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Abstract—Freezing of gait (FOG) represents a critical and
debilitating symptom of Parkinson’s disease, posing significant
challenges in patient mobility and safety. Numerous research ef-
forts have focused on predicting the onset of FOG using wearable
sensors and computational aids. However, the unpredictability
and brief nature of FOG episodes complicate the ability to predict
their onset in real-time, rendering timely detection a complex
goal. In our study, we employed an Autoencoder-Wavenet net-
work architecture designed to effectively utilize data from tri-
axial accelerometers and tri-axial gyroscopes positioned at the
ankle. This approach allowed for a more nuanced analysis of
movement patterns associated with FOG. Our findings indicated
that this model successfully achieved a high level of accuracy in
detecting FOG, with a specificity of 0.81, and sensitivity of 0.87.
Furthermore, the model demonstrated the capability to provide
real-time warnings of FOG onset, achieving a specificity of 0.68
and a sensitivity of 0.86. And an accuracy of 0.67 within a 1-
second timeframe on the test set. Consequently, these results
underscore the potential of our model in contributing to the real-
time detection and management of FOG in Parkinson’s disease
patients.

Index Terms—Parkinson’s disease; Freezing of Gait; wear-
ables; accelerometer; gyroscope

I. INTRODUCTION

A. Background

Freezing of gait (FOG) is recognized as one of the most
debilitating symptoms of Parkinson’s disease. It manifests as
a sudden and temporary inability to move the feet forward
despite the intention to walk, often described metaphorically
as the feeling of one’s feet being ”glued” to the floor. This
phenomenon leads to a significant disruption in the rhythmic
and smooth execution of gait, markedly impacting the patient’s
mobility and substantially increasing the risk of falls, which
are a major cause of injury in Parkinson’s patients [1].

The implications of FOG are profound as they not only
compromise physical safety but also contribute to psycho-
logical stress, social isolation, and overall diminished quality
of life. Patients may become apprehensive about engaging
in physical activities, thereby exacerbating other Parkinson’s
symptoms due to reduced activity levels. Consequently, the
ability to provide advanced warnings before the actual onset
of a FOG episode represents a critical enhancement in patient
care. Such proactive detection allows for timely interventions,
such as cueing strategies that can help in overcoming the freeze

[2], or engaging support systems that can assist the patient in
managing the episode safely [3].

Technological advancements in wearable sensors coupled
with progress in machine learning (ML) and deep learning
(DL) have facilitated the widespread adoption of AI-based
wearable devices in the domains of sports and healthcare.
AI-driven analytics, derived from data collected via wearable
sensors, can be smoothly incorporated into the daily routines
of patients, offering uninterrupted support independent of clin-
ical environments. This integration not only aids in consistent
monitoring but also facilitates the collection of extensive data
sets, which are invaluable for enhancing the understanding and
management of Parkinson’s disease [4].

As a result, an increasing number of AI-based applications
have been developed to detect and predict the onset of FOG,
with remarkable results. These techniques leverage ML and
DL models to analyze signal patterns, such as shortened stride
length, increased stride variability, and altered cadence, which
are evident in motion data from wearable devices [5]–[11].
This analysis primarily employs ML and DL techniques to
identify features indicative of the onset of FOG. A significant
limitation of these approaches is their inability to provide
accurate real-time warnings for FOG. The primary challenge is
precisely predicting the occurrence of FOG within the critical
seconds preceding the event, which is essential for effective
real-time detection. Consequently, an effective wearable sys-
tem should encompass two primary functionalities. First, it
should be capable of detecting FOG warnings in advance,
thereby facilitating the implementation of fall prevention mea-
sures. Second, in cases where early warnings are not predicted
in time, the system should promptly detect ongoing FOG
occurrences to minimize the risk of falls.

In pursuit of achieving these functionalities, our study
makes the following principal contributions:

• We propose an Autoencoder-WaveNet architecture that is
highly effective for processing FOG signals.

• Our method achieves a sensitivity of 0.68 and a specificity
of 0.86 on an independent test set of real-time FOG
warnings, surpassing the performance metrics of existing
approaches.

• Our method also accurately detects discrete FOG occur-
rences with a sensitivity of 0.81 and a specificity of 0.87.



