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Abstract—Aiming to expand wireless coverage and connect the
unconnected, space-air-ground integrated networks (SAGIN) have
recently been proposed as a promising paradigm to satisfy the
high-rate and high-reliability requirements. SAGIN is comprised
by satellite, aerial, and terrestrial communication devices. In this
paper, from the perspective of cooperative communications, we
regard the SAGIN as a two-hop relay network with the space-
air and air-ground cooperative links. Especially, the location
distribution of unmanned aerial vehicle (UAV), as known as the
communication relay platforms in the SAGIN system, is modeled as
a homogeneous Poisson Point Process (PPP) in a three-dimensional
(3D) spherical field. We evaluate the outage performance of SAGIN
in the 3D Poisson field and approximate its outage probability in
closed form. In addition, the parametric study for the approxima-
tion technique used to derive the closed-form expression is also
provided. Numerical results are presented and discussed to verify
our outage performance analysis.

Index Terms—Space-air-ground integrated network, cooperative
relaying, three-dimensional Poisson field, outage performance.

I. INTRODUCTION

To realize the 17 Sustainable Development Goals (SDGs)
proposed by the United Nations (UN), ubiquitous wireless
connectivity with high-rate and high-reliability requirements
becomes imperative. Although the conventional terrestrial com-
munications have been widely popularized, there still exists a
huge population that is unconnected or under-connected because
of the lack of terrestrial infrastructure [1]. Specifically, cur-
rent networks struggle to offer sufficient broadband coverage
to remote areas [2]. Non-terrestrial networks can be crucial
complements for providing ubiquitous and just-good-enough
connectivity [3]. For instance, unmanned aerial vehicle (UAV)
assisted communications may play a key role in extending
the communication coverage and providing emergency network
recovery [4]. Meanwhile, satellite communication systems can
also provide highly reliable data services in planes, trains, ships,
and other hard-to-reach regions [5]. By incorporating latest non-
terrestrial communication technologies, in recent years space-
air-ground integrated network (SAGIN) becomes a promising
paradigm to support high-rate and high-reliability data service
especially in remote areas [3]. In addition, SAGIN, encompass-
ing the merits of satellite, aerial and terrestrial communications,
would greatly facilitate several 6G application scenarios envi-
sioned in [6], such as Enhanced Mobile Broadband Plus (eMBB-
Plus), Big Communications (BigCom), and Three-Dimensional
Integrated Communications (3D-InteCom).
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In essence, SAGIN is a cooperative relay network, in which
UAVs in the aerial layer serves as relay nodes between the
space layer and the terrestrial layer and enable a high degree of
flexibility for network planning and implementation [2]. As for
investigating the performance of SAGIN with a certain specific
model, most early works only relied on numerical simulation
without deriving an analytical result. Gradually, [7] and [8]
started analyzing the performance of SAGIN over free-space
optical light-of-sight links. Over time, an increasing amount of
analytical research has emerged regarding SAGIN with specific
models instead of simple uniform distribution models. For exam-
ple, [9] developed a cooperative satellite-aerial-terrestrial system
model where the location of terrestrial receivers was modeled as
a Poisson point process (PPP) in a two-dimensional (2D) plane
field. This model enabled the researchers to solve for the outage
probability using an approximated expression and optimize the
transmit power. Likewise, [10] proposed a cooperative system
model consisting of satellites, high-altitude platforms (HAPs),
base stations, and user equipment where HAPs can only operate
over a certain layer with a fixed height. The authors studied the
analytical outage performance first with the PPP study and then
worked on the optimization problem by finding the maximum
placement distance of the HAP. Moreover, [11] examined a dual-
hop cooperative satellite-UAV communication system where
uniformly distributed UAVs surround a cluster header, and eval-
uated its coverage performance. Additionally, [12] investigated
a three-dimensional (3D) wireless network comprising several
transmitting drones that are uniformly distributed in a finite ball
area modeled as a homogeneous binomial point process.

Based on [13] and [14] which researched different areas of
UAV characteristics, the PPP model gradually became a widely
accepted model to describe UAVs’ performance. In this work,
we develop a different SAGIN system with the UAVs located
in a 3D Poisson field. The main contribution of this paper can
be listed as follow.

1) In contrast to previous works such as[9], [10],[11], and
[12], we first propose a more realistic SAGIN system model
where an indeterminate number of UAVs are randomly dis-
tributed over a 3D spherical field and abide by the homogeneous
PPP, which enhance the flexibility of communication relay
deployment to yield better system reliability.

