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Abstract—The rapid growth of wireless traffic makes accurate
forecasting vital for network management. Centralized learn-
ing faces high communication costs, while federated learning
struggles with spatio-temporal dependencies and non-IID data.
This paper proposes FLOW, a federated large language model
framework for wireless traffic prediction. FLOW incorporates
a LoRA-based local predictor with lightweight alignment and
mapping layers, preserving strong modeling ability under edge
resource constraints. Experiments on real-world Milano and
Trento datasets show significant gains, reducing MSE by 11%
and MAE by 9.5% compared to baselines. Interestingly, smaller
models such as BERT and GPT-2 outperform larger ones in
most cases, benefiting from LoRA’s efficient fine-tuning on limited
data. Moreover, FLOW demonstrates strong few-shot learning,
surpassing baselines with only 5% of training data, and exhibits
robust zero-shot cross-domain generalization. Ablation studies
confirm the critical role of federated aggregation and LoRA fine-
tuning, highlighting the effectiveness of the proposed framework.

Index Terms—Wireless traffic prediction, Federated learning,
Large language models, LoRA fine-tuning, Edge computing

I. INTRODUCTION

Accurate wireless traffic prediction [1] has become a cor-
nerstone of intelligent network management in the 5G era
and beyond. By anticipating future traffic demand, operators
can optimize spectrum allocation, balance network loads, and
proactively configure resources to enhance service quality.
More importantly, precise prediction provides the foundation
for energy-aware control strategies, such as adaptive base
station sleeping and carrier on—off switching, which are vital
to achieving green and sustainable mobile networks [2], [3].
With the emergence of 6G, where ultra-dense deployments,
diverse services, and stringent energy-efficiency requirements
will dominate, wireless traffic forecasting is expected to play
an even greater role in supporting autonomous network opti-
mization and carbon-neutral operations.

To meet these demands, a large body of research has
explored methods for traffic prediction [4], [5]. Early studies
applied statistical models such as ARIMA and stable processes
to capture temporal trends [6], while later works adopted deep
learning frameworks including CNNs, RNNs, and graph-based
models to better extract spatio-temporal correlations [7]. More
recently, federated learning (FL) has been introduced as a
distributed solution to address data privacy and communi-

cation bottlenecks by enabling collaborative training across
base stations without centralizing raw traffic data [8]-[11].
Within this paradigm, advances such as gradient-similarity
aggregation, multi-time scale modeling, and communication-
efficient compression schemes have shown promising results in
reducing the impact of data heterogeneity and communication
overhead.

Despite this progress, several challenges remain. First, sta-
tistical heterogeneity among base stations, caused by differ-
ences in user behaviors and service distributions, often leads
to unstable convergence and degraded accuracy in federated
settings. Second, many existing FL-based models rely on
relatively shallow architectures, which struggle to capture
the long-term nonlinear dependencies that characterize real-
world wireless traffic. Third, while large Transformer-based
models have demonstrated strong predictive power, their high
computational and memory demands make direct deployment
on resource-constrained edge devices impractical [12]. These
limitations hinder the development of a unified solution that
is both accurate and deployable at scale.

To overcome these challenges, this paper proposes FLOW,
a Federated Large mOdel framework for Wireless traffic
prediction. The key innovation of FLOW lies in its integration
of large language models (LLMs) into the federated learning
paradigm. By leveraging the long-sequence modeling and gen-
eralization capabilities of LLMs, FLOW effectively addresses
data heterogeneity and mitigates cold-start issues at new base
stations. At the same time, FLOW adopts a LoRA-based fine-
tuning strategy that substantially reduces the number of train-
able parameters, thereby lowering the computational burden on
edge nodes and improving communication efficiency during
federated updates. Through this design, FLOW not only de-
livers high prediction accuracy but also achieves a lightweight
and scalable implementation suitable for practical deployment
in next-generation mobile networks. To summarize, the main
contributions of this paper are as follows:

o We propose FLOW, a federated large model framework,
for predicting wireless traffic. FLOW is the first integra-
tion of large language models with federated learning for
wireless traffic forecasting, addressing privacy protection,
traffic heterogeneity, and complex temporal dependen-
cies.



o We design a lightweight, edge-deployable predictor that
combines LLM generalization with minimal local up-
dates, thereby greatly reducing training resources.

o Comprehensive experiments on real-world Milano and
Trento datasets show superior performance, with average
error reductions of 11% (MSE) and 9.5% (MAE), and
strong few-shot and zero-shot generalization.