II. RELATED WORKS

Numerous studies have explored sensor-based prediction of
FOG using various methodologies. These approaches include
modeling based on signal features extracted from the time and
frequency domains [12], applications of wavelet transforms
[10], [11], and classifications conducted via ML and DL al-
gorithms such as Convolutional Neural Network (CNN), Sup-
port Vector Machine (SVM), Graph Convolutional Network
(GCN), Decision Trees (DT) [5]–[9]. Current methodologies
in the field predominantly concentrate on the classification or
detection of FOG by analyzing signal patterns. These methods
have reached a relative maturity in detecting and classifying
FOG within controlled datasets, often achieving high levels
of sensitivity and specificity. However, there is a noticeable
deficiency in the development of systems capable of providing
short-term predictive warnings prior to the occurrence of a
FOG event. This shortfall underscores a significant opportunity
for future research dedicated to advancing real-time predictive
capabilities. Enhancing these capabilities could substantially
benefit patients by preemptively alerting them to imminent
FOG episodes, thereby allowing preventative measures to be
taken.

Among these works, two provide the possibility of early
warning of FOG. For instance, Reches et al. [5] employed a
Radial Basis Function Support Vector Machine (RBF-SVM)
alongside leave-one-out cross-validation (LOOV) on a dataset
comprising 71 FOG episodes, utilizing inertial measurement
unit (IMU) data from both the back and feet. This approach
achieved a sensitivity of 84.1% and a specificity of 83.4%
of detecting FOG. However, the accuracy of providing real-
time warnings for FOG was only 54%, and they didn’t have
an independent test dataset. In a related study, Borz et al. [6]
utilized a CNN combined with differential data methods to
detect FOG in real time. This study focused on an independent
dataset, analyzing IMU data from the waist and back, and
achieved an accuracy rate of 50%. These studies underscore
the challenges in achieving high accuracy in the real-time
prediction and warning of FOG events, highlighting an area
for potential improvement in predictive methodologies.

III. DATASET

This research utilizes a public dataset distinct from other
public datasets, which primarily captured FOG episodes during
continuous walking states [13], [14]. This unique dataset
encompasses data from 35 patients diagnosed with Parkinson’s
disease, specifically focusing on gait transitions, a critical as-
pect that has been underrepresented in previous research [15].
It includes recordings of 173 FOG episodes, accumulating a
total duration of 1161 seconds of FOG. This dataset resulted in
a comprehensive dataset representing three medication phases.
To refine our analysis, we excluded phases from the dataset
that did not exhibit any FOG attacks. This filtering process
resulted in a focused dataset comprising 42 phases.

To prepare the dataset for further analysis, we employed
a standard min-max normalization technique to scale the
features, which had a significant impact on the distribution

Fig. 1. The data preprocessing

of the accelerometer x-axis features, as illustrated in Figure
1. By applying the min-max scaler, we were able to achieve
a more stable and symmetrical feature distribution, effectively
minimizing the distortion caused by the presence of outliers
in the original data. Furthermore, to address the issue of
particularly large noise values, we applied a clipping operation
to the normalized data, limiting the values within the 0.1-
0.9 range. This additional step helped to reduce the impact
of extreme noise on the overall feature distribution, resulting
in a more concentrated and evenly distributed dataset that
facilitated the subsequent gradient descent-based learning of
the predictive models, as the models were less susceptible to
the detrimental effects of outliers and noise.

Fig. 2. The definition for different segments

As illustrated in Figure 2, the dataset is partitioned into
three primary segments: pre-FOG, FOG, and non-FOG. The
duration of the pre-FOG segment ranges from 1 to 3 seconds.
Excluding the pre-FOG and FOG segments, the remainder
constitutes the non-FOG portion. Given that the non-FOG
portion predominantly constitutes the dataset, random down-
sampling techniques are employed to achieve a balanced
representation among the different categories.

Subsequently, we adopted variable sliding window sizes
(1s, 2s, and 3s) to standardize the segmentation of all data
into uniform window sizes. Proportional sampling was then
employed, based on the quantity and ratio of each class within
the dataset, to distribute 80% of the windows to the training set
and 20% to an independent test set. This stratagem ensures that
both the training and testing sets accurately reflect the overall
distribution of classes.

IV. MATERIALS AND METHODS

A. Methods

In this study, we proposed the AutoEncoderWavenet, an
architecture tailored for efficient signal processing and tempo-
ral detection in FOG warnings, leveraging autoencoder [16]



Fig. 3. The proposed autoencoder structure

and dilated causal convolution mechanisms [17] to handle
sequence data processing.

