three independent cases in Fig. 6. From this figure, we
can observe that the proposed power allocation scheme is
capable of yielding near-optimal performance compared to the
exhaustive search method. In addition, by employing ANN,
the computational complexity for power allocation has been
greatly reduced. Consequently, the effectiveness and efficiency
of the proposed power allocation scheme are corroborated
by the numerical results, and the proposed power allocation
scheme is numerically shown to be able to realize energy-
efficient relayed OFDM-IM in real time with low complexity.

REFERENCES

[1] E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas,
“Index modulation techniques for next-generation wireless networks,”
IEEE Access, vol. 5, pp. 16 693–16 746, 2017.

[2] P. Yang, Y. Xiao, Y. L. Guan, M. Di Renzo, S. Li, and L. Hanzo, “Mul-
tidomain index modulation for vehicular and railway communications:
A survey of novel techniques,” IEEE Veh. Technol. Mag., vol. 13, no. 3,
pp. 124–134, 2018.

[3] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G
be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.

[4] E. Basar, U. Aygolu, E. Panayırcı, and H. V. Poor, “Orthogonal fre-
quency division multiplexing with index modulation,” IEEE Trans. on
Signal Processing, vol. 61, no. 22, pp. 5536–5549, 2013.

[5] M. Wen, X. Cheng, M. Ma, B. Jiao, and H. V. Poor, “On the achievable
rate of OFDM with index modulation,” IEEE Trans. on Signal Process-
ing, vol. 64, no. 8, pp. 1919–1932, 2016.

[6] M. Wen, B. Ye, E. Basar, Q. Li, and F. Ji, “Enhanced orthogonal
frequency division multiplexing with index modulation,” IEEE Trans.
on Wireless Commun., vol. 16, no. 7, pp. 4786–4801, 2017.

[7] M. Wen, E. Basar, Q. Li, B. Zheng, and M. Zhang, “Multiple-mode
orthogonal frequency division multiplexing with index modulation,”
IEEE Trans. on Communications, vol. 65, no. 9, pp. 3892–3906, 2017.

[8] X. Cheng, M. Zhang, M. Wen, and L. Yang, “Index modulation for 5G:
Striving to do more with less,” IEEE Wireless Commun., vol. 25, no. 2,
pp. 126–132, 2018.

[9] Q. Ma, P. Yang, L. Dan, X. He, Y. Xiao, and S. Li, “OFDM-IM-aided
cooperative relaying protocol for cognitive radio networks,” in IEEE
Proc. SPAWC, Sapporo, Japan, 2017, pp. 1–5.

[10] M. Wen, X. Chen, Q. Li, E. Basar, Y. Wu, and W. Zhang, “Index
modulation aided subcarrier mapping for dual-hop OFDM relaying,”
IEEE Trans. on Communications, vol. 67, no. 9, pp. 6012–6024, 2019.

[11] S. Dang, J. P. Coon, and G. Chen, “Adaptive OFDM with index mod-
ulation for two-hop relay-assisted networks,” IEEE Trans. on Wireless
Commun., vol. 17, no. 3, pp. 1923–1936, 2018.

[12] J. Li, Y. Peng, Y. Yan, X. Jiang, H. Hai, and M. Zukerman, “Cognitive
radio network assisted by OFDM with index modulation,” IEEE Trans.
Veh. Technol., vol. 69, no. 1, pp. 1106–1110, 2020.

[13] J. Zhou, S. Dang, B. Shihada, and M.-S. Alouini, “Energy-efficient fixed-
gain AF relay assisted OFDM with index modulation,” IEEE Wireless
Commun. Lett., 2020.

[14] P. Yang and F. Mu, “Outage performance of multi-carrier relay selection
for full-duplex OFDM with index modulation system,” IEEE Commun.
Lett., vol. 24, no. 2, pp. 292–296, 2020.

[15] M. O. Hasna and M.-S. Alouini, “End-to-end performance of transmis-
sion systems with relays over Rayleigh-fading channels,” IEEE Trans.
on Wireless Commun., vol. 2, no. 6, pp. 1126–1131, 2003.

[16] A. Zappone, M. Di Renzo, M. Debbah, T. T. Lam, and X. Qian, “Model-
aided wireless artificial intelligence: Embedding expert knowledge in
deep neural networks for wireless system optimization,” IEEE Veh.
Technol. Mag., vol. 14, no. 3, pp. 60–69, 2019.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] 3GPP, “Physical Layer Aspects for Evolved Universal Terrestrial Ra-
dioAccess (UTRA),” 3rd Generation Partnership Project (3GPP), TR
25.814, 2006.


