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Abstract—Wireless traffic prediction plays a vital role in man-
aging high dynamic and low latency communication networks, es-
pecially in 6G wireless networks. Regarding data and computing
resources constraints in edge devices, federated wireless traffic
prediction has attracted considerable interest. However, federated
learning is limited to dealing with heterogeneous scenarios and
unbalanced data availability. Along this line, we propose an
efficient federated meta-learning approach to learn a sensitive
global model with knowledge collected from different regions.
The global model can efficiently adapt to the heterogeneous local
scenarios by processing only one or a few steps of fine-tuning on
the local datasets. Additionally, distance-based weighted model
aggregation is designed to capture the dependencies among
different regions for better spatial-temporal prediction. We eval-
uate the performance of the proposed scheme by comparing it
with the conventional federated learning approaches and other
commonly used benchmarks for traffic prediction. The extensive
simulation results reveal that the proposed scheme outperforms
the benchmarks.

Index Terms—Wireless traffic prediction, federated meta-
learning, heterogeneous scenarios, and unbalanced data avail-
ability

I. INTRODUCTION

W ITH the emergence of the concepts, such as 6G
wireless networks [1], [2], Internet of Things (IoT),

and unmanned aerial vehicle (UAV) assisted networks [3],
the wireless traffic is anticipated to be dynamic, complex,
and excessively high in scale. Wireless traffic prediction [4],
[5] is one of the core ingredients for the proactive 6G net-
work paradigm, which enables the reservation of the network
resources for seamless traffic handover and energy-efficient
network management.

Recently, deep learning (DL) approaches are promising
improvement for wireless traffic prediction [6], [7]. Recurrent
neural network (RNN) is exploited in [8], [9] to perform
spatial-temporal wireless traffic prediction. In [10], a spatial-
temporal densely connected network (STDenseNet) is pro-
posed for city-scale wireless traffic prediction. DL approaches
request tremendous training data and computational resources,
which are hard to achieve since it is possible that in a specific
region, very few samples are recorded. Zhang et al. exploit
transfer learning to capture the complex patterns hidden in
cellular data and transfer the knowledge to various traffic [4].
Transfer learning solves the problem of limited data and avoids
training from scratch. However, the knowledge needs to be
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learnt and transferred from a region with similar scenario. The
model learnt directly from heterogeneous scenarios may not
be efficient or even have harmful consequences.

Furthermore, the aforementioned centralized DL schemes
rely on full access to the distributed datasets and the data
processing to a central entity, which are hard to guarantee in
wireless networks due to privacy concerns and communication
overhead. Therefore, it naturally triggers the idea of federated
learning (FL) solution for wireless traffic prediction, such
as FedDA in [11]. FL can significantly reduce the network
bandwidth and latency by sending only the model parameters
rather than the raw data stream. However, it is challenging to
ensure good performance when FL applications face hetero-
geneous scenarios and unbalanced data availability among ge-
ographically distributed regions [12]. Moreover, conventional
federated learning approach is not adaptable when proceeding
with a new wireless traffic prediction task that has never been
seen before.

Data-sharing strategy [13] and multi-task learning [14] are
adapted to overcome the statistical heterogeneity problem con-
fronted with FL. But data-sharing breaks the principle of data
privacy. Multi-task learning relies heavily on the assumption
of certain task relationships, limiting its ability to solve the
heterogeneity problem. To this end, we introduce model-
agnostic meta-learning (MAML) [15] into wireless traffic
prediction under the federated learning framework to achieve
efficient wireless traffic prediction at the edge. Specifically,
we aim to train a sensitive initial model that can adapt fast
to heterogeneous scenarios in different regions. The distance-
based weighted model aggregation is also integrated to capture
the dependencies among different regions for better spatial-
temporal prediction. The proposed scheme inherits all the ben-
efits from the federated learning architecture and guarantees
the extra personalized characteristic to each local model.