As shown in Figure 3, the encoder begins with a input
convolutional layer converting six input channels to the hidden
channels. Subsequent layers include multiple blocks of causal
dilated convolutional layers with increasing dilation rates
(2i). Specifically, the dilation pattern allows the network to
exponentially increase the receptive field without a loss in
resolution or coverage, enabling the model to capture temporal
dependencies across scales. Causal dilated convolutional lay-
ers, as depicted in Figure 3, were selected for their ability
to preserve the chronological order of temporal data. This
characteristic is crucial for the analysis of time-series data,
where the sequence and timing of inputs directly influence
the accuracy and relevance of the output. Each convolution
is followed by ReLU activation and dropout for non-linearity
and regularization, respectively.

The decoder layers module mirrors the encoder structure but
in reverse order, which aids in reconstructing the original input
signal from the condensed feature representation. Additionally,
skip layers are incorporated between the encoder and decoder
layers to enhance the model’s ability to comprehend and
capture important information from different levels of the
feature hierarchy. These skip connections enable the model
to leverage both low-level and high-level features, facilitating
more effective and accurate signal reconstruction. The final
transformation involves a simple output convolutional layer
that maps back to the original six input channels.

The AutoEncoderWaveNet, with its deep causal convolu-
tions and systematic dilation setup, is optimized for signals
reconstruction and effective learning of temporal dynamics of
different windows of FOG detection.

Following the signal reconstruction through the autoen-
coder, the classifier was then utilized to further categorize the
signal and accurately identify the FOG patterns within the
data. This two-step approach enabled a comprehensive analysis
of the data. The autoencoder’s ability to capture the underlying

structure and features of the signal provided a solid foundation,
which was then leveraged by the classifier to make the final
determination of the FOG episodes.

B. Loss function

The training process of the proposed framework is governed
by two distinct loss functions, which work in tandem to guide
the model’s optimization. The first loss function employed in
the training process is the reconstruction loss, which serves as
a measure of the model’s ability to accurately reconstruct the
input signals. For this purpose, we utilize the Mean Squared
Error (MSE) as the reconstruction loss metric:

Lreconstruction =
1

N

N∑
i=1

(ŷi − yi)
2 (1)

where ŷi represents the predicted values, yi denotes the true
values, and N is the number of samples in the dataset. This
loss function penalizes the square of the difference between
the predicted and actual values, thus heavily penalizing larger
errors which is suitable for the windows regression.

In the classifier of the model, the second loss function
employed is the cross-entropy loss, which serves to facilitate
the accurate classification of the different patterns across the
various temporal windows of the input data:

Lentropy = −
N∑
i=1

C∑
j=1

pij log(pij) (2)

In the given context, N denotes the total number of windows
present in the dataset, while C represents the number of
categories or classes in the window classification problem. For
this particular scenario, C is equal to 3. The training target for
the final model was established by computing the sum of two
losses, as depicted in Equation 3. The initial values of the
coefficients α and β were set to 0.5.

Ltotal = αLentropy + βLreconstruction (3)



C. Criteria for FOG Detection

To evaluate the precision of early warnings, we employ
the metric of accuracy. This is quantified by the following
equation:

Accuracyt =
Pt

T
(4)

Where The subscript t indicates the system’s capability
to make predictions t seconds in advance. Pt represents the
number of FOG occurrences accurately predicted i seconds
before they happen. And T is the total number of FOG
occurrences in the testing dataset.

Sensitivity, or the true positive rate, measures the ability of
the FOG detection system to correctly identify actual episodes
of FOG:

Sensitivity =
TP

TP + FN
(5)

Where TP represents the number of instances where the
model correctly identified a FOG episode. FN represents the
number of instances where the model failed to detect an actual
FOG episode.

Specificity assesses the ability of the FOG detection system
to correctly identify when FOG is not occurring:

Specificity =
TN

TN + FP
(6)

Where TN represents the number of instances where the
model correctly identified a non-FOG event. FP represents
the number of instances where the model incorrectly identified
a non-FOG event as a FOG event.

D. Model Optimization

The optimization process is pivotal for enhancing the per-
formance of the model, which, in turn, significantly influences
the outcomes of the experiments. In this study, the AdamW
optimizer was employed, incorporated weight decay to prevent
overfitting. The initial learning rate was set at 0.001. This
choice of optimizer and learning rate is grounded in their
proven effectiveness in similar deep learning tasks involving
autoencoders and sequence data To optimize the learning
process, a ReduceLROnPlateau learning rate scheduler was
employed. This scheduler dynamically adjusts the learning rate
based on the validation loss performance. When the validation
loss does not improve for a specified number of epochs, the
learning rate is reduced by a factor of 0.5. This adjustment
aims to fine-tune the learning rate and facilitate convergence
during training.

