
Threshold-based TCP Vegas over Optical Burst
Switched Networks

Basem Shihada1, Qiong Zhang2, Pin-Han Ho1
1Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada

{bshihada,pinhan}@bbcr.uwaterloo.ca
2Mathematical Science and Applied Computing, Arizona State University West Campus, Phoenix, USA

qiong.zhang@asu.edu

Abstract - Due to the bufferless nature of Optical Burst Switched
network, contentions occur even at low traffic loads, leading to
burst losses. Contention resolution schemes, such as burst
retransmission and deflection, can reduce burst losses, especially
at low traffic loads. However, both schemes result in additional
packet delay for the packets in bursts that are retransmitted or
deflected. The additional packet delay affects the performance of
delay-based TCP implementations that rely on packet delay to
estimate available bandwidth in networks and to detect network
congestion state. In this paper, we discuss the issues of TCP
Vegas over OBS networks and propose a threshold-based TCP
Vegas version that is suitable for the characteristics of OBS
networks. The threshold-based TCP Vegas are able to distinguish
whether the increases in packet delay are due to network
congestion, or due to burst contentions at low traffic loads. Our
simulation results show that the threshold-based TCP Vegas has
higher throughput for a TCP connection compared to TCP Vegas
and the loss-based TCP implementations, such as TCP Sack.

Key words: Optical burst Switching, TCP Vegas, Deflection,
Burst Retransmission

I. INTRODUCTION
Wavelength division multiplexing (WDM) is a promising
transmission technology for the next-generation Internet. In
WDM technology, the optical transmission spectrum is carved
up into a number of non-overlapping wavelength bands, and
each wavelength supports a single communication channel
operating at the peak electronic rate. Currently, WDM
technology enables the multiplexing of 160-320 wavelengths
into a single fiber, with a transmission rate of 10-40 Gb/s per
wavelength. In order to efficiently utilize the raw bandwidth in
WDM networks, an all-optical transport method, which
supports fast resource provisioning and asynchronous
transmission, must be developed. Optical burst switching
(OBS) is such a promising WDM switching technology [1].
 In OBS networks, data traffic is transmitted as bursts. Each
burst consists of multiple packets (IP packets for an IP over
WDM network), and a burst header packet (BHP) is generated
for each burst. For a burst transmission, a BHP is first sent
from the source node traveling thought the core nodes to set
up the path based on predefined traffic parameters. After an
offset time, the data burst is then sent through the network all-
optically in a one-way signalling fashion. The offset time must
ensure that, at each intermediate node, the BHP is processed

prior to the burst arrival. Hence, there is no need to delay burst
at each intermediate node.
 Burst contention occurs when more than one burst attempts
to traverse the same output port or wavelength at the same
time. We refer to the burst that fails to make a successful
wavelength reservation due to contention at a core node as the
contending burst. Contentions result in bursts being dropped,
leading to burst losses. Since OBS core networks are
bufferless, OBS networks suffer from random burst losses due
to burst contentions, even at low traffic loads. There are many
contention resolution schemes that can reduce random burst
losses in OBS networks, such as fiber delay line buffering [2],
wavelength conversion [3], deflection [4], and burst
retransmission [5].

TCP has been under tremendous amount of research and
enhancements over the past decade. Many TCP versions have
been proposed in order to improve TCP performance over
networks with different network transmission characteristics,
such as long propagation delay in long distance optical circuit
switched (OCS) networks [6, 7, 8]. TCP versions can
generally be classified into loss-based or delay-based
according to how TCP senders detect congestion state in a
network. The loss-based TCP implementations, such as TCP
Reno, NewReno, and Sack, detect network congestion by
packet losses. The delay-based TCP implementations, such as
TCP Vegas [9] and Fast TCP [6], use the packet delay to
estimate the available bandwidth in networks.

When loss-based TCP implementations run over OBS-based
WDM networks, packet losses in OBS networks cannot
correctly indicate network congestion since random burst
losses occur even at low traffic loads. These random burst
losses may be mistakenly interpreted by the TCP layer as
congestion in the network, leading to serious degradation of
the TCP performance. Several schemes have been proposed in
[10, 11] to solve the false congestion detection issue for the
loss-based TCP implementations over OBS networks.
The packet delay is known to be more accurate in congestion
estimation than the packet loss events due to two reasons [6].
In high speed with large bandwidth-delay product, packet
losses are very rare events. Thus, packet losses are not a
proper indicator of network congestion. Furthermore, the
packet delay provides multi-bit information, which will make

an equation-based rate control implementation easier to
stabilize a network with a target fairness and high utilization
compared to the one-bit loss information obtained by a packet
loss.