2) Skillfully using approximation techniques including the
Chebyshev-Gauss quadrature method, we obtain the approxi-
mate expression of outage probability in closed form for the
proposed SAGIN system model. The result of performance
analysis can be used in future research for more dynamic condi-
tions as an important benchmark. Meanwhile, by analyzing the
approaching derivation process, we also provide the parametric
study for determining the proper number of summation terms
in the Chebyshev-Gauss quadrature method.

3) We verify the correctness of closed-form expression
substantiated by numerical results generated by Monte Carlo
simulations. The analytical results and expressions given in this
work provide new insights into SAGIN and reveal the impacts
of spatial randomness on the reliability of SAGIN.
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II. SYSTEM MODEL

Let us start from a simplistic two-hop SAGIN model consist-
ing of a geostationary (GEO) satellite, a UAV distributed over a
spherical region, and a fixed terrestrial base station (BS). We set
the original three-dimensional cartesian coordinates of the GEO
satellite, UAV, and terrestrial BS as (xS , yS , zS) , (xU , yU , zU )
,and(xB , yB , zB), respectively. The cartesian coordinates can be
transformed to the spherical coordinate regarding the spherical
center as the coordinate origin where the transform formula as
xi = ri cos θi cosϕi, yi = ri cos θi sinϕi, and zi = ri cos θi
for i ∈ {S,U,B}. These result in the form of coordinates as
(rS , θS , ϕS), (rU , θU , ϕU ), and (rB , θB , ϕB), where the radius
of UAVs moving spherical region is R, and we assume rS > R,
rU < R, and rB > R, which well fit most practical scenarios.
Through the law of cosines, we can easily obtain the distances
between satellite and UAV and between UAV and BS, denoted
as dSU and dUB in (1) and (2).

In terms of mobility, the GEO satellite, the center of the
spherical region, and the BS are stationary, whereas the UAV
is mobile, yielding an impact on the reliability of SAGIN.
Assuming that the stochastic distribution of the UAV com-
plies with the homogeneous PPP with density λ0 in a three-
dimensional spherical region, θU and ϕU are circularly and
uniformly distributed. The former is from 0 to 2π and the
latter is from 0 to π with probability density function (PDF)
as fθU (λ) = 1/(2π) for 0 ≤ θU < 2π, and fϕU

(λ) = 1/π for
0 ≤ ϕU < π, respectively.

We denote N as the number of UAVs in sphere V , leading
to P{N = k} = exp (−ζV )(ζ

k
V /k!),where ζV = 4

3πR
3λ0. As

for the distance between coordinate origin and UAVs rU , it can
be calculated from Ti, where Ti represents the ith UAV in the
sphere of radius R. As a result, the PDF of Ti can be determined
by using the methods developed in [15] as fTi

(ti) = λ0/ζV =
3/(4πR3), by which we can obtain the cumulative distribution
function (CDF) of rU as

FrU (x) =
3

4πR3

∫ x

0

∫ π

0

∫ 2π

0

sinϕur
2
U dθU dϕU drU

=

 0, x < R
x3/R3, 0 ≤ x ≤ R
1, x > R

(3)

The transmit power of the GEO satellite, UAV, and BS
are denoted as PS , PU , and PB , respectively. Meanwhile, we
assume that all nodes operate in a half-duplex mode with a
single antenna. Without loss of generality, it is also supposed
that the GEO satellite, UAV, and BS share the same frequency
band (L band or S band). We also assume that UAV adopts
the decode-and-forward (DF) relaying protocol when forwarding
received messages.

For wireless channel modeling of SAGIN, it has been widely
acknowledged that the specific composition of the atmosphere
is different in different altitudes, causing different phenomena
by various physical mechanisms. These result in diverse com-
munication channel models when modeling SAGIN. Therefore,
we are supposed to respectively discuss the different channel
models and classify the channels into two categories referring
to the channel between GEO satellite and UAV as well as the
channel between UAV and BS. For characterizing the channel

between GEO satellite and UAV, the Loo channel model is
widely recognized and accepted. However, due to the poor
mathematical tractability of Loo channel model [16], we adopt
the Shadowed Rician fading model [17] to characterize the
signal propagation between GEO satellite and UAV. Then, we
denote the the channel coefficient between satellite and UAV as
hSU . Thus, when λ > 0, the PDF of the corresponding channel
power gain GSU = |hSU |2 can be written as