The rest of this paper is organized as follows. Section
IT outlines our problem formulation and the design of the
FLOW framework. Section III presents experimental results
and analysis. Section IV concludes the paper.

II. PROBLEM FORMULATION AND FLOW FRAMEWORK
A. Problem Definition

Assume there are K base stations (clients), each base
station k£ has its own wireless traffic data, denoted as D =
{a% & ... ok}, where T represents the total number of
historical time steps, and zf represents the wireless traffic
value of base station k at time step ¢. The goal of the wireless
traffic forecasting problem is to predict the wireless traffic for
the next F' time steps using the traffic from the past Lp;s;
historical time steps.

For machine learning-based wireless traffic forecasting tech-
niques, we use a sliding window scheme to construct multi-
ple training samples from historical traffic Dj. Specifically,
for base station k£, we can construct a training sample set
{(vaYf) ?:kl’ where Xf = {Ii’cvxi%rlv"'7x§+LM5t—1} €

REnist represents the input sequence of length Ly;s, Y =

{abip, xbp ez p g} € RY represents the
corresponding prediction target sequence of length F', and ny
represents the number of training samples for base station k.

Thus, the wireless traffic forecasting problem is transformed
into a standard time series prediction problem, which can be
formally expressed as:

YF = f(XF; W) 1)

where f(-) represents the chosen prediction model, W repre-
sents the model parameters, and Y* represents the predicted
future traffic sequence. In our work, we choose a large
language model-based prediction model as f(-). Our goal is
to minimize the prediction error across all K base stations, so
the model parameters W are obtained by solving the following
optimization problem:

. (1K1 k. k
w —argn‘}%}n(K’;nkgﬁ(f(XnW%Yi)) 2

where L(-,-) is the loss function, typically chosen as Mean
Squared Error (MSE, || - ||3) or Mean Absolute Error (MAE,
|l - ll1), and Y¥ represents the true traffic values for the i-th
sample of the k-th base station.

B. Model Architecture

Applying pre-trained LLMs to edge computing requires
lightweight and efficient models. Existing approaches like
TimeLLM assume LLMs inherently understand time series,
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Fig. 1. Model Architecture

using complex reprogramming layers to map data into natural
language space while freezing the LLM. This design has two
drawbacks: it relies on massive LLMs, which are unsuited
for low-resource settings, and it wastes expressive power by
forcing temporal data into a language-based space.

We instead transfer LLMs’ sequence modeling ability di-
rectly to time series prediction via parameter-efficient fine-
tuning. Rather than making LLMs understand language-
encoded time series, we guide them to capture temporal
dynamics without strict size requirements. To this end, we
design a lightweight local predictor with three modules: (1)
Modal Alignment Layer, (2) LoRA Fine-tuned LLM Layer,
and (3) Output Mapping Layer.

Modal Alignment Layer. This layer preprocesses raw time
series X and converts it into embedding sequences E,  for
the LLM. The process includes normalization, sliding-window
patching, and convolutional embedding.

First, the input X € RB*Lrist is normalized with mean p
and standard deviation o to remove dimensional differences
and stabilize training. Next, sliding windows of length Lyq¢cn
and step s segment X into overlapping patches. When the final
patch exceeds sequence length, boundary replication is used.
This produces X,qten, € REXFn>xLyaten,

To capture local temporal dependencies, we treat Xq¢ch as
a multi-channel signal and apply 1D convolution:

H = Conv1d(Xpatch)- 3)

The convolution kernel fuses information across adjacent
patches, and multiple kernels (d,,0qe;) €xtract diverse local
patterns. Finally, a linear projection maps H € R > Xdmode:
into the LLM hidden dimension dj;,, yielding E;; €
RB X Py, Xdjim .