Figure 1. TCP over OBS network

The delay-based TCP Vegas implementation measures the

round trip delay (RTT) of each packet in order to calculate the
Expected throughput and the Actual throughput, and then
adjusts its congestion window size (cwnd) based on the
difference between the Expected throughput and the Actual
throughput [12, 13]. By selecting proper α and β parameters, it
has been shown that TCP Vegas performs well over modern
high-performance links and better than TCP Reno [14, 15].

In this paper, we focus on investigating the performance of
the delay-based TCP Vegas over OBS networks, and the
network model is shown in Fig. 1. When TCP Vegas runs over
typical barebone OBS networks, network congestion happens
in two scenarios. One scenario is when packet-switched IP
access networks are congested, which results in longer
queuing delay. The other scenario is when OBS networks are
heavily loaded, which results in high packet loss probability.
Since the packet delay incurred in an OBS core network
primarily consists of burst assembly and link propagation
delay, the packet delay will not vary if the OBS network
adopts a fixed source-routing scheme. Thus, the delay-based
TCP Vegas can only estimate the congestion state in IP access
networks that have electronic buffers. TCP Vegas will suffer
false congestion detection when a random burst loss occurs
due to contention in a lightly-loaded OBS network.

OBS networks employ contention resolution schemes in
order to reduce random burst loss, thus improving the
transmission reliability of OBS networks. Both deflection and
burst retransmission schemes can recover burst losses, but
introduce extra burst delay for bursts that experience
contention. For the fiber delay line contention resolution
scheme, the delay accommodated by fiber delay lines is very
limited, e.g. to delay a single burst for 1 ms requires a fiber
with length of 200 km. Hence, in this paper, we investigate the
performance of delay-based TCP over OBS networks that
employ deflection or burst retransmission scheme.

When TCP Vegas runs over OBS networks with burst
retransmission or deflection scheme, TCP detects the increase
in RTTs for packets in bursts that are deflected or
retransmitted in OBS networks. However, TCP Vegas could
not tell whether the increases in packet delay are due to
network congestion or due to retransmission or deflection in

lightly-loaded OBS networks. Hence, the delay-based TCP
Vegas has a great challenge to accurately estimate the network
congestion state in OBS networks.

In this paper, we propose a threshold-based TCP Vegas that
is suitable for the characteristics of OBS networks with
deflection or retransmission scheme. We introduce a threshold
to distinguish between network congestion and contention at
low traffic loads. If an OBS network is heavily loaded,
random burst contention will occur frequently, which results
in higher number of bursts being deflected or being
retransmitted. Thus, if the number of packets that have
increases in RTTs exceeds the threshold, then TCP detects
network congestion in the OBS network. If an OBS network is
lightly loaded, random burst contention will occur
infrequently. Thus, if the number of packets that have
increases in RTTs is below the threshold, then TCP considers
the increases in RTTs are due to contentions at low traffic
loads. Once TCP Vegas realizes the correct network state, it
will correspondingly adjust the size of cwnd.

The rest of the paper is organized as follows. Section II first
describes the burst retransmission and the deflection schemes
in OBS networks, and then presents the implementation and
issues of TCP Vegas in IP packet-switched networks. Section
III discusses the issues of the delay-based TCP Vegas over
OBS networks and presents the proposed threshold-based TCP
Vegas. In Section IV, we compare the performance of the
threshold-based TCP Vegas with the original TCP Vegas
version and the loss-based TCP versions, such as TCP Sack.
Section V concludes the paper.

II. TCP VEGAS
The delay-based TCP implementations use delay measurement
to estimate available bandwidth in networks, including TCP
Vegas [9] and Fast TCP [6]. It has been shown in [14, 15] that
TCP Vegas improves TCP throughput by achieving 37% to
71% higher throughput and by significantly reducing packet
retransmissions compared to TCP Reno. The performance of
Fast TCP has been evaluated in [6, 16]. Fast TCP can be
thought of as a high-speed of TCP Vegas [6]. In this paper, we
focus on the delay-based TCP Vegas.

TCP Vegas modifies TCP Reno in the congestion avoidance,
slow-start, and retransmission phases [2]. We describe the
modifications of TCP Vegas as follows.

1) TCP Vegas Congestion Avoidance
TCP Reno uses packet losses as a signal for network
congestion and can not detect any potential congestion before
packet losses occur. On the other hand, TCP Vegas uses the
difference between the estimated throughput and the measured
throughput as a way of estimating the congestion state of the
network.