II. WIRELESS TRAFFIC DATA AND PROBLEM
FORMULATION

A. Wireless Traffic Data

The wireless traffic datasets are call detail records (CDRs)
from the city of Milan, Italy and the province of Trentino,
Italy, collected every 10 minutes over a two-month time span
[16]. The raw CDRs are geo-referenced, anonymized and
aggregated Internet traffic data based on the location of the
regions. Specifically, a CDR record is logged if a user transfers
more than 5 MB of data or spends more than 15 minutes
online. After that, these records are grouped by administrative
regions to protect privacy.
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(a) Locations of the five regions. (b) Temporal dynamics.

(c) Spatial correlations. (d) Traffic statistics.

Fig. 1: Spatial and temporal characteristics of wireless traffic.

The patterns hidden in wireless traffic are complex and
challenging to be modelled. The characteristics of wireless
traffic are analysed in Fig. 1, which includes the physical
locations of five regions of Milan and the corresponding
temporal and spatial traffic dynamics. We can observe that
some regions have similar temporal patterns visually and high
spatial correlation statistically. For example, region A and
region B are physically near each other and have the same
peak traffic hours. Their traffic series also have high spatial
correlations (0.94 in terms of Pearson correlation coefficient).
But we also observe that some regions have distinct traffic
patterns. For example, region A and region E have different
peak traffic hours and small correlations. Besides, as shown in
Fig. 1d, different regions have various traffic statistics. In this
context, we need to train a model capable of capturing both
the pattern similarity (spatial and temporal dependencies) and
the pattern diversity (personalization).

B. Problem Formulation
We consider a decentralized communication network among

the geographically distributed regions. For each region, a
local client records the wireless traffic and conducts the local
model update. C = {1, ..., k, ...,K} denotes the clients set,
where k is the index and K is the total number of the local
clients. The sequential traffic datasets are divided into N
time slots. In the n-th time slot, dn is the random variable
representing the traffic volume, and the closeness dependency
xn = {dn�m, dn�m+1, ..., dn�1} is regarded as the input
feature, where m is the number of the nearest data points
taken into consideration. Suppose dn to be the prediction target
which can be labelled as the output yn, since we consider the
one-step-ahead prediction. Thus the input-output pair {xn, yn}
can be obtained by using sliding window scheme.

The samples are locally generated. The number of samples
Nk varies from client to client, and zero sample is possible

for an individual client. Furthermore, the training set of the k-
th client Pk is divided into support set Ps

k and query set Pq
k .

Personalized knowledge is preserved and internally transferred
via Ps

k to Pq
k . To aggregate the local models at the central

server and inherit the globe model from the central server to
each local client, the uplinks and the downlinks between the
local clients and the central server are built up.

Generally, the objective of federated learning-based traffic
prediction is to obtain a global model with parameter ✓ that
can minimize the average loss function of the local datasets,
which is denoted as

min
✓

1

K

KX

k=1

L(✓;Pk), (1)

where L(✓;Pk) is the loss function representing the differ-
ences between the predicted traffic volume ŷn and the ground
truth yn. Taking the mean squared error (MSE) as the metric
for example, the loss function is defined as

L(✓;Pk) =
1

Nk

X

{xn,yn}2Pk

(ŷn � yn)
2. (2)

In contrast to the traditional federated learning-based traffic
prediction targeting to train an ordinary model that ingests all
clients, our objective is to obtain a sensitive global model that
can adapt fast to heterogeneous scenarios. In this regard, we
manage to minimize the loss between the predicted value and
the true value of each client’s traffic via implementing the
trained model as initialization which would perform well after
only one or a few steps of fine-tuning on the local dataset.
The objective is formally described as

min
✓

1

K

KX

k=1

L(✓ � ↵
JX

j=1

r✓L(✓k,j ;Ps
k);P

q
k), (3)

where r✓L(✓k,j ;Ps
k) denotes the gradient corresponding to

the j-th steps of local update, j 2 (0, J ].

