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Abstract - Due to the bufferless nature of Optical Burst Switched 
network, contentions occur even at low traffic loads, leading to 
burst losses. Contention resolution schemes, such as burst 
retransmission and deflection, can reduce burst losses, especially 
at low traffic loads. However, both schemes result in additional 
packet delay for the packets in bursts that are retransmitted or 
deflected. The additional packet delay affects the performance of 
delay-based TCP implementations that rely on  packet delay to 
estimate available bandwidth in networks and to detect network 
congestion state. In this paper, we discuss the issues of TCP 
Vegas over OBS networks and propose a threshold-based TCP 
Vegas version that is suitable for the characteristics of OBS 
networks. The threshold-based TCP Vegas are able to distinguish 
whether the increases in packet delay are due to network 
congestion, or due to burst contentions at low traffic loads. Our 
simulation results show that the threshold-based TCP Vegas has 
higher throughput for a TCP connection compared to TCP Vegas 
and the loss-based TCP implementations, such as TCP Sack.        
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I.  INTRODUCTION 
Wavelength division multiplexing (WDM) is a promising 
transmission technology for the next-generation Internet. In 
WDM technology, the optical transmission spectrum is carved 
up into a number of non-overlapping wavelength bands, and 
each wavelength supports a single communication channel 
operating at the peak electronic rate. Currently, WDM 
technology enables the multiplexing of 160-320 wavelengths 
into a single fiber, with a transmission rate of 10-40 Gb/s per 
wavelength. In order to efficiently utilize the raw bandwidth in 
WDM networks, an all-optical transport method, which 
supports fast resource provisioning and asynchronous 
transmission, must be developed. Optical burst switching 
(OBS) is such a promising WDM switching technology [1].  
    In OBS networks, data traffic is transmitted as bursts. Each 
burst consists of multiple packets (IP packets for an IP over 
WDM network), and a burst header packet (BHP) is generated 
for each burst. For a burst transmission, a BHP is first sent 
from the source node traveling thought the core nodes to set 
up the path based on predefined traffic parameters. After an 
offset time, the data burst is then sent through the network all-
optically in a one-way signalling fashion. The offset time must 
ensure that, at each intermediate node, the BHP is processed 

prior to the burst arrival. Hence, there is no need to delay burst 
at each intermediate node. 
   Burst contention occurs when more than one burst attempts 
to traverse the same output port or wavelength at the same 
time. We refer to the burst that fails to make a successful 
wavelength reservation due to contention at a core node as the 
contending burst. Contentions result in bursts being dropped, 
leading to burst losses. Since OBS core networks are 
bufferless, OBS networks suffer from random burst losses due 
to burst contentions, even at low traffic loads. There are many 
contention resolution schemes that can reduce random burst 
losses in OBS networks, such as fiber delay line buffering [2], 
wavelength conversion [3], deflection [4], and burst 
retransmission [5].  

TCP has been under tremendous amount of research and 
enhancements over the past decade. Many TCP versions have 
been proposed in order to improve TCP performance over 
networks with different network transmission characteristics, 
such as long propagation delay in long distance optical circuit 
switched (OCS) networks [6, 7, 8]. TCP versions can 
generally be classified into loss-based or delay-based 
according to how TCP senders detect congestion state in a 
network. The loss-based TCP implementations, such as TCP 
Reno, NewReno, and Sack, detect network congestion by 
packet losses. The delay-based TCP implementations, such as 
TCP Vegas [9] and Fast TCP [6], use the packet delay to 
estimate the available bandwidth in networks.  

When loss-based TCP implementations run over OBS-based 
WDM networks, packet losses in OBS networks cannot 
correctly indicate network congestion since random burst 
losses occur even at low traffic loads. These random burst 
losses may be mistakenly interpreted by the TCP layer as 
congestion in the network, leading to serious degradation of 
the TCP performance. Several schemes have been proposed in 
[10, 11] to solve the false congestion detection issue for the 
loss-based TCP implementations over OBS networks.   
The packet delay is known to be more accurate in congestion 
estimation than the packet loss events due to two reasons [6]. 
In high speed with large bandwidth-delay product, packet 
losses are very rare events. Thus, packet losses are not a 
proper indicator of network congestion. Furthermore, the 
packet delay provides multi-bit information, which will make 



an equation-based rate control implementation easier to 
stabilize a network with a target fairness and high utilization 
compared to the one-bit loss information obtained by a packet 
loss.  