TCP Vegas first computes the BaseRTT as the minimum
measured RTT that is an estimation of the propagation delay as
well as the queuing delay. Then Vegas computes the Expected
throughput according to

BaseRTT
cwndExpected = , (1)

where cwnd is the current congestion window size.
 Second, Vegas calculates the current Actual throughput. For
each packet being sent, Vegas estimates its RTT before its
ACK comes back. Vegas then computes Actual throughput
using the estimated RTT by

RTT

cwndActual = . (2)

 Vegas then compares Actual and Expected and computes the
Diff as follows:

 0, >−= DiffwhereActualExpectedDiff . (3)
The Diff is used to adjust the next cwnd. Vegas defines two
threshold values for controlling Diff, α and β. If Diff < α, then
Vegas increases the window size linearly during the next RTT.
If Diff > β, Vegas decreases the congestion window size
linearly during the next RTT. Otherwise, Vegas leaves the
window size unchanged. Hence, TCP Vegas congestion
avoidance mechanism aims to maintain the expected number
of outstanding packets in the queues of networks between α
and β. If the Actual throughput is much smaller than the
Expected throughput, then it is likely that the network is
congested. Thus, the TCP sender should reduce the flow rate.
On the other hand, if the Actual throughput is too close to the
Expected throughput, then the connection may not be utilizing
the available flow rate, and hence should increase the flow
rate.

2) TCP Vegas Slow Start
TCP Vegas increases the cwnd exponentially only every other
RTT. In between the two consecutive RTTs, the cwnd stays
fixed in order to achieve the expected and actual transmission
rates. When the actual rate falls below the expected rate, TCP
Vegas changes from slow-start mode to linear
increase/decrease mode.

3) TCP Vegas Packet Retransmission
When a TCP Vegas sender receives an acknowledgement
(ACK), it records the clock and calculates the estimated RTT
using the current time and the timestamp recorded for the
associated packet. Vegas then uses the estimated RTT to
decide to retransmit the packet based on the following two
conditions. First, when a duplicate ACK is received, Vegas
checks if the difference between the current time and the
timestamp recorded for the associated packet is greater than
the timeout value. If true, then Vegas retransmits the packet
without having to wait for the remaining incoming duplicate
ACKs. Second, when an ACK is received, if it is the first or the
second ACK after a retransmission, Vegas again checks if the
time interval since the segment was sent is larger than the
timeout value. If it is, then Vegas retransmits the segment.
This will catch any other segment that may have been lost
previous to the retransmission without having to wait for a
duplicate ACK. Hence, Vegas retransmission mechanism
reduces the time to detect lost segments from the third
duplicate ACK to the first or second duplicate ACK.

4) TCP Vegas for Rerouting and Network Congestion
Problem in Packet-Switched IP Networks
In a packet-switched IP network, the route of a TCP
connection may be changed by routers, which is called
rerouting. Rerouting a path may increase the propagation
delay of the connection. Without an explicit signal from the
router, TCP Vegas will not be able to tell whether the increase
in the measured RTT is due to network congestion or a change
in the route. If the delay increase is due to rerouting, then TCP
Vegas must decide an accurate BaseRTT that estimates the
propagation delay. A modified TCP Vegas has been proposed
in [17] in order to detect accurate BaseRTT based on measured
RTTs. The basic idea behind this modified TCP Vegas is as
follows. If the minimum RTT computed for a number of
packets is consistently much higher than BaseRTT, then it is
likely that the actual propagation delay is larger than the
measured BaseRTT, and then BaseRTT will be increased.
Once BaseRTT increases, the Diff of Actual and Expected
throughput starts to reduce as the congestion window size is
properly reset and linearly increased.

In case where the delay is caused by network congestion,
the increased BaseRTT is an inaccurate estimation of the
propagation delay of the path, which creates a temporary
increase in congestion level in the network. The RED
gateways in the network will start to drop packets. Then, most
connections will detect congestion and reduce their congestion
window size. The congestion level will come down, which
allows the connections to estimate a correct BaseRTT. Hence,
if the connections are in persistent congestion, increasing
BaseRTT will force the connection to break the persistent
congestion state and update to a correct BaseRTT.

The above-mentioned modification can successfully assist
TCP Vegas to correctly react to rerouting and network
congestion in a packet-switched IP network. However, if TCP
Vegas runs over IP over OBS-based WDM network, TCP
Vegas still has the issue of false congestion detection due to
contentions in a lightly-loaded OBS network. In the next
section, we discuss the issues of TCP Vegas over OBS
networks and propose a modified TCP Vegas version that is
suitable for the characteristics of OBS networks.

