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Abstract—The inevitable deployment of 5G and the Internet-
of-Things (IoT) sheds the light on the importance of the energy
efficiency performance of Device-to-Device (DD) communication
systems. In this work, we address a potential IoT application,
where different prioritized Device-to-Device system (DDS), i.e.,
Low-Priority (LP) and High-Priority (HP) systems, co-exist and
share the spectrum. We maximize the energy efficiency of each
system by proposing two schemes. The first scheme optimizes the
individual transmission power and the spatial density of each
system. The second scheme optimizes the transmission power
ratio of both systems and the spatial density of each one. Unique
structures of the addressed problems have been verified. We
construct and solve a multi-objective optimization problem to
maximize both HP and LP energy efficiency performance. Nu-
merical results are presented to evaluate the system performance.

Index Terms—Spectrum sharing, Energy efficiency, Resource
allocation, Stochastic geometry, Device-to-Device,

I. INTRODUCTION

High throughput data communication and reliable (long
life-time and large capacity) sensor networks are major com-
ponents that lead to the realization of 5G and IoT. These
emerging technologies lead to significant power consump-
tion requirements. Therefore, energy measurement metrics are
essential for realizing future technologies and guaranteeing
a certain energy efficiency performance. Researchers have
been thoroughly investigating the greenness of communication
networks. Variety of energy efficiency (EE) metrics have been
proposed based on different factors and several communica-
tion layers, e.g., routing, media access control (MAC), and
physical (PHY) layers, and cross layer design, [1]–[3]. A
recently developed tool, called stochastic geometry, has shown
solid techniques to provide tractable expressions for spatially
random wireless systems[4], while including the impact of
several layers parameters.

Stochastic geometric tools have been utilized to capture the
spatial randomness of wireless network’s nodes [4]. Several
works have tackled the outage probability and spatial capacity
of communication networks using stochastic geometric tools
[4]–[9]. However, working on utilizing this tool in improving
the energy efficiency is still an open research problem. The
authors of [10] have tackled the energy efficiency performance
of a heterogeneous network. Fairness of the sub-channel
allocation have also been addressed. On the other hand, authors
of [11] have addressed the EE maximization of several sharing
systems from a game theory perspective. They considered non-
cooperative game between different systems, with and without
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incorporating pricing to the power control game. In a cellular
system, authors of [12] have modeled a system that contains
both macro basestations (MBSs) and femto-cell access points
(FAPs) and their associated user equipments (UEs) as two
independent Poisson point processs (PPPs). They assumed
that there is not interference between different systems, unlike
our work which considered the inter/intra interference. They
maximized EE, derived throughput per power, with respect
to (w.r.t.) sub-channels allocation, while taking the impact of
different diversity schemes. The authors of [13] modeled the
two-tier cellular system’s components, i.e., MBSs, small-cell
access points (SAPs), and UEs as independent PPPs. They
analyzed the data rate associated with different communication
scenarios, i.e., MBS-to-UE, SAP-to-UE, and MBS-to-SAP.
They obtained the EE by dividing the analyzed data rate by
the associated system’s power.

In this work, we consider a network model where two
multiple users systems, i.e., HP system and LP system, co-
exist in the same area. We capture the spatial randomness
of the nodes under both systems by utilizing the stochastic
geometric framework. The targeted performance metric of all
systems is the energy efficiency, defined as, the transmission
capacity (successful transmissions per unit area) to power
ratio. We enforce outage probability constraint on Low-Priority
user (LPU) transmission to guarantee minimum High-Priority
system (HPS)’s quality of service (QoS).

Our contribution is as follows. We maximize the individual
EE of both LPU and High-Priority user (HPU) systems. This
maximization is conducted via proposing two schemes, i.e.,
scheme 1 and scheme 2. Optimal transmission power and
spatial density of each system are derived in scheme 1.
The corresponding strict pseudo-concave and quasi-concave
structures of the problem are verified in scheme 1. Whereas,
Optimal transmission power ratio of both systems and spatial
density of each system are derived in scheme 2. In this scheme,
the joint strict pseudo-concave and quasi-concave structures
of the associated problem have been verified. We also show
the distinctions between both schemes. We then construct an
over all multi-objective EE of both LPU and HPU systems.
Several multi-objective combination methodologies are used
to solve the problem. However, because of the page limitation
in this work, we only introduce the Linear-Scalarizing method
(LSM). In this approach, we maximize a linear combination
of LPU’s EE and HPU’s EE systems with respect to LPU’s
and HPU’s transmission power and spatial density. The global
joint optimal solution set is obtained via verifying a unique
structure fo the joint optimization problem and proposing
an alternating algorithm, while satisfying the necessary and
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sufficient conditions.
In the following, we show the distinction points between our