III. FEDERATED META-LEARNING APPROACH

In this section, we propose a federated meta-learning ap-
proach for wireless traffic prediction. The training system
is configured with a decentralized structure, the same as
the conventional federated learning-based approach [11]. We
implement the MAML strategy in the federated framework and
conduct distance-based weighted model aggregation to simul-
taneously achieve efficient and personalized traffic prediction.
Once the global model is well trained, the test is conducted
individually at the edge after a few steps of gradient descent
fine-tuning. The scheme is illustrated in Algorithm 1.

A. MAML-Enhanced Parameter Learning
We randomly initialize the global model parameter ✓. A set

of C = max(�K, 1) clients denoted as Ct is randomly selected
during each training episode, where � is the hyper-parameter
qualifying the fraction of the clients chosen at each round.
For each client, c 2 Ct, we load the current global model
in parallel and initialize the local model parameter ✓tc,0 by
reproducing the global model parameter ✓t. Thereafter, a batch
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Algorithm 1: Federated Meta-learning Algorithm for
Wireless Traffic Prediction

Input: Datasets P , step size parameters ↵ and �,
fraction of selected client �

Output: Learned model parameters ✓
1 random initialize ✓
2 for each round t = 0, 1, 2, · · · , do
3 C = max(�K, 1)
4 Sample a set Ct of C clients
5 for each client c 2 Ct in parallel do
6 Load global model: ✓tc,0 = ✓t

7 Sample a batch of tasks T s
c from Ps

c

8 for each step j = 1, 2, · · · , J do
9 ✓tc,j = ✓tc,j�1 � ↵r✓tL(✓tc,j�1; T s

c )

10 Sample a batch of tasks T q
c from Pq

c

11 Update model with (5)

12 Individual model enhancement based on spatial
dependencies ✓̃t+1

c =
P

r2Ct
⇢̃c,r✓

t+1
r,0

13 Global model update: ✓t+1 = 1
C

P
c2Ct

✓̃t+1
c

of traffic prediction tasks T s
c is sampled from the support set

Ps
c . J steps of gradient descent are conducted on sampled T s

c ,
and the updated model is internally transferred to preserve the
personalized knowledge. Formally, the local model parameters
updated at the j-th step are calculated as follows

✓tc,j = ✓tc,j�1 � ↵r✓tL(✓tc,j�1; T s
c ). (4)

Subsequently, a batch of tasks T q
c is sampled from the query

set Pq
c . The local model is improved by rapidly adjusting to the

sampled query tasks. The updated local models are uploaded
to the central server for the knowledge integration from the
heterogeneous scenarios, such as

✓t+1
c,0 = ✓tc,0 � �r✓tL(✓tc,J ; T q

c ), (5)

where r✓tL(✓tc,J ; T q
c ) is the second-order gradient descent

conducted on the query tasks and is merged into the current
local models corresponding to the slightly updated and inter-
nally transferred model parameter ✓tc,J . Taken equation (4) into
consideration, the second-order gradient descent operation is
given as

r✓tL(✓tc,J ; T q
c ) =r✓t

c,J
L(✓tc,J ; T q

c ) ·r✓t✓tc,J

=r✓t
c,J

L(✓tc,J ; T q
c ) ·r✓t

c,J�1
✓tc,J ·r✓t✓tc,J�1

=r✓t
c,J

L(✓tc,J ; T q
c ) ·

JY

j=1

r✓t
c,j�1

✓tc,j

=r✓t
c,J

L(✓tc,J ; T q
c )

·
JY

j=1

(I � ↵r✓t
c,j�1

r✓tL(✓tc,j�1; T q
c )).

(6)

B. Distance-Based Weighted Model Aggregation
To further model the spatial dependencies among different

regions, we propose a distance-based weighted model aggrega-

tion scheme. More specifically, once the central server received
all the gradient information from the chosen clients at the t-
th communication round, we calculate the cosine similarities
among different regions, which yields a distance matrix ⇢t+1

⇢t+1 =

2

6664

⇢t+1
1,1 ⇢t+1

1,2 · · · ⇢t+1
1,C

⇢t+1
2,1 ⇢t+1

2,2 · · · ⇢t+1
2,C

...
...