  
Figure 1. TCP over OBS network 

 
The delay-based TCP Vegas implementation measures the 

round trip delay (RTT) of each packet in order to calculate the 
Expected throughput and the Actual throughput, and then 
adjusts its congestion window size (cwnd) based on the 
difference between the Expected throughput and the Actual 
throughput [12, 13]. By selecting proper α and β parameters, it 
has been shown that TCP Vegas performs well over modern 
high-performance links and better than TCP Reno [14, 15]. 

In this paper, we focus on investigating the performance of 
the delay-based TCP Vegas over OBS networks, and the 
network model is shown in Fig. 1. When TCP Vegas runs over 
typical barebone OBS networks, network congestion happens 
in two scenarios. One scenario is when packet-switched IP 
access networks are congested, which results in longer 
queuing delay. The other scenario is when OBS networks are 
heavily loaded, which results in high packet loss probability. 
Since the packet delay incurred in an OBS core network 
primarily consists of burst assembly and link propagation 
delay, the packet delay will not vary if the OBS network 
adopts a fixed source-routing scheme. Thus, the delay-based 
TCP Vegas can only estimate the congestion state in IP access 
networks that have electronic buffers. TCP Vegas will suffer 
false congestion detection when a random burst loss occurs 
due to contention in a lightly-loaded OBS network. 

OBS networks employ contention resolution schemes in 
order to reduce random burst loss, thus improving the 
transmission reliability of OBS networks. Both deflection and 
burst retransmission schemes can recover burst losses, but 
introduce extra burst delay for bursts that experience 
contention. For the fiber delay line contention resolution 
scheme, the delay accommodated by fiber delay lines is very 
limited, e.g. to delay a single burst for 1 ms requires a fiber 
with length of 200 km. Hence, in this paper, we investigate the 
performance of delay-based TCP over OBS networks that 
employ deflection or burst retransmission scheme.  

When TCP Vegas runs over OBS networks with burst 
retransmission or deflection scheme, TCP detects the increase 
in RTTs for packets in bursts that are deflected or 
retransmitted in OBS networks. However, TCP Vegas could 
not tell whether the increases in packet delay are due to 
network congestion or due to retransmission or deflection in 

lightly-loaded OBS networks. Hence, the delay-based TCP 
Vegas has a great challenge to accurately estimate the network 
congestion state in OBS networks.  

In this paper, we propose a threshold-based TCP Vegas that 
is suitable for the characteristics of OBS networks with 
deflection or retransmission scheme. We introduce a threshold 
to distinguish between network congestion and contention at 
low traffic loads. If an OBS network is heavily loaded, 
random burst contention will occur frequently, which results 
in higher number of bursts being deflected or being 
retransmitted. Thus, if the number of packets that have 
increases in RTTs exceeds the threshold, then TCP detects 
network congestion in the OBS network. If an OBS network is 
lightly loaded, random burst contention will occur 
infrequently. Thus, if the number of packets that have 
increases in RTTs is below the threshold, then TCP considers 
the increases in RTTs are due to contentions at low traffic 
loads.  Once TCP Vegas realizes the correct network state, it 
will correspondingly adjust the size of cwnd.  

The rest of the paper is organized as follows. Section II first 
describes the burst retransmission and the deflection schemes 
in OBS networks, and then presents the implementation and 
issues of TCP Vegas in IP packet-switched networks. Section 
III discusses the issues of the delay-based TCP Vegas over 
OBS networks and presents the proposed threshold-based TCP 
Vegas. In Section IV, we compare the performance of the 
threshold-based TCP Vegas with the original TCP Vegas 
version and the loss-based TCP versions, such as TCP Sack. 
Section V concludes the paper.  