fGSU (λ) = αSU exp (−βSUλ) 1F1 (mSU ; 1; δSUλ) , (4)

where αSU =
(

2bSUmSU

2bSUmSU+Ω1SU

)mSU

/ (2bSU ), βSU = 1
2bSU

,

and δSU = ΩSU

2bSU (2bSUmSU+ΩSU ) ; ΩSU and bSU are the average
power of the light-of-sight (LoS) and multipath components;
mSU is the fading severity parameter; 1F1(·; ·; ·) is the confluent
hypergeometric function of the first kind [18]. As for the channel
between UAV and BS, based on the height of the UAV, we regard
the signal propagation link between the UAV and the BS as an
LoS link and thereby rely on the Rician distribution to describe
this channel [19]. Similarly, denoting the channel coefficient
between UAV and BS as hUB , the PDF of the channel power
gain GUB = |hUB |2 is given by

fGUB
(λ) = η2 exp

(
−
[
η2λ+K

])
I0(2η

√
Kλ), (5)

where η =
√

1+K
ΩUB

, K is the Rician factor, ΩUB is the variance
of the signal power, and Iν(·) is the νth-order modified Bessel
function of the first kind.

III. OUTAGE PERFORMANCE ANALYSIS

A. Definition and Derivation of Exact Outage Probability

Since the whole SAGIN system can be regarded as a two-hop
cooperative system, we can simply define the per-link outage
probabilities as{

ΦSU (ϵU ) = P {PSGSU/(d
nSU

SU N0) < ϵU}
ΦUB(ϵB) = P {PUGUB/(d

nUB

UB N0) < ϵB}
, (6)

where P{·} represents the probability of the random event
enclosed; nSU and nUB respectively denotes the path loss
exponents for the link between GEO satellite and UAV as well
as the link between UAV and BS; ϵU and ϵB are the outage
thresholds at UAV receiver and BS receiver, respectively; N0

is the average power of the complex additive white Gaussian
noise (AWGN). Due to the bottleneck effect, we can thus
determine the end-to-end outage probability as Φ(ϵU , ϵB) =
1− (1− ΦSU (ϵU )) (1− ΦUB(ϵB)).

1) Outage Probability of the GEO Satellite-UAV Link: Based
on (4) and (6), we can express the outage probability conditioned
on dSU as ΦSU |dSU

(ϵU ) = P {GSU < ϵUd
nSU

SU N0/PS} and
then derive

ΦSU |dSU
(ϵU ) =

∫ ϵUd
nSU
SU N0/PS

0

αSU exp (−βSUλ)

×1 F1 (mSU ; 1; δSUλ) dλ.

(7)

According to the approximate transform formula proven
in [20] for hypergeometric function 1F1(·; ·; ·), we as-
sume mSU takes integer values, which allows express-
ing the hypergeometirc function part in our formula as
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dSU (rU , ϕU , θU ) =
√

r2S + r2U − 2rSrU (sin(θS) sin (θU ) cos (ϕS − ϕU ) + cos(θS) cos (θU )) (1)

dUB (rU , ϕU , θU ) =
√

r2B + r2U − 2rBrU (sin(θB) sin (θU ) cos (ϕB − ϕU ) + cos(θB) cos (θU )) (2)

∑mSU−1
kSU=0

(−1)kSU (1−mSU )kSU
(δSUλ)kSU

(kSU !)2
. Thus, we can simplify

(7) to be

ΦSU|dSU
(ϵU ) =

∫ ϵUd
nSU
SU

N0/PS

0

αSU exp (−βSUλ) exp (δSUλ)

×
mSU−1∑
kSU=0

(−1)kSU (1−mSU )kSU
(δSUλ)

kSU

(kSU !)
2 dλ,

(8)
where (t)k = t(t+1) · · · (t+k−1) is the Pochhammer symbol
[18]. Since the integral is now given in a simple exponential
integral form we can rewrite ΦSU |dSU

(ϵU ) in (9), where γ(·, ·)
dontes the incomplete gamma function [18].