. . .
...

⇢t+1
C,1 ⇢t+1

C,2 · · · ⇢t+1
C,C

3

7775
, (7)

where ⇢t+1
c,r measures the cosine similarity between region c

and region r, and is computed as

⇢t+1
c,r =

✓t+1
c,0 · ✓t+1

r,0

||✓t+1
c,0 || · ||✓t+1

r,0 ||
. (8)

For each client c, an enhanced individual model incorporating
spatial dependencies is obtained as

✓̃t+1
c =

X

r2Ct

⇢̃c,r✓
t+1
r,0 , (9)

where ⇢̃c,r is the softmax version of ⇢c,r. Then, the central
server update the global model as follows

✓t+1 =
1

C

X

c2Ct

✓̃t+1
c . (10)

The above induced global model captures the spatial depen-
dencies among different regions and can adapt to new traffic
patterns.

C. Model Personalization with Local Adaption

Before adopting the model to a new traffic prediction task of
a specific client, fine-tuning is executed on the local dataset to
adjust the model to the private data of each client. Specifically,
we sample a batch of tasks T s

c from the local dataset and
conduct only one or a few gradient descent steps. The above
mentioned adaption is the repetition of the sampling and in-
ternal updating process (line 7-9) in Algorithm 1. The volume
of the traffic is predicted by implementing the personalized
mode with parameter ✓c,J , which is expressed as

✓c,J = ✓ � ↵
JX

j=1

r✓L(✓c,j ; T s
c ). (11)

The model can be evaluated in terms of MSE based on test
datasets P test

c , such as

L(✓c,J ;P test
c ) =

1

N test
c

X

{xn,yn}2P test
c

(ŷn � yn)
2, (12)

where N test
c is the number of samples for testing.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section gives a detailed introduction of the experimen-
tal settings, baseline methods, and evaluation metrics. After
that, we analyze and report the achieved experimental results.
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TABLE I: Prediction comparisons among different algorithms.

Milano Trentino

Methods MSE MAE MSE MAE

HA 1.2839 0.9939 12.0363 2.3288
SVR 0.0187 0.0883 10.0037 1.5755

RF 0.0218 0.0918 3.5385 0.9296
FedAvg 0.0196 0.0965 1.1033 0.5834
FedDA 0.0179 0.0816 0.5463 0.3933

Proposed 0.0170 0.0803 0.4815 0.3544

A. Dataset and Experiment Settings
Our experiment uses the first seven weeks’ data to train

a model and the last week’s data to test the model. During
model training, we assume only a few cells, e.g., �K, are
involved in each episode, and we set � = 0.1. The sliding
window scheme is adopted to generate data samples, and the
window size m is set to 6. Data samples are standardized to
accelerate the training speed. Considering the amount of data
in each cell and the power restrictions of the edge server, we
design a lightweight neural network architecture with 3 layers,
and each layer has 40 neurons. We train our model for 100
consecutive rounds with batch size 20 by using SGD. The
choices of learning rates, i.e., ↵ and �, are obtained by a grid
search over ↵,� 2 {0.1, 0.01, 0.001}.

B. Baselines and Evaluation Metrics
We compare our algorithm with historical average (HA),

support vector regression (SVR), random forest (RF), fed-
erated averaging (FedAvg) and FedDA. The first one is a
classical time series prediction method. SVR and RF are
traditional machine learning methods for wireless traffic pre-
diction. FedAvg trains a global model by averaging the local
ones. FedDA captures the spatial dependencies of regions by
clustering. All baselines are trained in a fully distributed way
except FedAvg and FedDA, which are trained in a federated
manner. To make a fair comparison, FedAvg, FedDA, and our
proposed method share exactly the same network architecture
and are configured with the same (hyper-)parameters, e.g.,
learning rate and batch size.