 

II. TCP VEGAS  
The delay-based TCP implementations use delay measurement 
to estimate available bandwidth in networks, including TCP 
Vegas [9] and Fast TCP [6]. It has been shown in [14, 15] that 
TCP Vegas improves TCP throughput by achieving 37% to 
71% higher throughput and by significantly reducing packet 
retransmissions compared to TCP Reno. The performance of 
Fast TCP has been evaluated in [6, 16]. Fast TCP can be 
thought of as a high-speed of TCP Vegas [6]. In this paper, we 
focus on the delay-based TCP Vegas.  

TCP Vegas modifies TCP Reno in the congestion avoidance, 
slow-start, and retransmission phases [2]. We describe the 
modifications of TCP Vegas as follows.  

1) TCP Vegas Congestion Avoidance  
TCP Reno uses packet losses as a signal for network 
congestion and can not detect any potential congestion before 
packet losses occur. On the other hand, TCP Vegas uses the 
difference between the estimated throughput and the measured 
throughput as a way of estimating the congestion state of the 
network.  

TCP Vegas first computes the BaseRTT as the minimum 
measured RTT that is an estimation of the propagation delay as 
well as the queuing delay. Then Vegas computes the Expected 
throughput according to  



BaseRTT
cwndExpected = ,           (1) 

where cwnd is the current congestion window size.  
   Second, Vegas calculates the current Actual throughput. For 
each packet being sent, Vegas estimates its RTT before its 
ACK comes back. Vegas then computes Actual throughput 
using the estimated RTT by 

                                    
RTT

cwndActual = .           (2) 

   Vegas then compares Actual and Expected and computes the 
Diff as follows:  

        0, >−= DiffwhereActualExpectedDiff .    (3) 
The Diff is used to adjust the next cwnd. Vegas defines two 
threshold values for controlling Diff, α and β. If Diff < α, then 
Vegas increases the window size linearly during the next RTT. 
If Diff > β, Vegas decreases the congestion window size 
linearly during the next RTT. Otherwise, Vegas leaves the 
window size unchanged. Hence, TCP Vegas congestion 
avoidance mechanism aims to maintain the expected number 
of outstanding packets in the queues of networks between α 
and β. If the Actual throughput is much smaller than the 
Expected throughput, then it is likely that the network is 
congested. Thus, the TCP sender should reduce the flow rate. 
On the other hand, if the Actual throughput is too close to the 
Expected throughput, then the connection may not be utilizing 
the available flow rate, and hence should increase the flow 
rate.  

2) TCP Vegas Slow Start  
TCP Vegas increases the cwnd exponentially only every other 
RTT. In between the two consecutive RTTs, the cwnd stays 
fixed in order to achieve the expected and actual transmission 
rates. When the actual rate falls below the expected rate, TCP 
Vegas changes from slow-start mode to linear 
increase/decrease mode. 

3) TCP Vegas Packet Retransmission 
When a TCP Vegas sender receives an acknowledgement 
(ACK), it records the clock and calculates the estimated RTT 
using the current time and the timestamp recorded for the 
associated packet. Vegas then uses the estimated RTT to 
decide to retransmit the packet based on the following two 
conditions. First, when a duplicate ACK is received, Vegas 
checks if the difference between the current time and the 
timestamp recorded for the associated packet is greater than 
the timeout value. If true, then Vegas retransmits the packet 
without having to wait for the remaining incoming duplicate 
ACKs. Second, when an ACK is received, if it is the first or the 
second ACK after a retransmission, Vegas again checks if the 
time interval since the segment was sent is larger than the 
timeout value. If it is, then Vegas retransmits the segment. 
This will catch any other segment that may have been lost 
previous to the retransmission without having to wait for a 
duplicate ACK. Hence, Vegas retransmission mechanism 
reduces the time to detect lost segments from the third 
duplicate ACK to the first or second duplicate ACK.  