E. Environment

All experiments were performed using the pytorch library
on a computer equipped with a Tesla V100 32 GB GPU.

V. RESULTS

A. Results

In this section, a quantitative evaluation is conducted to
gauge the model’s effectiveness in issuing warnings at varying
time intervals preceding an emergency event. Specifically, the
assessment focuses on the model’s performance 1, 2, and 3
seconds prior to the anticipated emergency occurrence. Addi-
tionally, experiments are carried out using different window
lengths, utilizing the CNN model employed by Borz et al. [6],
in order to validate the model’s performance. The evaluation
comprises an examination of the sensitivity and specificity
metrics for each category, alongside the accuracy of pre-
FOG warnings. These metrics are computed based on an
independent test dataset and are presented in Table I.

We observed that the model performed best when it issued
a FOG warning 2 seconds before the FOG actually occurred.
This performance was achieved using a window size of 256
and a step size of 128. The sensitivity of the model, which
represents its ability to correctly detect positive cases, was
measured at 0.68. Similarly, the specificity of the model,
which reflects its accuracy in identifying negative cases, was
determined to be 0.86. It is noteworthy that any deviation in
the prediction time of the other two models, either 1 second
ahead or 1 second behind, increased the sensitivity by 0.11,
the specificity by 0.07, and the accuracy by 0.11. Interestingly,
the warning capabilities of the models 1 second ahead and
3 seconds ahead were statistically comparable in terms of
performance, while the CNN model outperformed our model
in 1 second and 3 seconds ahead, while our model showed a
certain advantage when the window size was increased.

TABLE I
PERFORMANCE OF DIFFERENT PRE FOG DETECTION MODELS

Models Sensitivity Specificity Accuracy
Model(≤ 1s) 0.56 0.78 0.56
Model(≤ 3s) 0.57 0.79 0.55
CNN(≤ 1s) 0.6 0.79 0.6
CNN(≤ 2s) 0.62 0.8 0.61
CNN(≤ 3s) 0.64 0.82 0.63
Model(≤ 2s) 0.68 0.86 0.67

The performance evaluation of the optimal model, with a
lead time of less than 2 seconds, was further conducted by
assessing its sensitivity and specificity across different seg-
ments. The detailed performance results can be found in Table
II. The findings demonstrate that the model exhibits a strong
capability to accurately predict the pre FOG, as evidenced by
a sensitivity of 0.64 and a specificity of 0.89. Out of the 264
windows generated in the test set, the model successfully made
accurate judgments for 177 windows, resulting in an overall
accuracy rate of 0.67.

B. Ablation study

In this section, we investigate the influence of different
window sizes and step sizes on the performance of the model.
For the sensor operating at a frequency of 128Hz, a window
size of 128 corresponds to a duration of 1 second. The moving



TABLE II
PERFORMANCE OF MODEL(≤ 2s) ON INDEPENDENT TESTING DATASET

Model Sensitivity Specificity
Pre FOG 0.64 0.89
FOG 0.81 0.87
Non FOG 0.6 0.78
Balanced 0.68 0.86

step, commonly set to half the window size, is therefore 64,
equivalent to 0.5 seconds. In the case of the model with a
lead time of 1 second, we employed windows of 1 second and
0.5 seconds, respectively. Likewise, for the model with a lead
time of 2 seconds, windows of 1 second and 2 seconds were
utilized. Similarly, for the model with a lead time of 3 seconds,
windows of 1 second, 2 seconds, and 3 seconds in advance
were employed. The balanced sensitivity and specificity for
all categories, along with the accuracy of pre-FOG warnings,
were computed and are presented in Table III.

TABLE III
PERFORMANCE FOR DIFFERENT WINDOW SIZE AND STEP SIZE

Models Step Window Sensitivity Specificity Accuracy
Model(≤ 1s) 32 64 0.43 0.61 0.42
Model(≤ 1s) 64 128 0.58 0.78 0.57
Model(≤ 2s) 64 128 0.58 0.79 0.61
Model(≤ 2s) 128 256 0.68 0.86 0.67
Model(≤ 3s) 64 128 0.55 0.77 0.53
Model(≤ 3s) 128 256 0.57 0.79 0.58
Model(≤ 3s) 256 512 0.62 0.81 0.59

Based on the findings presented in the Table III, it is
evident that the performance of each model is optimized when
the window size is set to its maximum feasible value. For
instance, in the case of the model with a lead time of 2
seconds, the most effective outcome is achieved when the
window size is set to 2 seconds, corresponding to a value
of 256. This trend is also observed for the 1-second and 3-
second-ahead models, where the best performance is attained
when the window size aligns with the respective lead time.
Conversely, when the window size is exceptionally small,
the model exhibits notably poor performance. For instance,
in the 1-second-ahead model, setting the window size to
half a second results in prediction accuracy that falls below
the level of random probability. This observation leads us
to speculate that this phenomenon may be attributed to the
inherent characteristics of the model itself. The utilization of
dilated convolution enables the model to capture information
from a broader temporal context, thus implying that a larger
window size facilitates the convolution process in acquiring
more comprehensive contextual information.

