
ICAQ: Adaptive QoS System for 5G and Beyond
Applications

Liang Zhang∗, Guoqing Ma∗, Amer Al-Ghadhban†, Shuping Dang∗, and Basem Shihada∗
∗Computer, Electrical and Mathematical Science and Engineering Division,

King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
†Electrical Engineering Department in College of Engineering at University of Hail, Hail 55476, Saudi Arabia

{liang.zhang, guoqing.ma, shuping.dang, basem.shihada}@kaust.edu.sa, a.alghadhban@uoh.edu.sa

Abstract—Management of network becomes increasingly diffi-
cult due to the rapid proliferation of the Internet of Things (IoT)
and heterogeneous demands of applications. To mitigate conges-
tion and maintain a high quality of service (QoS) for application
users, we propose an importance-oriented clustering-based QoS
system named ICAQ. The system uses unsupervised machine
learning to determine and differentiate different application flow
priority. The system is proposed to be a generic to both network
core features and the application features. An environment
monitoring IoT application is implemented as an example to
demonstrate the expressive power of ICAQ. Experimental results
have verified the effectiveness and efficiency of ICAQ and show
a promising potential for using ICAQ for the QoS management
of IoT applications in 5G and beyond networks.

Index Terms—Feature clustering, software-defined network
(SDN), quality of service (QoS) management, Internet of Things
(IoT).

I. INTRODUCTION

The concepts of smart city, automatic vehicle and beyond
fifth generation (5G) edge computing have gained popularity
over the last decade, which pours myriads of data into network
[1]. It has been found difficult to guarantee the QoS of Internet
of Things (IoT) applications by the uniform traffic transferring
strategy, since the spatial distribution of IoT sensors is not
uniform and the numbers of the packets generated by IoT
sensors at different time are uneven [2]. Traffic engineering
makes it feasible to enhance QoS by detecting and controlling
traffics [3]. Analogously, research effort in recent years has
focused on transferring the methods in traffic engineering to
manage data traffic through networks. This can be achieved by
extracting and recognizing the features of the network core,
e.g., the size and the typology of traffic [4].

Such network core features cannot fully exhibit the impor-
tance of IoT packets. The IoT sensors have the tendency to
be coupled together as clusters because of the similar IoT
sensor features [5]. In general, two kinds of flows appear
in communication network, elephant and mice. In this paper,
we enhance the definition of elephant and mice flows with
additional context corresponding to the IoT application layer.
Specifically, the flows extracted from high-density clusters
sharing similar characters are defined as elephant flows, while
the mice flows are generated by the sensors in low-density
clusters. The so-called elephant flows have huge traffic vol-
umes and thereby are always the determinants of network

congestion and resource waste [6]. Obviously, most of the
samples with similar features provide similar information for
users. As a direct consequence of this similarity, increasing
transmission rate of elephant flows with similar features cannot
significantly increase the QoS of IoT applications [7]. More-
over, analyzing and transmitting these elephant flows consume
both the computing resource and energy. On the other hand,
the flows with distinguish features normally deserve relatively
higher importance in this regards. In an extreme case, if the
mice flow is the single traffic that contains the information
of a certain cluster, the importance of this mice flow can be
infinitely high by definition. Therefore, once the mice flow is
dropped, the information of the certain cluster is totally lost.
For this reason, the mice flows are generally more important
than elephant flows. Thus, an explicit classification process for
IoT flows and a QoS guarantee mechanism based on the flow
importance are imperative.

In practice, however, providing such a QoS guarantee mech-
anism is a complex process. There exist enormous obstacles
in traditional networks hindering efficient QoS guarantees.
First of all, traffic shaping, bandwidth guarantee and priority
protocol regulations need to be manually configured for thou-
sands of distributed switches [8]. Furthermore, the dynamic
management of huge-volume IoT traffic in real time becomes
a necessity to meet the stringent communication QoS [9].
Both requirements are beyond the capability of traditional
data networks. By adopting the principle of decoupling of the
control and data planes, the software-defined network (SDN)
a promising solution to tackle the aforementioned difficulties
[10]. SDNs can dynamically manage the network behaviors
via the open south interfaces, e.g., OpenFlow protocol [11].
In addition, the flexible and scalable SDN technique can be
applied to implement OpenFlow rules assigned by various
machine learning algorithms [12]. Primary studies have shown
that a well-designed SDN can monitor and guarantee the QoS
in core networks by the extracted flow features [13].