LoRA Fine-tuned Large Model Layer. After converting
time series data into embeddings E;,, this layer leverages
LLMs’ sequence modeling power to capture complex tem-
poral dependencies. To align with prediction tasks, we design
structured prompts P composed of three parts: 1) Dataset
Description (Py,:,): background such as base station location
and time range; 2) Task Description (P;,s;): the specific
prediction objective; 3) Input Statistical Features (Pj,¢5):
summaries of X (e.g., max/min, median, trends, periodicity).
These components are concatenated into a structured template
with special markers to form the final prompt.



After generating text prompt P, we first use the LLM’s
accompanying tokenizer to convert it into integer ID sequence
P;4s. Subsequently, through the LLM’s built-in word embed-
ding matrix W,,peq, we map the ID sequence to embedding
vectors By, ompt:

Eprompt = Wemped(Tokenizer(P)) 4

Next, we concatenate the prompt embedding E,;.omp: With
the temporal embedding E;; generated in the previous stage
along the sequence dimension to construct the final input to
the LLM:

Einput = Concat(Eprompt7 Ets) (5)

We feed this input into the large language model. Unlike the
commonly adopted approach of freezing large model layers
in recent years, we use LoRA technology to efficiently fine-
tune the model. This enables the model to adapt parameters
toward wireless traffic forecasting tasks while maintaining pre-
trained knowledge, thereby learning temporal patterns specific
to this domain. The final output of this layer is the hidden
state sequence Hp s processed by the LLM:

Hpryv = LIMora(Binput) (6)

where Hy s € REX(LprompetPn)xdum and Lprompt is the
length of the prompt sequence.

Output Mapping Layer. As the final stage, this layer
decodes the LLM’s hidden states into numerical predictions
for the next F' steps.

The LLM output Hy, 15 € RBX(Lprompt+Pn)xdum contains
both prompt and temporal representations. Since only temporal
features are relevant, we extract the last P, hidden states,
yielding Hts € RB>XPnxdim

Each sample’s feature matrix (P,, X dj;,) is then flattened
into a vector:

h 1 = Flatten(H ) @)

which aggregates local dynamics and contextual information
into a unified representation.

Finally, hyiq: is passed through a fully connected layer to
map features to prediction length F', followed by denormal-
ization with mean p and standard deviation o to restore values
to the original scale:

Y=0- Linear(h fqt) + p- (8)

C. Training Process

Under the federated learning framework, FLOW adopts a
lightweight training strategy with three main considerations:
(1) pre-trained LLMs already provide strong transfer capa-
bilities, allowing meaningful optimization with minimal local
updates; (2) unlike traditional full-epoch training, lightweight
updates greatly reduce edge node computation and improve
feasibility in resource-limited settings; (3) gradients, compared
to full parameters, have smaller ranges and thus better numeri-
cal stability during transmission and floating-point operations.

In each communication round ¢, the server distributes global
parameters W to selected clients. Client % initializes its local

model W, ;, <~ W, and trains on local data D;, for a small
number of steps S (not a full epoch), yielding W;yk. The
equivalent average gradient is then computed as:
W, -W;,
gr=———" ©)
nglobal
Clients upload gy, and the server updates global parameters
using:

K
1
Wi =Wy —igiobal - 2 ;1 g (10)

This procedure repeats until convergence or a preset number
of rounds.

III. EXPERIMENTS
A. Experiment Setup

Datasets. This paper uses real wireless network traffic
datasets provided by the Italian Telecom Big Data Challenge
[13] for evaluation, covering two typical regions in Italy: Milan
(Milano) and Trento Province (Trento). The Milan region
is divided into 10,000 grid cells, and the Trento region is
divided into 6,575 grid cells. Each grid cell corresponds to
a base station’s service area, recording three types of wireless
communication activities: Short Message Service (SMS), voice
calls (Call), and internet services (Net). Original data is
collected at 10-minute intervals, spanning from November 1,
2013, to January 1, 2014, for a total of 61 days. To mitigate
data sparsity issues, we resample the data to hourly intervals.