4) TCP Vegas for Rerouting and Network Congestion 
Problem in Packet-Switched IP Networks 
In a packet-switched IP network, the route of a TCP 
connection may be changed by routers, which is called 
rerouting. Rerouting a path may increase the propagation 
delay of the connection. Without an explicit signal from the 
router, TCP Vegas will not be able to tell whether the increase 
in the measured RTT is due to network congestion or a change 
in the route. If the delay increase is due to rerouting, then TCP 
Vegas must decide an accurate BaseRTT that estimates the 
propagation delay. A modified TCP Vegas has been proposed 
in [17] in order to detect accurate BaseRTT based on measured 
RTTs. The basic idea behind this modified TCP Vegas is as 
follows. If the minimum RTT computed for a number of 
packets is consistently much higher than BaseRTT, then it is 
likely that the actual propagation delay is larger than the 
measured BaseRTT, and then BaseRTT will be increased. 
Once BaseRTT increases, the Diff of Actual and Expected 
throughput starts to reduce as the congestion window size is 
properly reset and linearly increased.  

In case where the delay is caused by network congestion, 
the increased BaseRTT is an inaccurate estimation of the 
propagation delay of the path, which creates a temporary 
increase in congestion level in the network. The RED 
gateways in the network will start to drop packets. Then, most 
connections will detect congestion and reduce their congestion 
window size. The congestion level will come down, which 
allows the connections to estimate a correct BaseRTT. Hence, 
if the connections are in persistent congestion, increasing 
BaseRTT will force the connection to break the persistent 
congestion state and update to a correct BaseRTT. 

The above-mentioned modification can successfully assist 
TCP Vegas to correctly react to rerouting and network 
congestion in a packet-switched IP network. However, if TCP 
Vegas runs over IP over OBS-based WDM network, TCP 
Vegas still has the issue of false congestion detection due to 
contentions in a lightly-loaded OBS network. In the next 
section, we discuss the issues of TCP Vegas over OBS 
networks and propose a modified TCP Vegas version that is 
suitable for the characteristics of OBS networks.  

 

III. TCP VEGAS OVER OBS NETWORK 
In a typical barebone OBS network, if the OBS network 
adopts a fixed source-routing scheme, the packet delay 
experienced in the OBS network is primarily the sum of burst 
assembly delay and link propagation delay, which does not 
vary when the traffic load in the OBS network changes. 
Hence, the delay-based TCP Vegas cannot effectively detect 
network congestion in OBS networks. Furthermore, burst 
losses occur due to contentions even if the OBS network is 
lightly loaded. If all packets in the cwnd of TCP Vegas are 
assembled into a single burst, TCP Vegas suffers false 
congestion detection if the burst is contended and dropped at 
low traffic loads. TCP Vegas sender then triggers time out 
retransmission and enters into slow start phase, which 
significantly reduces the TCP throughput.    



    Both deflection and burst retransmission contention 
resolution schemes can significantly reduce burst losses, 
especially at low traffic loads. Hence, when TCP Vegas runs 
over OBS networks with burst retransmission or deflection 
scheme, the likelihood of false congestion detection in TCP 
Vegas will be reduced. However, both schemes suffer an extra 
delay for the contending bursts that successfully reach the 
destination node. When TCP Vegas runs over OBS networks 
with burst retransmission or deflection scheme, TCP detects 
the increases in RTTs for packets in bursts that are deflected or 
retransmitted in OBS networks, which may result in TCP 
Vegas reducing its cwnd size. If more packets from a TCP 
connection are assembled into a burst, the size of cwnd may be 
further reduced, leading to lower TCP throughput. But if the 
increases in RTTs are caused by burst retransmission or 
deflection in a lightly-loaded OBS network, TCP Vegas 
should not reduce its cwnd. Hence, we need to have a 
modified TCP Vegas that are able to tell whether the increases 
in RTTs are due to network congestion, or due to 
retransmission or deflection in a lightly-loaded OBS networks. 
    We observe that if the IP access network is congested, or 
TCP Vegas will continuously detect the increases in RTTs. If 
the OBS network is heavily loaded, random burst contentions 
frequently occur, then TCP Vegas will often detect the 
increases in RTTs. If the OBS network is lightly loaded, 
random burst contentions less frequently occur, and at the 
same time, if the packet-switched IP access network is not 
congested, TCP Vegas will less often detect the increases in 
RTTs. Hence, TCP Vegas can detect network congestion (in 
OBS networks and/or in IP access network) if RTTs are 
frequently increased.  
 