Meanwhile, plenty of research activities in the realm of data
science and network science have focused on the intelligent
management for the network traffic so as to mitigate the
network congestion [14], [15]. Wang et. al. in [16] used semi-
supervised machine learning to classify the traffic according
to different QoS requirements. They monitored the network
traffic depending on the statistical features extracted from

network flows. However, the per-flow statistics cannot be
well processed in practice because of limited storage space
and computational complexity. Also, the features of edge IoT
sensors are not concerned. Cohen and Moroshko provided a
demand based sampling method by applying an efficient utility
function [17]. The method is difficult to extend to a general
application scenario, albeit with a high efficiency. Ahmad et.
al. proposed an SDN-based system, called SADIQ, which
implements the QoS policies in a high-level and SQL-like
programming language [18]. Prioritization of IoT flows was
expressed with a list-based policy that contains an ordered list
of mice and elephant regions. On the other hand, the flow
classification and prioritization have not been well designed
yet. Alaslani et. al. proposed an intelligent edge for detecting
traffic load and perform proper rate limiting[19]. Despite the
above milestones in flow control and QoS management, the
management of the QoS of IoT applications is still an open
issue and even a challenge due to heterogeneous service
requirements and the diversity of IoT flows.

To realize efficient QoS management for IoT applications,
we propose an importance-oriented clustering-based QoS sys-
tem named ICAQ. Our proposed system aims at classifying
IoT packets into clusters with different priority levels, on
which the traffic management in SDNs depends. To construct
ICAQ, a clustering algorithm is given and embedded to
determine QoS optimization priority. The clustering process
considers both traditional traffic features extracted from the
core network and novel features extracted from IoT sensors
as well as the traffic contexts. This adaptive system is capable
of dynamically updating priority rules at switches via an SDN
controller.

The rest of this paper is organized as follows. In Section
II, we formulate the problem of QoS management for IoT
applications. Then, the implementation details of ICAQ is
given in Section III. We carry out performance evaluation
and discussion based on experimental results in Section IV.
Finally, we conclude the paper in Section V.

II. PROBLEM FORMULATION

The IoT packets generated by IoT sensors are sent to
destination servers via switches. The SDN controller enables
switches to duplicate traffic flow to the controller for analysis.
The analytical process is executed on analytical servers in an
offline manner and thus does not cause additional network
jitters and delay. The k-means algorithm is adopted for the
module training due to its advantage of low complexity and
high compatibility of various data distributions. The hyper-
parameter k is determined based on the QoS levels and known
a priori. Samples related to the observations extracted from
IoT sensors are classified into differentiated clusters. IoT flows
assigned to the same cluster share similar features and present
a similar context enclosed in the packets. Each cluster is lined
to a set of potential labels, which are unknown to the clustering
process in advance. The label in our module is defined as a
function of importance. The importance function is grasped
by the user of various applications. The central controller

Fig. 1. SDN architecture with key components and layers.

makes the forwarding decision and implements the traffic
management rules against traffic congestion. The IoT flows
with certain features matching the flow entries are assigned
to the corresponding QoS queues. Fig. 1 exhibits the overall
SDN architecture considered in this paper.

A. ICAQ Parameters

Most of the flows contain multiple features, which can be
organized as a vector. Accordingly, an n-tuple vector x is
presented as x(x1,x2, ...,xn), where xi is derived to present
the features of traffic ∀ i = 1, 2, . . . , n. There are three ICAQ
parameters of paramount importance required to be explained,
i.e., the QoS level, the dimension of IoT features, and the
number of samples. We expatiate on each of them in the
following paragraphs.

1) QoS level: The number of the clusters k is the assess-
ment of the resolution of the QoS level, which needs to be
decided in advance. To achieve fine-grained classification, k
is supposed to be large. On the contrary, a small k corresponds
to coarse-grain classification. The value of k yields impacts on
the algorithmic complexity. It is thereby essential to maintain
a proper trade-off between the complexity of the algorithm
and the resolution of the QoS level, since the computational
capability of the controller and the updating time interval
impose constraints on the dynamic management.