Experimental Configuration. To ensure statistical signif-
icance and generalizability of experimental results, we ran-
domly select 50 base stations from each dataset as participating
nodes in federated learning. Data is divided chronologically,
with the last 7 days as the test set and the remaining data
for training. We set historical sequence length Lj;s; = 96 (4
days) and prediction sequence length F' = 24 (1 day), which
aligns with actual needs in wireless network operations.

For different dataset characteristics, we adopt differentiated
training strategies: Milano dataset executes 10 rounds of feder-
ated communication with 5 batches of local training per round;
Trento dataset executes 20 rounds of federated communication
with 10 batches of local training per round. Local training
batch size is set to 32, LoRA rank r = 16, and scaling factor
o = 32. All baseline methods are independently trained for
20 epochs under the same distributed settings to ensure fair
comparison. We adopt MSE and MAE as evaluation metrics.

B. Baseline Methods

To comprehensively evaluate the performance of FLOW, we
select eight representative baselines covering traditional statis-
tical methods, machine learning methods, and deep learning
methods:

o ARIMA [14]: Classic autoregressive integrated moving
average model that captures linear trends and periodic
patterns in time series through differencing, autoregres-
sive, and moving average components.



TABLE I
OVERALL PERFORMANCE COMPARISON ON MILANO AND TRENTO DATASETS.BOLD: BEST PERFORMANCE, UNDERLINE: SECOND BEST

| Milano | Trento
Model \ MSE \ MAE \ MSE \ MAE

| Call Net SMS | Cal Net SMS | Call Net SMS | Call Net SMS
ARIMA 1119 1296 2700 | 0770 0830 1.107 | 8353 9.002 16.133 | 1.700 1909 2.331
Lasso 0482 0602 3315 | 0472 0526 1035 | 5317 9052 19052 | 0977 1377 2.146
SVR 0.563 0.606 1448 | 0517 0547 0802 | 3.376 4980  7.166 | 0971 1280 1.561
LSTM 0418 0610 0978 | 0468 0.608 0646 | 3.917 10929 8521 | 0.883 1842 1.561
TFT 0279 0491 0.834 | 0332 0515 0535 | 3494 10661 8001 | 0773 1820 1427
DLinear 0360 0480 0851 | 0474 0545 0609 | 1.712 5953 4935 | 0.665 1355 1.199
TimeLLM 0203 0300 0893 | 0.318 0392 0608 | 1.579 3.337 4495 | 0.595 1019 1152
FLOW (DS-1.5B) | 0.177 0268 0935 | 0.311 0370 0.634 | 1451 3307 4149 | 0.538 0998  1.049
FLOW (GPT-2) | 0.192 0254 0.840 | 0318 0355 0577 | 1392 2962  4.108 | 0536 0929 1.033
FLOW (BERT) | 0.157 0238 0845 | 0281 0343 0575 | 1399 2902  4.083 | 0532 0925 1031

o Lasso [15]: L1-regularized linear regression method with
automatic feature selection capability, suitable for high-
dimensional sparse time series modeling.

e SVR [16]: Support Vector Regression that uses kernel
tricks to model nonlinear temporal dependencies in high-
dimensional spaces.

o LSTM [17]: Long Short-Term Memory network specif-
ically designed to handle long-term dependencies in se-
quential data.

o TFT [18]: Temporal Fusion Transformer that combines
gating mechanisms and multi-head attention to dynami-
cally select relevant features and model complex temporal
dependencies.

o DLinear [19]: Lightweight linear model that separately
models trend and seasonal components, achieving excel-
lent performance while maintaining simplicity.

o TimeLLM [20]: Large language model-based time series
prediction method that leverages rich knowledge of pre-
trained language models for prediction by reprogramming
time series features into natural language prompts.