proposed model and solution and the existing ones. Unlike our
contribution, the work of [10] did not derive the optimal power
allocation of the associated problem. Also, the authors of
[11] did not provide analytical results to both nodes densities
and transmission power. They also did not combine EE of
several sharing systems. The problem model of [12], [13] is
based on a master slave communication system, unlike our
prioritized DD in-band sharing system. Also, different opti-
mization variables and solution methodolgies are considered
in The work in [13] differs from ours in several points. In
our model, we consider communication between pairs of DD
nodes, that belongs to different systems with distinct priorities,
not necessarily master-slave network topology, as in cellular
system. We also do not ignore the interference of different
communication pairs. The formulation of EE metric in [13],
[14] is also different from our model, where we consider
distinct optimization variables and combination methods, to
jointly maximize the EE of both sharing systems.

II. SYSTEM MODEL AND TRANSMISSION CAPACITY

Targeting the energy efficiency of spectrum sharing net-
works requires obtaining each system’s capacity. In this
section, we describe the network’s system model and the
transmission capacity of each system in the network.

A. Spectrum Sharing Network Model

Fig. 1. System model of multiple LP and HP users that coexist and share
the spectrum in a certain area.

Figure 1 describes the model of two coexisting networks.
The nodes in Fig. 1 represent both LP network’s transmitters
and receivers (represented by solid line) and HP network’s
transmitters and receivers (represented by dashed line). The
set of all transmitter nodes, i.e., {s, p} ∈ Φ, follows PPP,
where the nodes uniformly distributed in the captured area.
This distribution is well accepted in the literature because of
the randomness of the nodes locations, i.e., this distribution
represents the worst-case scenarios among other distributions.
For instance, in [15], authors assumed models where the
transmitters have to satisfy a minimum guard zone distance
toward the potential receivers. The mean of the PPP distributed

nodes is λq , where q ∈ {s, p}. This is interpreted as the
average number of nodes in a unit area is equal to λq . Since
different receiving nodes have similar received signal statistics,
we therefore conduct the analysis on a receiving node at the
origin of the map. The interfering nodes follow a marked
Poisson point process (MPPP), i.e., transmitting nodes of a
system q are expressed as Ξq = {(Xqj , hqj)}. The location
of the transmitter is noted as Xqj and the channel between
the transmitter and the receiving node (at the origin) is hqj .
This channel follows a Rayleigh distribution with a unity mean
and its modulus squared is expressed as |hqj |2 = γqj . We
also assume that all the transmission nodes in each system
transmit with the same adaptive power, i.e., Pq for q ∈ {s, p}.
The received power at the desired receiver is expressed as
|xq|−αPqγqj for q ∈ Φ, where |xq| is the distance to the
receiving node at the origin and α is the pathloss exponent.
Note that we omit the j of the studied receiving node since it
is at the origin.

B. Success Probability and Transmission Capacity

In this section, we define both the successful transmission
probability of each sharing network and the associated trans-
mission capacity.

In order to express the targeted system’s signal to noise and
interference ratio (SINR), say it is system t, we consider all
interferences from the same system, t, and the other system, q.
The corresponding SINR of the targeted system is expressed
as follows,

SINRt =
|xt|−αPtγti∑

q∈Φ

∑
xq∈Ξq

|xq|−αPqγq +N0
. (1)

We ignore the effect of the thermal noise, since we assume
the interference from all the nodes has larger effect on the
desired signal compared to the thermal noise. Therefore, in
our analysis, we consider the targeted signal to interference
ratio (SIR). Hence, the successful transmission probability is
defined as follows,

Pt = Pr

{
Θt ≥ θt

}
= Pr

{
|xt|−αPtγt∑

q∈Φ

∑
xq∈Ξq

|xq|−αPqγq︸ ︷︷ ︸
It

≥ θt

}
,

(2)
Note that the interference is a sum of measurable functions
of a MPPP. It follows that after applying several known
techniques (i.e., Laplace transformation, Campbell’s Theorem,
random variable conditioning, and change of variable) on (2),
the successful transmission probability expression of the LP
system is found as follows [4],

Pl = exp

(
−η′l

(
λl + λh

(
Ph
Pl

) 2
α

))
, (3)

where η′t = πR2
t θ

2
α
t . The successful transmission probability

of the HP system is found in similar lines to that of the LP
system while switching the sub-script of the parameter from
xl to xh, where x is any symbol that is used interchangeably
for both LP and HP systems.
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In order to study the energy efficiency, the associated
transmission capacity of each system in the sharing area must
be obtained. The corresponding LP’s transmission capacity is
expressed as follows,

Tl = λl exp

(
−η′l

(
λl + λh

(
Ph
Pl

) 2
α

))
, (4)

The HP’s transmission capacity is also find in similar lines
with (4) while changing the sub-script because of the symme-
try between both expressions.