2) Dimensions of IoT features: As the input of
the clustering strategy, xi is a d-dimension vector
xi(xi,1, xi,2, ...xi,u, ..., xi,d), where xi,u presents the value
of the uth feature for the ith packet; the parameter d is the
number of the features that contribute to the performance of
the IoT application. The features extracted from the packets
can be categorized into two classes:
• Features identified from the header of the flows by using

a monitor probe, e.g., the IP address and the protocol
type.

• Additional features extracted from the IoT sensors, e.g.,
the sensor location, monitoring values, and the sensor
type.

In addition, some statistical features in a certain time interval,
including the packet number and the packet size, are treated

TABLE I
CATEGORIES OF FEATURES EXTRACTED FROM TRAFFIC

Network flow features IoT sensor features
addr: src ip, dst ip sen inf: longitude (x)

src mac, dst mac atitude (y)
src port, dst port monitoring sensor value

protocol type: sensor type:
RTSP, RTP, RTCP CCD camera
FTP, HTTP air temperature sensor (ATS)
TCP, UDP wearable devices

packets num, packets size

as conjunct features for network flows and IoT sensors. The
categories of the features are summarized and shown in Table
I. The features summarized in Table I are some examples
of each category. The feature selection is all up to the
demands of applications. Investigation of feature extracting
has been done by using machine learning, such as decision
tree and neural network [20], [21]. The chosen features jointly
contribute to the importance estimation. After clustering, IoT
sensor features can be mapped to network flow features. This
mapping process can reduce complexity of matching the flow
entries and save the storage space at switches.

3) Number of samples: The huge number of packets is a
challenge for sampling for practical IoT networks. Fortunately,
two of the main advantages of this k-means approach are
the fast convergence and the easy-to-implement nature in
large-scale networks. Some preliminaries and data cleaning
methods, such as data normalization, can be used by imposing
scikit-learn [22]. To maintain an adequate equilibrium between
computational burden and accuracy, the number of samples
needs to be carefully designed. A large number of samples can
inevitably result in a high accuracy when extracting features
from samples, albeit with a loss of computational efficiency
and long processing time.

B. Coupling Relation among IoT Flows

The IoT flows with similar features are coupled, and the
flows corresponding to the same cluster tend to have the same
importance status for QoS management. A metric function
is required to describe this coupling relation among the
IoT flows. Regarding the IoT flows xi(xi,1, xi,2, ..., xi,d) and
xj(xj,1, xj,2, ..., xj,d), the coupling relation can be charac-
terized by as the distance measure dist(xi,xj). The smaller
the distance measure is, the tighter the coupling relation
will be. For good practicability, this distance measure must
satisfy some conditions. First, it should have no preference
on the starting point of measurement. Second, the distance
measure equals zero only when two IoT flows are identical.
Mathematically, we can express these two conditions as

dist(xi,xj) = dist(xj ,xi) (1)

and

dist(xi,xj) = 0 iff xi = xj . (2)

The Minkowski distance, as the most commonly used distance
measure, satisfies both of the conditions specified above, which
is given by [23]

distMK(xi, xj) =

(
d∑

u=1

|xi,u − xj,u|P
)1/P

, (3)

where P is an integer constant parameter. When P = 2, the
distance function reduces to be the Euclidean distance

distED(xi, xj) =

(
d∑

u=1

|xi,u − xj,u|P
)1/2

. (4)

Note that the features of IoT samples are classified into the
ordinal feature and the non-ordinal feature. The location of
the IoT sensor and the IP address, for instance, are ordinal
features, of which the distance can be easily calculated. The
distance between (25N, 121E) and (25N, 151E) is obviously
larger that between (25N, 121E) and (25N, 131E). As typically
a non-ordinal attribute, the protocol value (VoIP or FTP), how-
ever, is not advisable to be assessed by directly applying the
Minkowski distance. In this case, the value difference metric
(VDM) is used to describe the coupling relation between IoT
flows [24]:

VDMp(VoIP,FTP) =

k∑
i=1

∣∣∣∣mp,VoIP,i

mp,VoIP
− mp,FTP,i

mp,FTP

∣∣∣∣P , (5)

where mp,VoIP denotes the number of IoT flows adopting
the VoIP protocol; mp,FTP denotes the number of flows
adopting the FTP protocol; mp,VoIP,k and mp,FTP,k refer
to the numbers of VoIP and FTP flows in the kth cluster,
respectively.