 

Figure 2. Flow chart for the threshold-based TCP Vegas 

Based on the above observations, we propose a threshold-
based TCP Vegas. We introduce a threshold T to assist TCP 
Vegas to distinguish between network congestion and 
contentions at low traffic loads. TCP Vegas measures RTT for 
each packet sent and keeps track of the minimum measured 
RTTs of N  consecutive packets. Let )(iMinRTT  be the 
minimum measured RTTs of i )0( Ni <<  consecutive 

packets. For the ith round, if the measured RTT of the ith 
packets is larger than )1( −iMinRTT , it means that the ith 
packet is in the burst that is deflected or retransmitted or the 
ith packet is queued in access networks. A counter that 
measures the number of packets whose RTTs are larger than 
their )1( −iMinRTT  will then be increased by 1. If the number 
of TCP packets whose RTTs are larger than their 

)1( −iMinRTT  is under the threshold T , then the TCP Vegas 
connection will stay with the Actual throughput calculated 
based on their )1( −iMinRTT , even if the measured RTTs are 
increased. If the number of TCP packets whose RTTs are 
larger than their )1( −iMinRTT  exceeds the threshold T , 
which means that bursts are often deflected or retransmitted in 
the OBS network. Hence the TCP Vegas recognizes the 
network congestion and calculates the Actual throughput as 
usual. Fig. 2 summarizes the proposed threshold-based TCP 
Vegas. 

The basic idea behind the threshold-based TCP Vegas is to 
reduce the sensitivity of TCP Vegas to the increases in packet 
delay caused by retransmission and deflection in order to more 
accurately react to the congestion state in OBS networks. To 
decrease the parameter α, or to increase the parameter β may 
also reduce the sensitivity of TCP Vegas by keeping the cwnd 
unchanged. However, it makes TCP Vegas difficult to 
estimate the available bandwidth in networks. 
    Note that the number of packets that are sent consecutively , 
N, and the threshold, T , should be chosen much larger than 
the number of packets from a TCP Vegas connection that are 
assembled into a burst, so that TCP Vegas is able to detect the 
frequency of deflection and retransmission in OBS networks 
based on a number of bursts. Usually, the packets from a TCP 
connection assembled in the same burst have the same 
measured RTT. By analyzing the variation pattern of packet 
RTTs, TCP Vegas can obtain the number of packets from a 
TCP Vegas connection that are assembled into a burst. Also, 
the relationship between the threshold T and the number of 
consecutive packets, N , affects the TCP performance. When 
T is closer to N , once a congestion state is detected, there are 
less number of remaining packets in N to react to the detected 
congestion, which results in TCP ineffectively reacting to 
network congestion. Hence, we choose N  to be ,iTN =  
where 1>i . In Section V, we evaluate different values of 
T and N .          

IV. NUMERICAL RESULTS 
To verify the proposed scheme, simulation is conducted using 
Network Simulator NS-2, where the NSF network topology 
shown in Fig. 3 is adopted as the OBS network topology. The 
distances shown are in km. On each link, there is a bi-
directional control channel and a fiber link used for data burst 
transfer. Each fiber link consists of 8 wavelengths operating at 
10 Gb/s transmission rate. Each OBS core node is equipped 
with fiber delay lines operating at 2, 5, and 8 ms delay 
granularities. The mixed time/length based burst assembly 
algorithm is adopted, where the burst timeout threshold is set 



to 5 ms and the maximum burst length is set to 500KB. The 
core nodes implement the LAUC-VF channel scheduling 
algorithm, where the burst offset time is set to 2µs. The burst 
retransmission and deflection schemes are implemented in the 
OBS network. In the burst retransmission scheme, bursts can 
be retransmitted once and are dropped after the second 
contention. In the deflection scheme, bursts can be deflected 
once. 