III. TCP VEGAS OVER OBS NETWORK
In a typical barebone OBS network, if the OBS network
adopts a fixed source-routing scheme, the packet delay
experienced in the OBS network is primarily the sum of burst
assembly delay and link propagation delay, which does not
vary when the traffic load in the OBS network changes.
Hence, the delay-based TCP Vegas cannot effectively detect
network congestion in OBS networks. Furthermore, burst
losses occur due to contentions even if the OBS network is
lightly loaded. If all packets in the cwnd of TCP Vegas are
assembled into a single burst, TCP Vegas suffers false
congestion detection if the burst is contended and dropped at
low traffic loads. TCP Vegas sender then triggers time out
retransmission and enters into slow start phase, which
significantly reduces the TCP throughput.

 Both deflection and burst retransmission contention
resolution schemes can significantly reduce burst losses,
especially at low traffic loads. Hence, when TCP Vegas runs
over OBS networks with burst retransmission or deflection
scheme, the likelihood of false congestion detection in TCP
Vegas will be reduced. However, both schemes suffer an extra
delay for the contending bursts that successfully reach the
destination node. When TCP Vegas runs over OBS networks
with burst retransmission or deflection scheme, TCP detects
the increases in RTTs for packets in bursts that are deflected or
retransmitted in OBS networks, which may result in TCP
Vegas reducing its cwnd size. If more packets from a TCP
connection are assembled into a burst, the size of cwnd may be
further reduced, leading to lower TCP throughput. But if the
increases in RTTs are caused by burst retransmission or
deflection in a lightly-loaded OBS network, TCP Vegas
should not reduce its cwnd. Hence, we need to have a
modified TCP Vegas that are able to tell whether the increases
in RTTs are due to network congestion, or due to
retransmission or deflection in a lightly-loaded OBS networks.
 We observe that if the IP access network is congested, or
TCP Vegas will continuously detect the increases in RTTs. If
the OBS network is heavily loaded, random burst contentions
frequently occur, then TCP Vegas will often detect the
increases in RTTs. If the OBS network is lightly loaded,
random burst contentions less frequently occur, and at the
same time, if the packet-switched IP access network is not
congested, TCP Vegas will less often detect the increases in
RTTs. Hence, TCP Vegas can detect network congestion (in
OBS networks and/or in IP access network) if RTTs are
frequently increased.

Figure 2. Flow chart for the threshold-based TCP Vegas

Based on the above observations, we propose a threshold-
based TCP Vegas. We introduce a threshold T to assist TCP
Vegas to distinguish between network congestion and
contentions at low traffic loads. TCP Vegas measures RTT for
each packet sent and keeps track of the minimum measured
RTTs of N consecutive packets. Let)(iMinRTT be the
minimum measured RTTs of i)0(Ni << consecutive

packets. For the ith round, if the measured RTT of the ith
packets is larger than)1(−iMinRTT , it means that the ith
packet is in the burst that is deflected or retransmitted or the
ith packet is queued in access networks. A counter that
measures the number of packets whose RTTs are larger than
their)1(−iMinRTT will then be increased by 1. If the number
of TCP packets whose RTTs are larger than their

)1(−iMinRTT is under the threshold T , then the TCP Vegas
connection will stay with the Actual throughput calculated
based on their)1(−iMinRTT , even if the measured RTTs are
increased. If the number of TCP packets whose RTTs are
larger than their)1(−iMinRTT exceeds the threshold T ,
which means that bursts are often deflected or retransmitted in
the OBS network. Hence the TCP Vegas recognizes the
network congestion and calculates the Actual throughput as
usual. Fig. 2 summarizes the proposed threshold-based TCP
Vegas.