By (3) and (5), we can associate the Minkowski distance
with the VDM method to process both ordinal features and
non-ordinal features for the estimation of the importance.
Assume that the number of ordinal features is dc. Then, the
number of the non-ordinary features is d − dc. The distance
measure can be expressed as

MinkovDM(xi, xj)

=

(
dc∑
u=1

|xi,u − xj,u|P +

d∑
u=dc+1

VDMu(xi,u, xj,u)

)1/P

.

(6)

Though this association is useful, as a direct negative conse-
quence, the comparability principle among multiple features
is violated. This is because the features of IoT flows are
with different physical significance and are distinctive in
unit. Moreover, the features are not equally sensitive to the
estimation of importance status. One possible way to solve the
dilemma is to set a weighting factor wu, ∀ u = 1, 2, ..., d,
corresponding to all features with divergent importance levels.
In this way, we can write the weighted distance as

distwmk(xi, xj) =

(
n∑
u=1

wu|xi, u − xj, u|P
)1/P

. (7)

If some of the features have less contribution to the QoS
of IoT applications, the weights of the features are set to
be lower. In this regard, the system is a general strategy for
both network core and network edge QoS management. When
the importance estimation is determined by the features only
related to edge IoT sensors, the weight parameters of attribute
associated with network core can be even set to zero.

C. Clustering Process of IoT Flows

Among the traffic collected from IoT sensors, an initial
set of k IoT flows x1,x2, ...,xk are selected randomly or
depending on the demands from a certain IoT application. The
selected flows are treated as the initial central flows denoted
by µ(µ1, µ2, ..., µk). Taking the smart city environment moni-
toring as an example. The initial central flow can be extracted
from the IoT sensors located in metropolises. The clustering
algorithm proceeds by two simple steps [25]. First, for each
IoT flow, find the most tightly coupled central flow µi. The
flow is apportioned to the same cluster with µi. To achieve this,
we sum up the distance metrics between IoT flow and each
central flows. For an n-tuple vector x, we donate the minimum
distance partition as S(x) = (S1(x),S2(x), ...,Sk(x)), where
Si(x) is a set containing the nearest samples to xi [26]. Now,
the objective of the clustering process is to find a proper set
S(x) so as to minimize the sum distance of IoT flows:

S∗(x) = arg min
S(x)


k∑
i=1

∑
x∈Si(x)

|x− µi|2
 . (8)

However, finding the solution to (8) is demanding, since it is
an NP-hard problem [27]. The greedy algorithm is a regular
method to solve the problem [28]. Secondly, the optimized
set S∗(x), µi obtained by (8) is updated according to newly
coming central IoT flows µ′i by

µ′i =
1

|Si|
∑
x∈Si

x. (9)

The iteration ends up with the indication that the discrepancy
between the current central flow and the updated central flow
becomes insignificant.

The flows classified in the same cluster with a similar
importance status are marked by the same clustering label
λj . Thus, the QoS guarantee of these samples should also
be set to the same level. According to the assumptions that
elephant traffic dominates the network congestion and samples
with similar features enclose similar information, setting a
low QoS priority for elephant flows can reduce the network
resource consumption and improve the operating efficiency.
The numbers of IoT flows in each cluster ρi demarcate by
the elephant IoT flows and mice IoT flows. The importance
function is designed to positively correlate with 1/ρi. The
number of clusters ρi, the cluster label of each IoT flow λj ,
and the importance function Pi are set as the outputs of the
clustering process.

Once the importance function is attained, OpenFlow entries
on queue allocation for IoT traffic are installed at switches

by the controller. All traffic flows with features matching the
flow entries are partitioned into relevant queues with different
QoS guarantee levels. Data collection is accomplished by the
controller or server hosts in the same manner. For the missing
information due to the drop of packets, the interpolation
method is employed to estimate the information and restore the
lost information offline [29]. Simultaneously, the IoT traffic is
also collected by the controller for analytical purposes. The
number of samples in the cluster with higher priority grows
faster, since the possibility of transmitting these samples is
higher. In every time slot, the QoS priority rules need to be
updated to avoid the over-guarantee of mice flows. By adopt-
ing this adaptive strategy, the priority level decreases along
with an increasing number of the flows in the relevant cluster.
This adaptive system can avoid an undesirable situation, in
which certain IoT flows belonging to the low-priority clusters
are always dropped.