We evaluate the prediction performance of different algo-
rithms in terms of MSE and mean absolute error (MAE)
metrics.

C. Prediction Results
We repeat the experiments 10 times and report the averaged

quantitative prediction results in Table I. The best results
are marked in bold for clearness. We can observe from this
table that our proposed method achieves the best prediction
results, which validates the effectiveness of MAML integrated
into a federated framework. Take the MSE as an example,
among all the baselines, the best results are 0.0179 and
0.5463, on the Milano and Trentino dataset, respectively. Our
method’s results are 0.0170 and 0.4815. Thus, we can see a
clear performance improvement, especially for the Trentino
dataset. The performances of HA are generally poor as they

(a) Region Duomo from the city of Milan.

(b) Region Andalo from Trentino province.

Fig. 2: Predictions versus ground truth values.

are parameter-free and have no ability to learn the hidden
patterns. Learning-based fully distributed methods can usually
achieve lower prediction errors than HA, as they can model
the traffic dynamics through adjustable parameters. Besides,
a model’s prediction ability has a positive relationship with
the number of parameters. Another thing worth noting is that
FL-based methods are superior to fully distributed methods
since FL-based methods involve model aggregation and can
fuse knowledge of different cells. This is a meaningful way
to capture the spatial dependencies among different regions’
traffic. But our proposed method achieves better predictions
than FedAvg and FedDA, since it is aware of the spatial
dependency diversities among different regions.

D. Prediction vs Ground Truth

The above subsection gives the overall prediction results
for all regions. In this subsection, we go one step further and
report the region-level prediction results. For each dataset,
a random region is selected and the comparisons between
predictions, and ground truth values are plotted in Fig. 2. Be-
sides, the empirical cumulative distribution function (ECDF)
of absolute prediction errors is also reported, and the results
are summarized in Fig. 3. We include the results of FedAvg
and FedDA in both figures for comparisons.

We can observe that our method achieves similar perfor-
mance with the FedAvg algorithm on the Milano dataset from
these two figures. But on the Trentino dataset, our method
performs much better prediction results than the FedAvg,
especially when the traffic volume increases from the fourth
day. Our method’s superiority can be more clearly reflected
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(a) Duomo (b) Andalo

Fig. 3: ECDF as a function of absolute error.

(a) Milano (b) Trentino

Fig. 4: Parameter sensitivity.

by the ECDF of prediction errors in Fig. 3. For example, on
the Trentino dataset, by applying our method, the proportion
of tasks with absolute error less than 0.2 GB achieves 82.5%
whereas the proportion is only 40% for the FedAvg algorithm.
The results indicate that introducing MAML and distance-
based weighted model aggregation into federated learning can
indeed enhance the generalization ability of the global model,
particularly for high heterogeneous scenarios, such as the
Trentino dataset.

E. Impacts of hyper-parameters
There are two key hyper-parameters in our method, i.e., the

number of data samples per slot and the fine-tuning steps. We
report the results when varying these two hyper-parameters
in Fig. 4. It can be seen from Fig. 4 that when the number
of adaption steps or the number of data samples per slot
increases, the performances of our method are improved since
more data samples are involved in the local model update.
But when the number of fine-tuning steps is large enough, the
performance gain is minimal. In reality, the optimal choices
of these two parameters can be obtained through a grid search
scheme.

V. CONCLUSION

In this paper, we proposed efficient federated meta-learning
approach for the decentralized wireless traffic prediction.
Distance-based weighted model aggregation scheme was in-
tegrated to capture the spatial-temporal characterizes. By

implementing the approach, we obtained a sensitive global
model that can quickly adapt to heterogeneous scenarios and
unbalanced data availability at the edge clients via only a few
steps of fine-tuning. Three measures on two different datasets
evaluated the effectiveness and efficiency of the approach. The
impacts of hyper-parameters were also reported. The experi-
mental results showed that our proposed approach outperforms
other federated learning approaches and classical prediction
methods.
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