Since dSU in (9) is still a random variable, we need to further
derive it to a close form independent of dSU by averaging over
rU , θU , and ϕU . Fortunately, dSU only exists in the incomplete
gamma function γ(·, ·), and we can rewrite the incomplete
gamma function γ (kSU + 1, (βSU − δSU ) d

nSU

SU ϵUN0/PS) as
L1|dSU (rU ,ϕU ,θU ) for simplicity. Due to the mathematical in-
tractability of triple integral of L1|dSU (rU ,ϕU ,θU ), the Chebyshev-
Gauss quadrature is adopted to facilitate further analysis with an
adequate accuracy. Assuming xi = cos

(
2i−1
2W π

)
and wi =

π
W ,

Chebyshev-Gauss quadrature could obtain an adequately fit
result of integration by a summation consisting of a finite
number of terms as

∫ 1

−1
f(x)√
1−x2

dx ≈
∑W

i=1 wif (xi), where
W denotes the number of summed terms. Thus, the integral
of L1|dSU (rU ,ϕU ,θU ) can be approximated to be∫ R

0

∫ 2π

0

∫ π

0

L1|dSU (rU ,ϕU ,θU )fϕU
fθU frUdϕU

≈ 3π3

8R2W1W2W3

W1∑
i=1

W2∑
j=1

W3∑
q=1

L1|dSU(R
2 ai+

R
2 ,πbj+π,π2 cq+

π
2 )

×
(
R

2
ai +

R

2

)2 √
(1− a2i )(1− b2j )(1− c2q),

(10)
where ai=cos( 2i−1

2W1
π); bj=cos( 2j−1

2W2
π); cq=cos( 2q−1

2W3
π); Wi

denotes the number of summation terms for each transformation
from integration to summation by the Gauss Chebyshev method,
i ∈ 1, 2, 3, · · ·, 9.

By substituting (10) into (9), we can approximate the outage
probability of signal propagation from GEO satellite to UAV in
closed form as

ΦSU (ϵU ) ≈αSU

mSU−1∑
kSU=0

(−1)kSH (1−mSU )kSU
(δSU )kSU

(kSU !)2

× (βSU − δSU )−kSU−1 3π3

8R2W1W2W3

W1∑
i=1

W2∑
j=1

W3∑
q=1

γ

(
kSU + 1,

(βSU − δSU ) d
nSU
SU∗ ϵUN0

PS

)

×
(
R

2
ai +

R

2

)2√
(1− a2i )(1− b2j )(1− c2q),

(11)

where dSU∗ = dSU

(
R
2 ai +

R
2 , πbj + π, π

2 cq +
π
2

)
.

2) Outage Probability of the UAV-BS Link: According to (5),
the outage probability conditioned on dUB can be rewritten as
ΦUB|dUB

(ϵB) = P {GUB < ϵHdnUB

UB N0/PU} and computed in
closed form as

ΦUB|dUB
(ϵB) = 1−Q1

√
2K, η

√
2ϵBN0d

nUB
UB

PU

 . (12)

Considering the distribution of dUB in terms of rU , ϕU , and
θU , we can approximate the outage probability of the UAV-BS
link by using Chebyshev-Gauss quadrature method three times,
which is similar as the process in (10), yielding the following
closed-form expression:

ΦUB(ϵB) ≈1−
∫ R

0

∫ 2π

0

∫ π

0
Q1

√
2K, η

√
2ϵBN0d

nUB
UB

PU


× 3π/

(
4π2R3

)
dϕUdθUdrU

=1−
3π

8R3W4W5W6

W4∑
i=1

W5∑
j=1

W6∑
q=1

Q1

√
2K, η

√
2ϵBN0d

nUB
UB∗

PU


×
(
R

2
xi +

R

2

)2√
(1− x2

i )(1− y2j )(1− z2q ),

(13)
where dUB∗ = dUB

(
R
2 xi +

R
2 , πyj + π, π

2 zq +
π
2

)
; xi =

cos( 2i−1
2W4

π); yj = cos( 2j−1
2W5

π); zq = cos( 2q−1
2W6

π).
Furthermore, we can simplify above calculation by approx-

imating Q1 function as Q1(x, y) ≈ exp
(
− exp (ω(x)) yτ(x)

)
,

where ω(x) = −0.840+0.327x−0.740x2+0.083x3−0.004x4

and τ(x) = 2.174 − 0.592x + 0.593x2 − 0.092x3 + 0.005x4

[21]. As a result, the approximated outage probability of signal
propagation from UAV to BS can be written as

ΦUB(ϵB) ≈1−
3π3

8R3W4W5W6

W4∑
i=1

W5∑
j=1

W6∑
q=1

exp

− exp
(
ω(

√
2K)

)
η

√
2ϵBN0d

nUB
UB∗

PU

τ(
√

2K)


×
(
R

2
xi +

R

2

)2√
(1− x2

i )(1− y2j )(1− z2q ).