III. SYSTEM IMPLEMENTATION

In this section, we evaluate effectiveness and efficiency of
ICAQ using a typical 5G and beyond smart city environment
monitoring IoT application. We consider an open sensor
dataset that contains the measured data of temperatures and
locations, including latitude and longitude, sensor IDs, and
measuring time [30]. Without loss of generality, latitude, longi-
tude, and temperature are bundled as a three-tuple vector input
in our example. The data set with UDP packets was collected
from 256 distributed IoT sensors. We utilized traffic flows
sampled in an one-hour time frame as the training data. The
clustering algorithm was trained offline in the controller. Once
the training process is completed, the forwarding rules are
implemented at switches by the controller. In this clustering
algorithm, data normalization is necessary since the units of
temperature and location features are different. The hyper-
parameter of the k-means clustering algorithm, i.e., k, is set
to be 5 corresponding to five QoS guarantee policies: the
default forwarding (DF) policy, three expedited-forwarding
(EF1, EF2, EF3) policies, and the assured-forwarding (AF)
policy. We present the pseudocode of the k-means clustering
algorithm in Algorithm 1.

For simplicity, the values of importance functions for differ-
ent clusters are given by P1 = 1, P2 = 0, P3 = 2, P4 = 3,
and P5 = 4. The higher the value of the importance function
is, the better the QoS guarantee should be assigned to the
queue corresponding to the cluster. The IoT flows marked as
green hexagrams constitute Cluster 5 with the highest priority,
and thus are assigned to the queue guaranteed with the AF
policy. On the other hand, IoT flows pertaining to Cluster 2
are discerned as elephant flows that are allocated to the queue
with the QoS policy of best effort forwarding, i.e., the DF
policy. The other three clusters are allocated to the queues
with the EF1, EF2, and EF3 policies, respectively.

The testbed used in this paper consists of a Mininet sim-
ulator, a Ryu controller, the OpenFlow south protocol, and
the Open vSwitch (OVS). Scapy and Wireshark are also used
for message packing and traffic capture. We first construct

a typical linear structure using the Mininet simulator. 256
distributed IoT sensors send data to the server via OVSs. As
an interaction-friendly SDN controller, Ryu provides plenty
of application programming interfaces (APIs) for customer
programming. We modify the simple switch API to activate
the QoS ensuring functionality. Then, we execute rest qos,
qos simple switch 13, and rest conf switch APIs by
the Ryu controller. The QoS settings are configured by in-
stalling the flow entries into OVSs. The traffic apportion is
realized by keywords matching, and the traffic shaping is
performed by limiting the transmission rate. We map the IoT
sensor features, i.e., locations of the sensors, to the network
flow features, i.e., IP addresses of the hosts, for simplicity.
In this way, a small set of features are used for flow entries

Algorithm 1 k-means clustering algorithm for IoT flows.
BEGIN
Load D = (x1, x2, ..., xn) for three dimensions: altitude,
longitude, and temperature;
Set k = 5, corresponding to DF, EF1, EF2, EF3, and AF;
Normalize equal weights of location attribute and moni-
toring context attribute, excluding the impact caused by
the disparateness of feature unit;
Select five IoT flows randomly to form the initial cluster
center µ1, µ2, µ3, µ4, µ5;
while the center IoT flow is varying do

for i = 1 : 5 do
Ci = ∅;

end for
for j = 1 : n do

for i = 1 : 5 do
Calculate the Minkowski distance between xj and
µi by dj, i = |xj − µi|;

end for
Derive the cluster label of xj by λj =
arg mini{dj, i};
Place xj into the cluster by Cλj

⋃
xj 7→ Cλj ;

end for
for i = 1 : 5 do

Calculate the new center IoT flow by µ′i =
1
|Ci|

∑
x∈Ci

x;
if µ′i 6= µi then

Update µi by µ′i;
else

Keep the center IoT flow µi unchanged;
end if

end for
end while
Count the number of the samples for each cluster ρi;
Obtain the importance function Pi by mapping 1/ρi to
interval (0, 1, 2, 3, 4);
return the number of each cluster {ρi}, the cluster label
of each IoT flow {λj}, and the importance function {Pi};
END

Fig. 2. Clustering results for the environment monitoring IoT application.

matching, which reduces the computational complexity and
save the storage space. The hierarchical token bucket (HTB)
protocol contributes to the utilization of bandwidth, since the
IoT flows with lower priority utilize the resource only if the
bandwidth is not occupied by transmission tasks of high-
priority IoT flows.