We also carried out ablation experiments to study the
influence of different sensor data sources on the model’s
performance. Specifically, we evaluated the models using
accelerometer data, gyroscope data, and the combination of
both accelerometer and gyroscope data as input features. These
experiments allowed us to gain insights into the relative im-
portance and complementary nature of the sensor modalities.

Fig. 4. Sensitivity and specificity under different kinematic data sources

As shown in Figure 4, the model trained on the multimodal
data, which combines the accelerometer and gyroscope sig-
nals, achieved the highest sensitivity across the three models.
This finding is reasonable, as incorporating higher-dimensional
information from both motion and angular measurements
can facilitate the model’s acquisition of more comprehensive
knowledge about the target phenomena. We also observed
that the gyroscope data had a greater influence on model
sensitivity compared to the accelerometer data. We attribute
this to the nature of our dataset, which consists of transition
recordings of patients. These ablation study results highlight
the importance of considering multimodal sensor data, as the
fusion of complementary signal sources can lead to improved
model performance, especially for tasks involving complex
kinematic patterns.

VI. DISCUSSION & CONCLUSIONS

A. Discussion

This study proposes a comprehensive network architecture
that can directly process data from wearable sensors of users
and generate appropriate prompts and warnings. Given that
the data source includes daily wearable sensor measurements,
not just FOG detection, the model has the potential to be
further optimized and applied to the field of fall detection and
prevention in the elderly, as well as monitoring and detecting
physical recovery after surgery. Therefore, in the future, as the
available datasets expand, it is expected that the model can be



further generalized to adapt to a wider range of personal health
management and disease rehabilitation applications.

This paper first attempts to use autoencoders to perform
unsupervised reconstruction and denoising of motion signal
sequences, as well as extract relevant feature information.
However, in order to more accurately detect the precursors
and occurrence of FOG, we subsequently adopted a supervised
classification training method based on the output of the
autoencoder model. While this approach is effective, it is
limited by the need for labeled data, as existing methods. As
wearable sensor technology becomes more and more common,
the amount of patient data generated will grow exponentially.
Domain experts need to observe patients’ motion data and
manually label them, which is resource-intensive. Therefore,
developing unsupervised or semi-supervised modeling tech-
niques is essential to fully realize the potential of these large-
scale unlabeled datasets.

Designing effective FOG detection models requires a careful
balance between sensitivity and specificity. High sensitivity,
which ensures reliable warning of impending FOG events,
often comes at the cost of reduced specificity. To address
this trade-off, future research protocols or performance metrics
may be proposed to measure and optimize the balance between
these two crucial metrics.

B. Conclusion

In this study, we employed an end-to-end autoencoder
network to predict the warnings and onset of FOG episodes.
This approach produced significant results when evaluated
on an independent test set. Compared to prior methods, the
present study not only aimed to predict the occurrence of FOG
episodes, but also incorporated regression-based training fo-
cused on the pre-FOG phases. This expanded approach sought
to provide more granular insights into the precursory indicators
of FOG, rather than solely relying on binary classification of
the onset itself. Our results showed that during testing, the
best warning effect was achieved about two seconds before the
event. With the expected advancement of technology, patients
are expected to increasingly use smart wearable devices that
can predict and alert them to impending FOG episodes in real-
time, thereby mitigating significant risks.

The future research agenda of this work will concentrate
on further refining the model architecture to enable high-
dimensional, multimodal analysis. Specifically, upcoming ef-
forts will seek to integrate patient-specific data, such as
medication schedules, clinical records, and other relevant
parameters, with the aim of enhancing the predictive accu-
racy and broader applicability of the model across diverse
patient populations. It is anticipated that these advancements
will significantly improve the development of personalized
management and intervention strategies for individuals suf-
fering from Parkinson’s disease. Furthermore, the sensor data
collected are not limited to FOG warnings and detection,
but can also be leveraged for gait analysis and rehabilitation
training purposes, thereby expanding the scope and utility of
the proposed approach.
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