(14)

3) End-to-end Outage Probability: According to
Φ (ϵU , ϵB) = 1 − (1 − ΦSU (ϵU ))(1 − ΦUB(ϵB)), we
can derive the end-to-end outage probability through
(11) and (14) and obtain its closed-form approximation
in (15), where ui = cos( 2i−1

2W7
π); vj = cos( 2j−1

2W8
π);

tq = cos( 2q−1
2W9

π); dSU∗∗ = dSU

(
R
2 ui +

R
2 , πvj + π, π

2 tq +
π
2

)
;

dUB∗∗ = dUB

(
R
2 ui +

R
2 , πvj + π, π

2 tq +
π
2

)
.

B. Parametric Study

Based on the calculations presented in the previous subsec-
tion, we predominantly relied on Chebyshev-Gauss quadrature
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ΦSU|dSU
(ϵU ) = αSU

mSU−1∑
kSU=0

(−1)kSU (1−mSU )kSU
(δSU )kSU

(kSU !)2
(βSU − δSU )−kSU−1 γ

(
kSU + 1,

(βSU − δSU ) d
nSU
SU ϵUN0

PS

)
(9)

Φ(ϵU , ϵB) ≈ 1−
3π3

8R2W7W8W9

W7∑
i=1

W8∑
j=1

W9∑
q=1

mSU−1∑
kSU=0

(
R

2
uj +

R

2
)2
√

(1− u2
j )(1− v2q )(1− t2i ) exp

− exp
(
ω(

√
2K)

)
η

√
2ϵBN0d

nUB
UB∗∗

PU

τ(
√
2K)


×
(
1− αSU

(−1)kSH (1−mSU )kSU
(δSU )kSU

(kSU !)2
(βSU − δSU )−kSU−1 γ

(
kSU + 1,

(βSU − δSU ) d
nSU
SU∗∗ϵUN0

PS

))
(15)

to approximate the integration operation in (10) and (13).
Essentially, the Chebyshev-Gauss quadrature approximation can
be regarded as dividing the area of integration into multiple
rectangle areas for summation. Normally, with the increase of
the summation terms, the approximate result will gradually
approach the exact calculation. To better manage the trade-off
between accuracy and computational complexity, we need to
find a method to obtain proper numbers of summation terms.

From [22], the error of the first-kind Gauss–Chebyshev
quadrature rules, denoted as E(f), can be quantified through
the following relation:∫ 1

−1

f(x)
√
1− x2

dx =
π

W

W∑
k=1

f

(
cos

(
(2k − 1)π

2W

))
+

2π

22W (2W )!
f (2W )(µ)︸ ︷︷ ︸

E(f)

, −1 < µ < 1,
(16)

where f (n)(x) denotes the n-th derivative of a function f(x).
Referring back to (10) and normalizing all constant coefficients,
we obtain Ξ1(x) = γ(kSU+1, x2+x) (x+ 1)

2 √
1− x2, where

we also assume nSU = 2 as an example. Based on the general
Leibniz rule, we further obtain the following expression:

Ξ1
(2W1) (x) =

2W1∑
k=0

(2W1

k

)
g
(2W1−k)
1 (x)l

(k)
1 (x), (17)

where g1(x) = γ(kSU + 1, x2 + x)
√
1− x2 and l1(x) =

(x+ 1)
2. Denoting p1(x) = γ(kSU + 1, x2 + x) and l2(x) =√

1− x2, we can express the derivation form in terms of Bell
polynomials Bn,i (x1, . . . , xn−i+1) as

p
(n)
1 (x) =

n∑
i=1

diγ(kSU + 1, x2 + x)

d(x2 + x)i
Bn,i

2x, 2, 0 . . . , 0︸ ︷︷ ︸
n−i−1

 , (18)

which leads to

g1
(2W1)(x) =

2W1∑
k=0

(2W1

k

)
p
(2W1−k)
1 (x)l

(k)
2 (x), (19)

When W > 2, l(W )
1 = 0, resulting in

Ξ1
(2W1)(x) = g

(2W1)
1 (x)l

(0)
1 (x) + 2W1g

(2W1−1)
1 (x)l

(1)
1 (x)+

2W1(2W1 − 1)g
(2W1−2)
1 (x)l

(2)
1 (x).