IV. PERFORMANCE EVALUATION

To evaluate the effectiveness of the proposed system, we
carry out the experiments and compare the performance of
ICAQ with classic tail dropping strategy. In the experiments,
open datasets generated in the time frames from 1:00 am,
Sept. 7th, 2019 until 2:00 am, Sept. 7th, 2019 are selected as
test data. 2825 packets are poured into the network topology
simulated by the Mininet simulator. We impose restrictions
on the bandwidth with 200 kbit/s, 190 kbit/s, 180 kbit/s, 170
kbit/s, and 149 kbit/s, resulting in the traffic loss of 0.57%,
3.76%, 10.23%, 13.77% and 25.63%, respectively. The Python
module Scapy is used to sniff the traffic at the server host.
The priority rules are regularly updated by the controller. The
updating time interval is flexible and depends on the end-user
requirements of the IoT application.

With the aforementioned settings, we first present the clus-
tering results for the environment monitoring IoT application
in Fig. 2. The dropped traffic under the network condition
with 3.76% loss, corresponding to the bandwidth with 190
kbit/s, is depicted in Fig. 2 by small black points. To assess
the performance, we restore the data by interpolation fitting.
The results regarding the traditional tail dropped method shows
that the IoT flows with higher priority are totally lost. Also,
the restored data by the nearest interpolation fitting method
have a large number of errors. Taking the sample located at
(166.6N, 19.3E) as an example, the estimated value is far from
the actual value. When implementing ICAQ, interpolated data
concentrates upon elephant flows, by which information can
be extracted from the nearest IoT flows.

Based on the clustering results, we are able to compare the
root mean square error (RMSE) of the data obtained by ICAQ

Fig. 3. RMSE comparison between ICAQ and the classic tail dropping
strategy.

and the classic tail dropping strategy under the same network
configurations. RMSE represents the standard deviation of
the residuals (prediction errors). It is an instinctive measure
of how far the estimated data are from the actual data. In
the contexts of clustering and QoS management, the RMSE
value is negatively related to the precision of the information
received. In this regard, RMSE for our experiments can be
defined as

RMSE =

(
1

n

∑
i

|T (xi)− T ′(xi)|2
)1/2

, (10)

where T (xi) and T ′(xi) represent the measured value and
the estimated value of IoT flow xi. We present the RMSE
comparison between ICAQ and the classic tail dropping strat-
egy in Fig. 3. The experimental results in Fig. 3 verify the
performance superiority of ICAQ over the benchmark method
under various traffic-loss settings. In the worst case of 25.63%
traffic loss, ICAQ is still able to reduce RMSE by 80%.

V. CONCLUSION

In this paper, we proposed a novel QoS management system
named ICAQ. This system employs a k-means clustering
algorithm to classify IoT flows and identify both elephant and
mice flows. By the clustering process, the importance function
can be determined for each cluster, and the QoS guarantee
is achieved by feature matching and traffic shaping with the
support of flow entries. We also verified the effectiveness
and efficiency of ICAQ by an IoT application for smart city
environment monitoring. Experimental results have shown a
significant performance improvement brought by ICAQ is at-
tained, which leads to a reduction of RMSE by 80% compared
to the classic tail dropping method.

REFERENCES

[1] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What should 6G
be?” Nature Electronics, vol. 3, no. 1, pp. 20–29, 2020.

[2] C. Ren, X. Lyu, W. Ni, H. Tian, and R. P. Liu, “Distributed online
learning of fog computing under nonuniform device cardinality,” IEEE
Internet of Things Journal, vol. 6, no. 1, pp. 1147–1159, 2018.

[3] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks,” Computer Networks,
vol. 71, pp. 1–30, 2014.

[4] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” IEEE Communications
Surveys Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[5] R. Morabito, I. Farris, A. Iera, and T. Taleb, “Evaluating performance
of containerized IoT services for clustered devices at the network edge,”
IEEE Internet of Things Journal, vol. 4, no. 4, pp. 1019–1030, 2017.

[6] J. Liu, J. Li, G. Shou, Y. Hu, Z. Guo, and W. Dai, “SDN based load
balancing mechanism for elephant flow in data center networks,” in Proc.
IEEE WPMC, Sydney, Australia, 2014, pp. 486–490.