III. ACHIEVABLE ENERGY EFFICIENCY OF LPU AND HPU

In this section, we formulate the energy efficiency met-
ric of LPU’s network and derive the optimal solution, i.e.,
transmission power and spatial density. Following similar
steps, we derive the optimal solution of the energy efficiency
performance of HPU network.

The energy efficiency of LPU’s network is defined as the
ratio of the transmission capacity to power, i.e.,

El(Pl, λl, Ph, λh) = λl

exp

(
−η′l

(
λl + λh

(
Ph
Pl

) 2
α

))
(ktPl + kc)

, (5)

where kc and kt are assigned parameters which correspond to
the circuit power of the radio device and the power amplifier
constant power consumption.

The energy efficiency problem of LPU’s system maximizes
LPU’s EE metric subject to maintaining a certain LPU’s
outage probability and a certain HPU’s outage probability. The
targeted problem is expressed as follows,

max λl

exp

(
−η′l

(
λl + λh

(
Ph
Pl

) 2
α

))
(ktPl + kc)

(6a)

s.t. C1: 1− exp

(
−η′l

(
λl + λh

(
Ph
Pl

) 2
α

))
≤ εl (6b)

C2: 1− exp

(
−η′h

(
λh + λl

(
Pl
Ph

) 2
α

))
≤ εh

(6c)

We propose two schemes to solve problem (6). The main
difference between the two schemes is the definition of the
optimization variables. In scheme 1, we maximize problem (6)
by optimizing LPU’s transmission power and LPU’s spatial
density. In scheme 2, we maximize problem (6) by jointly
optimizing the transmission power ratio, i.e., ζn =

Ph
Pl

, and
LPU’s spatial density.

1) Scheme 1: In this scheme, we optimize LPU’s transmis-
sion power, Pl, and LPU’s spatial density, λl.

We begin by converting the probabilistic constraints C1 and
C2 into an instantaneous constraint. These constraints acts as
boundaries for each of the optimization variables, i.e., Pl and
λl. Constraint C1 upper bounds the transmission power as
follows,

Pl ≤

[
log (1− εh)

−1

λlη
′
h

− λh
λl

]α
2

Ph = P+
s , (7)

whereas constraint C2 lower bounds LPU’s transmission power
as follows,

Pl ≥

[
log (1− εl)−1

λhη
′
l

− λl
λh

]−α
2

Ph = P−s . (8)

Maximizing problem (6) with respect to LPU’s transmission
power is difficult to solve by conventional method. That is
due to the fractional, exponential, and geometrical nature of
parameter Pl in (6a). In order to find the optimal Pl which
maximizes (6) we follow several steps as follows. We apply
a geometric optimization technique, change of variable, on
parameter Pl such that, Pn = (Pl)

2
α and Pl = (Pn)

α
2 . Since

the change of variable function is monotone over the range
of Pl ≥ 0, we know from [16] that optimizing problem (6)
with respect to Pn is equivalent to optimizing it with respect
to Pl. We then apply transformation technique to the objective
function in (6a), i.e., Êl = f0(El), where f0(El) = log(El). It is
proven in [16] that if f0(.) is R→ R and monotonic increasing
function, then maximizing El is equivalent to maximizing Êl =
f0(El). It is observed that these conditions are satisfied by the
logarithmic function. Taking into account that both constraints
C1 and C2 are peak constraints on Pl, thus we apply them after
obtaining the optimal Pl. Problem (6) is transformed into the
following problem,

max
(P−s )

2
α≤Pn≤(P+

s )
2
α

log


λl exp

(
−η′l

(
λl + λh

P
2
α
h

Pn

))
ktP

α
2
n

 .

(9)
The solution of problem (9) is summarized in the following

lemma.

Lemma 1. The optimal LPU’s transmission power that max-
imizes problem (9) is expressed as follows,

P̂l = min
{

max{P ∗l , P−s }, P+
s

}
, (10)

where P ∗l is expressed as follows,

P ∗l =

(
2η′lλh
α

)α
2

Ph. (11)

Proof. The proof is given in Appendix A.

It is observed that the optimal LPU’s transmission power
increases with the increase of HPU’s transmission power and
HPU’s spatial density.