(20)

Then, we can set a threshold guaranteeing Ψ(W1) > E(Ξ1) =
2π

22W1 (2W1)!
Ξ(2W1)(µ) for controlling the error bound for each

summation. By selecting a proper Ψ(W1) corresponding to the

accuracy requirement, we can obtain an appropriate value of
W1.

Similarly, we denote g2(x) = γ(kSU + 1, cosx) and
g3(x) = γ(kSU + 1, cosx + sinx), leading to Ξ2(x) =
γ(kSU + 1, cosx)

√
1− x2 and Ξ3(x) = γ(kSU + 1, cosx +

sinx)
√
1− x2, which can be approximated as follows:

Ξ2
(2W2) (x) =

2W2∑
k=0

(2W2

k

)
g
(2W2−k)
2 (x)l

(k)
2 (x), (21)

Ξ3
(2W3) (x) =

2W3∑
k=0

(2W3

k

)
g
(2W3−k)
3 (x)l

(k)
2 (x), (22)

where

g
(n)
2 (x) =

n∑
i=1

diγ(kSU + 1, cosx)

d(cosx)i

×Bn,i

− sinx,− cosx, sinx, cosx,− sinx . . .︸ ︷︷ ︸
n−i+1

 ,

(23)

and g
(n)
3 (x) is shown in (24). Following the above calculations,

E(Ξ2) and E(Ξ3) can also be used to obtain the value of W2

and W3 apropos of thresholds Ψ(W2) and Ψ(W3).
As for the link from UAV to BS, we similarly assume that

nUB = 2 and τ(
√
2K) = 2 and determine the following

relations: Ξ4(x) = exp (x2 + x) (x+ 1)
2 √

1− x2, Ξ5(x) =
exp (cosx)

√
1− x2, and Ξ6(x) = exp (cosx+ sinx)

√
1− x2.

Denoting g4(x) = exp(x2 + x)
√
1− x2, p4(x) = exp(x2 + x),

g5(x) = exp(cosx), and g6(x) = exp(cosx + sinx), we then
follow the same steps to obtain

Ξ4
(2W4)(x) = g

(2W4)
4 (x)l

(0)
1 (x) + 2W1g

(2W4−1)
4 (x)l

(1)
1 (x)

+ 2W4(2W4 − 1)g
(2W4−2)
4 (x)l

(2)
1 (x),

(25)

Ξ5
(2W5)(x) =

2W5∑
k=0

(2W5

k

)
g
(2W5−k)
5 (x)l

(k)
2 (x), (26)

Ξ6
(2W6)(x) =

2W6∑
k=0

(2W6

k

)
g
(2W6−k)
6 (x)l

(k)
2 (x), (27)

where

p
(n)
4 (x) =

n∑
i=1

exp(x2 + x)Bn,i

2x, 2, 0 . . . , 0︸ ︷︷ ︸
n−i−1

 , (28)

g4
(2W4)(x) =

2W4∑
k=0

(2W4

k

)
p
(2W4−k)
4 (x)l

(k)
2 (x); (29)

g
(n)
5 (x) and g

(n)
6 (x) are shown in (30) and (31). Thus, Wi, i ∈

{4, 5, . . . , 9} can all be obtained corresponding to specific
threshold Ψ(Wi).
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g
(n)
3 (x) =

n∑
i=1

diγ(kSU + 1, cosx+ sinx)

d(cosx+ sinx)i
Bn,i

cosx− sinx,− cosx− sinx− cosx+ sinx, cosx+ sinx, cosx− sinx . . .︸ ︷︷ ︸
n−i+1

 (24)

g
(n)
5 (x) =

n∑
i=1

exp (cosx)Bn,i

− sinx,− cosx, sinx, cosx,− sinx . . .︸ ︷︷ ︸
n−i+1

 (30)

g
(n)
6 (x) =

n∑
i=1

exp (cosx+ sinx)Bn,i

cosx− sinx,− cosx− sinx− cosx+ sinx, cosx+ sinx, cosx− sinx . . .︸ ︷︷ ︸
n−i+1

 (31)
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Fig. 1: Outage probability of the link between GEO satellite and
UAVs versus the transmit power of GEO satellite.