The basic idea behind the threshold-based TCP Vegas is to
reduce the sensitivity of TCP Vegas to the increases in packet
delay caused by retransmission and deflection in order to more
accurately react to the congestion state in OBS networks. To
decrease the parameter α, or to increase the parameter β may
also reduce the sensitivity of TCP Vegas by keeping the cwnd
unchanged. However, it makes TCP Vegas difficult to
estimate the available bandwidth in networks.
 Note that the number of packets that are sent consecutively ,
N, and the threshold, T , should be chosen much larger than
the number of packets from a TCP Vegas connection that are
assembled into a burst, so that TCP Vegas is able to detect the
frequency of deflection and retransmission in OBS networks
based on a number of bursts. Usually, the packets from a TCP
connection assembled in the same burst have the same
measured RTT. By analyzing the variation pattern of packet
RTTs, TCP Vegas can obtain the number of packets from a
TCP Vegas connection that are assembled into a burst. Also,
the relationship between the threshold T and the number of
consecutive packets, N , affects the TCP performance. When
T is closer to N , once a congestion state is detected, there are
less number of remaining packets in N to react to the detected
congestion, which results in TCP ineffectively reacting to
network congestion. Hence, we choose N to be ,iTN =
where 1>i . In Section V, we evaluate different values of
T and N .

IV. NUMERICAL RESULTS
To verify the proposed scheme, simulation is conducted using
Network Simulator NS-2, where the NSF network topology
shown in Fig. 3 is adopted as the OBS network topology. The
distances shown are in km. On each link, there is a bi-
directional control channel and a fiber link used for data burst
transfer. Each fiber link consists of 8 wavelengths operating at
10 Gb/s transmission rate. Each OBS core node is equipped
with fiber delay lines operating at 2, 5, and 8 ms delay
granularities. The mixed time/length based burst assembly
algorithm is adopted, where the burst timeout threshold is set

to 5 ms and the maximum burst length is set to 500KB. The
core nodes implement the LAUC-VF channel scheduling
algorithm, where the burst offset time is set to 2µs. The burst
retransmission and deflection schemes are implemented in the
OBS network. In the burst retransmission scheme, bursts can
be retransmitted once and are dropped after the second
contention. In the deflection scheme, bursts can be deflected
once.

Figure 3. NSF network topology

 The TCP senders and receivers are attached to OBS edge
nodes. In the simulation, the packet delay variation is caused
by the burst retransmission or burst deflection. A File Transfer
Protocol (FTP) application is used for generating TCP traffic
with average packet size of 1KB. The TCP packets traverse
through a minimum of four hops before reaching their
destination. The TCP throughput is obtained over a simulation
period of 106 seconds. The average number of packets
assembled in one burst ranges from 100 to 500 packets. In the
following figures, the TCP Vegas with 0,0 ≠≠ NT denotes the
threshold-based TCP Vegas. Also, in the figures, the
throughput is measured for a single TCP flow in the network,
and the burst contention probability is the probability that a
burst experiences contention, but is not necessarily dropped.
 Fig. 4 compares the throughput of loss-based TCP Sack, the
original Vegas version, and the threshold-based Vegas over
the barebone OBS network. In the threshold-based TCP
Vegas, the threshold T is chosen to be 100, 200, 300, and 400
while the number of consecutive TCP packets N is chosen to
be 4T. The threshold-based TCP Vegas with different N and
T and original TCP Vegas perform very similar such that their
throughput plots are overlapped. This is due to the fact that the
round trip time does not vary significantly. We can also see
that TCP Vegas versions perform much better than the loss-
based TCP versions in the barebone OBS network.
 Fig. 5 and Fig. 6 compares the throughput of loss-based
TCP Sack, the original Vegas version, and the threshold-based
Vegas over the OBS network with burst retransmission and
burst deflection, respectively. We observe that the threshold-
based TCP Vegas performs much better than the original TCP
Vegas and TCP Sack when the OBS network applies either
burst retransmission or burst deflection. For example, in Fig.5,
when the burst contention probability is 10-4, TCP Vegas with
the threshold 400 improves the throughput by 73% compared
to the original TCP Vegas. We can also see that, with higher
threshold, the threshold-based TCP Vegas performs better.
When the burst contention probability is 10-4, TCP Vegas with
the threshold 400 improves the throughput by 82% compared
to TCP Vegas with threshold 200. This is because that the
TCP Vegas with threshold 400 more accurately detects the

congestion state in the OBS network than the TCP Vegas with
threshold 200 and delays triggering Vegas congestion
avoidance mechanism.

Figure 4. Throughput of TCP Sack, Vegas, and threshold-
based Vegas vs. burst contention probability in barebone OBS.

Figure 5. Throughput of TCP Sack, Vegas, and threshold-
based Vegas vs. burst contention probability in OBS with
burst retransmission.

Figure 6. Throughput of TCP Sack, Vegas, and threshold-
based Vegas vs. burst contention probability in OBS with
burst deflection.