 
Figure 3. NSF network topology 

 
   The TCP senders and receivers are attached to OBS edge 
nodes. In the simulation, the packet delay variation is caused 
by the burst retransmission or burst deflection. A File Transfer 
Protocol (FTP) application is used for generating TCP traffic 
with average packet size of 1KB. The TCP packets traverse 
through a minimum of four hops before reaching their 
destination. The TCP throughput is obtained over a simulation 
period of 106 seconds. The average number of packets 
assembled in one burst ranges from 100 to 500 packets. In the 
following figures, the TCP Vegas with 0,0 ≠≠ NT denotes the 
threshold-based TCP Vegas. Also, in the figures, the 
throughput is measured for a single TCP flow in the network, 
and the burst contention probability is the probability that a 
burst experiences contention, but is not necessarily dropped.     
    Fig. 4 compares the throughput of loss-based TCP Sack, the 
original Vegas version, and the threshold-based Vegas over 
the barebone OBS network. In the threshold-based TCP 
Vegas, the threshold T is chosen to be 100, 200, 300, and 400 
while the number of consecutive TCP packets N is chosen to 
be 4T. The threshold-based TCP Vegas with different N and 
T and original TCP Vegas perform very similar such that their 
throughput plots are overlapped. This is due to the fact that the 
round trip time does not vary significantly. We can also see 
that TCP Vegas versions perform much better than the loss-
based TCP versions in the barebone OBS network.  
    Fig. 5 and Fig. 6 compares the throughput of loss-based 
TCP Sack, the original Vegas version, and the threshold-based 
Vegas over the OBS network with burst retransmission and 
burst deflection, respectively. We observe that the threshold-
based TCP Vegas performs much better than the original TCP 
Vegas and TCP Sack when the OBS network applies either 
burst retransmission or burst deflection. For example, in Fig.5, 
when the burst contention probability is 10-4, TCP Vegas with 
the threshold 400 improves the throughput by 73% compared 
to the original TCP Vegas. We can also see that, with higher 
threshold, the threshold-based TCP Vegas performs better.  
When the burst contention probability is 10-4, TCP Vegas with 
the threshold 400 improves the throughput by 82% compared 
to TCP Vegas with threshold 200.  This is because that the 
TCP Vegas with threshold 400 more accurately detects the 

congestion state in the OBS network than the TCP Vegas with 
threshold 200 and delays triggering Vegas congestion 
avoidance mechanism. 

 
Figure 4. Throughput of TCP Sack, Vegas, and threshold-
based Vegas vs. burst contention probability in barebone OBS.  

 
Figure 5. Throughput of TCP Sack, Vegas, and threshold-
based Vegas vs. burst contention probability in OBS with 
burst retransmission. 

 
Figure 6. Throughput of TCP Sack, Vegas, and threshold-
based Vegas vs. burst contention probability in OBS with 
burst deflection. 
 



    Fig. 7 and Fig. 8 compare the throughput of TCP Sack and 
the threshold-based Vegas over the OBS network with burst 
retransmission and deflection, respectively. In these 
experiments, we show the effect of varying the values of T and 
N in the threshold-based Vegas. We observe that, with a fixed 
T value, varying N values does not result into a major 
throughput change. For example, the throughput of 

400=N and 800=N  are very close when 200=T . We can 
also see that Vegas throughput is mainly affected by varying 
the values of T. For instance, when ,400=N  the throughout of 

200=T  increases 86% compared to the throughput of 100=T .  

 
Figure 7. Throughput of TCP Sack and threshold-based Vegas  
vs. burst contention probability in OBS with burst 
retransmission. 

 
Figure 8. Throughput of TCP Sack and threshold-based Vegas  
vs. burst contention probability in OBS with burst deflection. 
 