IV. SIMULATION RESULTS AND DISCUSSION

To explore the reliability of SAGIN and verify the analysis
presented in the last section, Monte Carlo simulations were
used to produce numerical results, which are shown and dis-
cussed in this section. Based on the parameters provided from
[23], the main adopted parameters in our model are set as
ϵU = ϵB = 1dB, nSU = nUB = 2, mSU = mUB = 2,
bSU = bUB = ΩSU = ΩUB = 15 dB, K = −10 dB, and
N0 = −94 dB. As for the locations of the GEO satellite,
the center of the UAV distribution sphere, and the BS, we
take real-world application scenarios into account and set them
as (xS , yS , zS) = (2, 373, 639, 35, 786, 000), (xU , yU , zU ) =
(2, 443, 189, 20, 000), and(xB , yB , zB) = (34, 199, 0) with ra-
dius R = 2, 0001.

Fig. 1 shows the outage performance of the link between the
GEO satellite and UAVs. When the power of satellite PS is less
than 30 dB, effective data communications is hardly sustainable.
The outage probability gradually reduces from 1 to 10−3 when
the power of satellite PS changes from 30 dB to 70 dB. Al-
though the channel quality is still not satisfactory to maintain the
communication process when PS is less than 40 dB, the curve
sharply goes down when PS >40 dB and finally achieves 10−3.
Fig. 1 also displays and validates the variety of calculation errors
by using Chebyshev-Gauss quadrature with different numbers

1GEO satellite is at an altitude of 35,786 km, while the altitude of solar-power
UAVs can be over 20,000m [24].
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Fig. 2: Outage probability of the link between UAVs and
terrestrial BS versus the transmit power of UAVs.

of summation terms. As expected, the analytical curves almost
overlap with the numerical curves when W1,2,3 = 10, which
is computationally efficient for most practical applications. The
impact of PU , the transmit power of UAVs, on the reliability
of SAGIN is presented in Fig. 2. Different from the first hop,
the link from UAVs to the BS demonstrates an almost linear
decreasing curve with the increase of PU . As shown in this
figure, the second hop achieves a low outage probability down to
10−5 when PU =40 dB. However, the computational complexity
caused by using the Chebyshev-Gauss Quadrature method is
rather high for achieving an adequate accuracy. Even having
split the entire integration area into 500 subareas, the difference
between the analytical results and the numerical results is still
obvious when PU >35 dB.

Fig. 3 provides a similar set of curves as Fig. 1. The numbers
of summation terms W7,8,9 only need to be small values for
achieving lower outage probabilities. Since the distance from
the satellite to UAVs is much greater than that from the UAVs
to the ground BS, the outage events always occur over the first
hop. That is, the first hop between the GEO satellite and UAVs
dominates the outage performance of SAGIN.

Fig. 4 shows the simulation time with different iteration
numbers via different links. All data were generated on a
workstation as Intel® Xeon(R) W-2145 CPU@3.70GHz ×16
using 31.3 GiB of RAM. The large summation iteration comes
with a high calculation time, especially for the link between
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Fig. 3: End-to-end outage probability versus the transmit power
of GEO satellite.

Iteration number 2 3 5
Link between GEO
satellite and UAVs

0.2718s 2.3198s 10.1786s

Iteration number 300 500 700
Link between UAVs
and terrestrial BS

60.6142s 5.178×102s 1.6244×103s

Iteration number 1 2 6
End-to-end link 0.9854s 4.9010s 15.1108s.

Fig. 4: Calculation time(seconds) for different link

UAVs and terrestrial BS. The trade-off between calculation time
with result accuracy will always be a challenge.

Overall, the simulation results indicate that as the number
of summation terms increases, the proposed approximation be-
comes accurate. With a sufficiently large number of summation
iterations, the analytical curve can closely match the simulation
curve, thereby validating its correctness. This analytical closed-
form solution could serve as a valuable tool for future research
on similar models. The optimal number of terms for different
parameter configurations may vary, posing a challenge for
optimizing algorithms under normalized setups.

V. CONCLUSION

In this paper, we modeled SAGIN as a two-hop relay net-
work, within which the location distribution of UAVs is a
homogeneous PPP over a 3D spherical region. Following this
model and the basic assumptions associated, we investigated
the outage performance of SAGIN and approximate the outage
probability in closed form with the help of the Chebyshev-Gauss
quadrature method. In addition, we provided the parametric
study for determining the numbers of summation terms when
using Chebyshev-Gauss quadrature for approximating three-fold
integration. All analytical results presented in this paper have
been well supported by the numerical results generated by
Monte Carlo simulations.
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