 Fig. 7 and Fig. 8 compare the throughput of TCP Sack and
the threshold-based Vegas over the OBS network with burst
retransmission and deflection, respectively. In these
experiments, we show the effect of varying the values of T and
N in the threshold-based Vegas. We observe that, with a fixed
T value, varying N values does not result into a major
throughput change. For example, the throughput of

400=N and 800=N are very close when 200=T . We can
also see that Vegas throughput is mainly affected by varying
the values of T. For instance, when ,400=N the throughout of

200=T increases 86% compared to the throughput of 100=T .

Figure 7. Throughput of TCP Sack and threshold-based Vegas
vs. burst contention probability in OBS with burst
retransmission.

Figure 8. Throughput of TCP Sack and threshold-based Vegas
vs. burst contention probability in OBS with burst deflection.

V. CONCLUSIONS
In this paper, we discussed the issues of TCP Vegas over OBS
networks due to the misinterpretation of the additional delay
introduced by the burst retransmission and burst deflection
schemes. Based on the TCP packet delay variation pattern in
an OBS network with burst retransmission or deflection
scheme, we proposed a threshold-based TCP Vegas that is
able to distinguish whether the increases in TCP packet RTTs
are due to network congestion or due to retransmission or

deflection in a lightly-loaded OBS networks. Our simulation
results showed that the threshold-based TCP Vegas can more
accurately detect the congestion state in OBS networks with
burst retransmission or deflection, thus improves the
throughput compared to the original TCP Vegas version and
the loss-based TCP Sack.

Our proposed threshold-based TCP Vegas has a single
threshold to measure the congestion state in the OBS network.
Our future work can be extended to multiple thresholds, which
have more granualarity for the congestion state.

REFERENCES

[1] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm
for an optical Internet,” Journal of High Speed Networks, vol. 8, no. 1,
pp. 69–84, January 1999.

[2] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, and et al., “CORD:
Contention resolution by delay lines,” IEEE Journal on Selected Areas
in Communications, vol. 14, no. 5, pp. 1014–1029, June 1996.

[3] S.J.B. Yoo, “Wavelength conversion technologies for WDM network
applications,” IEEE/OSA Journal of Lightwave Technology, vol. 14, pp.
955–966, June 1996.

[4] C. Hsu, T. Liu, and N. Huang, “Performance analysis of deflection
routing in optical burst-switched networks,” Proceedings, IEEE
Infocom, vol. 1, pp. 66–73, 2002.

[5] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Evaluation of Burst
Retransmission in Optical Burst-Switched Networks,” Proceedings, 2nd
International Conference on Broadband Networks (BROADNETS) 2005,
Boston, MA, Oct. 2005.

[6] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” Proceedings, IEEE Infocom, 2004.

[7] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks”, Proceedings, IEEE Infocom,
Hong Kong, China, 2004.

[8] S. Floyd, “Quick-Start for TCP and IP,” Internet draft, draft-amit-quick-
start-02.txt, 2002.

[9] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion
avoidance on a global Internet,” Journal on Selected Area, vol. 13, no. 8,
pp. 1465-1480, 1995.

[10] X. Yu, C. Qiao, and Y. Liu, “TCP implementations and false time out
detection in OBS networks,” Proceedings, IEEE Infocom, March 2004.

[11] Q. Zhang, V. Vokkarane, Y. Wang, and J. P. Jue, “Analysis of TCP
over Optical Burst-Switched Networks with Burst Retransmission,”
Proceedings, IEEE Global Communication Conference (GLOBECOM),
St. Louis, 2005.

[12] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion
avoidance on a global Internet,” Journal on Selected Area, vol. 13, no. 8,
pp. 1465-1480, October 1995.

[13] J. Mo, R. La, V. Anantharam, and J. Walrand, “Analysis and
comparison of TCP Reno and Vegas,” Proceedings, IEEE Infocomm,
pp. 1556-63, March 1999.

[14] E. Weigle and W. Feng, “A case for TCP Vegas in high-performance
computational grids,” Proceedings, 10th IEEE International Symposium
High Performance Distributed Computing, pp. 158–167, 2001.

[15] J. Ahn, P. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP Vegas:
emulation and experiment,” Computer Communication Review, vol. 25,
pp 185-95, 1995.

[16] S. Hegde, D. Lapsey, and et. al., “FAST TCP in high-speed networks:
An experimental study,” Workshop on Networks for Grid Applications,
October 2004.

[17] R. La, J. Walrand and V. Anantharam, “Issues in TCP Vegas,”
UCB/ERL Memorandum, No. M99/3, Electronics Research Laboratory,
University of California, Berkeley, 1999.