All baseline methods are trained in the same distributed
environment, with each client independently optimizing model
parameters to simulate data isolation in real scenarios.

C. Overall Performance Comparison

Table I shows the performance comparison results of FLOW
with all baseline methods on two datasets. We use three differ-
ent pre-trained language models as the backbone models for
FLOW’s local predictor: BERT [21], GPT-2, and DeepSeek-
1.5B [22].

Experimental results show that FLOW significantly outper-
forms all baseline methods in the vast majority of evalua-
tion scenarios. On the Milano dataset, the best configuration
(BERT) achieves an average MSE reduction of 11.1% and
MAE reduction of 9.0% compared to the strongest baseline
TimeLLM. On the Trento dataset, the corresponding improve-
ments are 10.9% and 10.1%, respectively. This performance
improvement validates the effectiveness of our design in the
wireless traffic forecasting domain.

For our method, smaller parameter models (BERT, GPT-
2) outperform large-scale models (DeepSeek-1.5B) in most
tasks. This phenomenon can be attributed to the characteristics
of LoRA fine-tuning: the parameter space of smaller models
is easier to optimize effectively on limited data, thereby
avoiding overfitting problems. Meanwhile, FLOW demon-
strates consistent superiority across three different types of
wireless traffic (Call, Net, SMS), proving the universality
and robustness of the method. Considering the computational
resource constraints of edge nodes, the excellent performance
of small-parameter models provides significant practical value
for actual deployment.

TABLE II
FEW-SHOT LEARNING PERFORMANCE

Method | Full Data | 5% Data | 10% Data

| MSE MAE | M MAE | M MAE
TFT 7.385 1.340 10.460 1.871 10.030 1.683
DLinear 4.200 1.073 6.320 1.616 5.323 1.370
FLOW (Qwen-0.6B) | 3.058 0.895 3.928 1.142 3.855 1.073
FLOW (GPT-2) 2.821 0.833 3.775 1.025 3.634 0.968
FLOW (BERT) 2.795  0.829 3.363 0.979 3.556 0.962

D. Few-shot Learning Capability Evaluation

To verify FLOW’s adaptation capability in data-scarce sce-
narios, we designed few-shot learning experiments. Table II
shows performance comparison results using only 5% and 10%
of training data, respectively. Experimental results show that
even under extremely data-scarce conditions, FLOW can still
achieve or even exceed the performance of baseline methods
on complete data. For example, FLOW (BERT) using only
5% data achieves an average MSE of 3.36 on the Trento
dataset, significantly better than DLinear’s average MSE (4.20)
on complete data. This result fully demonstrates the effective
transfer of large language models’ strong few-shot learning
capabilities in wireless traffic forecasting tasks.

Notably, from 5% to 10% data, FLOW’s average perfor-
mance shows stable improvement trends, proving the model’s
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good data scalability. This excellent few-shot learning ca-
pability is of great significance for practical deployment,
especially in newly built base stations or at the early stages
of data collection, enabling the rapid establishment of reliable
prediction models.

IV. CONCLUSION

This paper proposes FLOW, a federated wireless traffic
forecasting framework that integrates federated learning with
large language models. The framework achieves accurate mod-
eling of complex temporal dependencies while meeting edge
computing resource constraints through a simplified modal
alignment layer, LoRA fine-tuned large model layer, and
output mapping layer. FLOW outperforms traditional baseline
methods, achieving an average MSE reduction of 11.1% on
the Milano dataset and 10.9% on the Trento dataset. Notably,
small parameter models perform better than large-scale models
in federated environments, providing essential guidance for
edge deployment. Additionally, FLOW demonstrates excellent
few-shot learning and zero-shot cross-domain generalization
capabilities, proving effective transfer of large language model
pre-trained knowledge in time series prediction. Ablation
experiments validate the importance of federated aggregation
and LoRA fine-tuning. This work presents a novel solution
for intelligent traffic forecasting in distributed environments,
offering significant practical value for wireless network oper-
ations.
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