V. CONCLUSIONS 
In this paper, we discussed the issues of TCP Vegas over OBS 
networks due to the misinterpretation of the additional delay 
introduced by the burst retransmission and burst deflection 
schemes. Based on the TCP packet delay variation pattern in 
an OBS network with burst retransmission or deflection 
scheme, we proposed a threshold-based TCP Vegas that is 
able to distinguish whether the increases in TCP packet RTTs 
are due to network congestion or due to retransmission or 

deflection in a lightly-loaded OBS networks. Our simulation 
results showed that the threshold-based TCP Vegas can more 
accurately detect the congestion state in OBS networks with 
burst retransmission or deflection, thus improves the 
throughput compared to the original TCP Vegas version and 
the loss-based TCP Sack.  

Our proposed threshold-based TCP Vegas has a single 
threshold to measure the congestion state in the OBS network. 
Our future work can be extended to multiple thresholds, which 
have more granualarity for the congestion state.  

 
REFERENCES 

[1] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm 
for an optical Internet,” Journal of High Speed Networks, vol. 8, no. 1, 
pp. 69–84, January 1999.  

[2] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, and et al.,  “CORD: 
Contention resolution by delay lines,” IEEE Journal on Selected Areas 
in Communications, vol. 14, no. 5, pp. 1014–1029, June 1996.  

[3] S.J.B. Yoo, “Wavelength conversion technologies for WDM network 
applications,” IEEE/OSA Journal of Lightwave Technology, vol. 14, pp. 
955–966, June 1996. 

[4] C. Hsu, T. Liu, and N. Huang, “Performance analysis of deflection 
routing in optical burst-switched networks,” Proceedings, IEEE 
Infocom, vol. 1, pp. 66–73, 2002. 

[5] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Evaluation of Burst 
Retransmission in Optical Burst-Switched Networks,” Proceedings, 2nd 
International Conference on Broadband Networks (BROADNETS) 2005, 
Boston, MA, Oct. 2005.   

[6] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture, 
Algorithms, Performance,” Proceedings, IEEE Infocom, 2004. 

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control 
(BIC) for fast long-distance networks”, Proceedings, IEEE Infocom, 
Hong Kong, China, 2004. 

[8] S. Floyd, “Quick-Start for TCP and IP,” Internet draft, draft-amit-quick-
start-02.txt, 2002. 

[9] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion 
avoidance on a global Internet,” Journal on Selected Area, vol. 13, no. 8, 
pp. 1465-1480, 1995. 

[10] X. Yu, C. Qiao, and Y. Liu, “TCP implementations and false time out 
detection in OBS networks,” Proceedings, IEEE Infocom, March 2004.   

[11]  Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Analysis of TCP 
over Optical Burst-Switched Networks with Burst Retransmission,”  
Proceedings,  IEEE Global Communication Conference (GLOBECOM), 
St. Louis,  2005.   

[12] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion 
avoidance on a global Internet,” Journal on Selected Area, vol. 13, no. 8, 
pp. 1465-1480, October 1995. 

[13] J. Mo, R. La, V. Anantharam, and J. Walrand, “Analysis and 
comparison of TCP Reno and Vegas,” Proceedings, IEEE Infocomm, 
pp. 1556-63, March 1999. 

[14] E. Weigle and W. Feng, “A case for TCP Vegas in high-performance 
computational grids,” Proceedings, 10th IEEE International Symposium 
High Performance Distributed Computing, pp. 158–167, 2001. 

[15] J. Ahn, P. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP Vegas: 
emulation and experiment,” Computer Communication Review, vol. 25, 
pp 185-95, 1995.  

[16] S. Hegde, D. Lapsey, and et. al., “FAST TCP in high-speed networks: 
An experimental study,” Workshop on Networks for Grid Applications, 
October 2004. 

[17] R. La, J. Walrand and V. Anantharam, “Issues in TCP Vegas,” 
UCB/ERL Memorandum, No. M99/3, Electronics Research Laboratory, 
University of California, Berkeley, 1999. 