[7] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Optimal
elephant flow detection,” in IEEE INFOCOM, Atlanta, GA, USA, 2017.

[8] L. Chen, M. Qiu, and J. Xiong, “An SDN-based fabric for flexible data-
center networks,” in Proc. IEEE CSCloud, New York, NY, US, 2015.

[9] F. Bannour, S. Souihi, and A. Mellouk, “Distributed sdn control: Survey,
taxonomy, and challenges,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 1, pp. 333–354, 2018.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in Proc. ACM
SIGCOMM, Kyoto, Japan, Aug. 2007, pp. 1–12.

[11] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, “Software-defined networking (SDN): Layers and
architecture terminology,” Tech. Rep., 2015.

[12] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir,
“Application-awareness in SDN,” in Proc. ACM SIGCOMM, New York,
NY, US, 2013, pp. 487–488.

[13] S. V. Morzhov and M. A. Nikitinskiy, “Development and research of
the PreFirewall network application for floodlight SDN controller,” in
Proc. IEEE MWENT, Moscow, Russia, Mar. 2018, pp. 1–4.

[14] S. Yoon, T. Ha, S. Kim, and H. Lim, “Scalable traffic sampling using
centrality measure on software-defined networks,” IEEE Commun. Mag.,
vol. 55, no. 7, pp. 43–49, Jul. 2017.

[15] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost flow
monitoring scheme in software defined networks,” in Proc. IEEE
GLOBECOM, Austin, TX, USA, Dec. 2014, pp. 1956–1961.

[16] P. Wang, S. Lin, and M. Luo, “A framework for QoS-aware traffic
classification using semi-supervised machine learning in SDNs,” in Proc.
IEEE SCC, Jun. 2016, pp. 760–765.

[17] R. Cohen and E. Moroshko, “Sampling-on-demand in SDN,” IEEE/ACM
Trans. Networking, vol. 26, no. 6, pp. 2612–2622, Dec. 2018.

[18] E. Ahmad, M. Alaslani, F. R. Dogar, and B. Shihada, “Location-aware,
context-driven QoS for IoT applications,” IEEE Syst. J., 2019.

[19] M. Alaslani and B. Shihada, “Intelligent edge: An instantaneous detec-
tion of iot traffic load,” in Proc. IEEE ICC, 2018, pp. 1–6.

[20] Y.-C. Wu, H.-R. Tseng, W. Yang, and R.-H. Jan, “DDoS detection and
traceback with decision tree and grey relational analysis,” in Proc. IEEE
MUE, Qingdao, China, Jun. 2009, pp. 306–314.

[21] S. R. Mounce, A. J. Day, A. S. Wood, A. Khan, P. D. Widdop, and
J. Machell, “A neural network approach to burst detection,” IWA Water
Sci. Technol., vol. 45, no. 4-5, pp. 237–246, Feb. 2002.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” MIT Press J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[23] R. C. De Amorim and B. Mirkin, “Minkowski metric, feature weight-
ing and anomalous cluster initializing in k-means clustering,” Pattern
Recognition, vol. 45, no. 3, pp. 1061–1075, 2012.

[24] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” ACM
Commun., vol. 29, no. 12, pp. 1213–1228, Dec. 1986.

[25] Y. Yang, “Information theory, inference, and learning algorithms,” J Am.
Stat. Assoc., vol. 100, no. 472, pp. 1461–1462, 2005.

[26] J. Macqueen, “Some methods for classification and analysis of mul-
tivariate observations,” in Proc. Berkeley Symposium on Mathematical
Statistics and Probability, Jun. 1967, pp. 281–297.

[27] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of
Euclidean sum-of-squares clustering,” Mach. Learn., vol. 75, no. 2, pp.
245–248, May 2009.

[28] C. E. Leiserson, R. L. Rivest, T. H. Cormen, and C. Stein, Introduction
to algorithms. Cambridge, MA, USA: MIT press, 2001.

[29] H. Akima, “A new method of interpolation and smooth curve fitting
based on local procedures,” Journal of the ACM, vol. 17, no. 4, pp.
589–602, 1970.

[30] “NOAA NOS SOS, experimental, 1853-present, air temperature.”
[Online]. Available: https://coastwatch.pfeg.noaa.gov/erddap/index.html