We now find the optimal LPU’s spatial density which
maximizes problem (6). We begin by transforming constraints
C1 and C2 as upper bounds to the spatial density. Let us note
the total upper bound as follows,

λ+
s = min

(
λ+
s1, λ

+
s2

)
, (12)

where

λ+
s1 =

[
log (1− εh)

−1

η′h
− λh

](
Ph
Pl

) 2
α

, (13)
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and

λ+
s2 =

[
log (1− εl)−1

η′l
− λh

(
Ph
Pl

) 2
α

]
. (14)

We then rewrite problem (6) as follows,

max
λl≤λ

+
s

λl exp

(
−η′l

(
λl + λh

(
Ph
Pl

) 2
α

))
ktPl

. (15)

The solution of problem (15) is summarized in the following
lemma.

Lemma 2. The optimal LPU’s spatial density that maximizes
problem (15) is expressed as follows,

λ̂l = min
{
λ+
s ,

1

η′l

}
. (16)

Proof. The proof is given in Appendix B

Note that the optimal LPU’s spatial density decreases with
the increase of the distance between nodes and the increase
of the SIR threshold.

Note that in order to get the optimal expressions of trans-
mission power and nodes spatial density for the HP system, we
face two choices. One is to protect the LP users transmission
via similar constraint to that in C2 in (6) but from HP
transmission perspective. In this case, both the optimal power
and user density, are found in similar lines with the ones for
LP system while changing the sub-script. The other choice is
not to protect the LP’s transmission. Hence, the upper bound
on the optimal HP’s transmission power is discarded. Also,
one of the two upper bounds on the HPU’s spatial density is
discarded, as the HP system does not care about the LP system
performance. Otherwise, all derivation steps are similar to that
of the LP system parameters.

2) Scheme 2: In this scheme, we maximize problem (6) by
jointly optimizing the transmission power ratio, i.e., ζn =

Ph
Pl

,
and LPU’s spatial density, i.e., λl. The main advantage of
this scheme over scheme 1 is that the joint optimal solution is
guaranteed without the necessity to use an alternating iterative
algorithm.

After substituting ζs =
(
Ph
Pl

) 2
α

in problem (6), the targeted
optimization problem is rewritten as follows,

max
ζs,λl

λl
exp (−η′l (λl + λhζs))(

ktPhζ
−α
2
s

) (17a)

s.t. C1: λl + λhζs +
1

η′l
log (1− εl) ≤ 0 (17b)

C2: λl + ζs

(
λh +

1

η′h
log (1− εh)

)
≤ 0 (17c)

The solution of problem (17) is summarized in the following
theorem.

Theorem 1. The global joint optimal solution set of problem
(17) is obtained as follows.

The optimal transmission power ratio is expressed as,

ζ̂s =
2

α

[
λh (η′s + λ1 + λ2) +

λ2

η′p
log(1− εp)

]−1

. (18)

The optimal LPU’s spatial density is expressed as,

λ̂l =
1

η′s + λ1 + λ2

. (19)

The Lagrangian multipliers λ1 and λ2 are obtained by
solving the Karush-Kuhn-Tucker (KKT) conditions associated
with C1 and C2, respectively.

Proof. The proof of Theorem 1 is given in Appendix C.

Remark 1. It is interesting to note that both solutions of
problem (6), under scheme 1, and problem (17), under scheme
2, are equivalent. Note that under inactive constraints, i.e.,
λ1 = 0 and λ2 = 0, the LPU’s transmission power, obtained
from the optimal ζs in (18), is equal to P ∗l in (11). Similarly,
under inactive constraints we note that λ̂l in (19) is equivalent
to that in (16).

To maximize HPU’s energy efficiency utilizing scheme 2,
we use similar analogue to that of scheme 1 in the HPU
solution part.

IV. LINEARLY COMBINED EE LPU AND HPU SYSTEMS

In this section, we maximize a weighted sum of El and
Eh with respect to transmission power of both LPU and
HPU systems in addition to the spatial density of both LPU
and HPU system. This problem is extremely complicated to
solve, because the joint concavity or quasi-concavity structure
of the objective function with respect to all optimization
variables cannot be verified. Therefore, we solve this problem
by individually maximizing the problem with respect to each
optimization variable. We then find the optimal expression
for each variable. Finally, we propose an iterative algorithm,
which utilizes the individual optimality of each variable to
guarantee a global joint optimal solution of the problem.

The formulation of the weighted sum total energy efficiency
metric problem is expressed as follows,

max ETS = αlEl (Pl, Ph, λl, λh) + αhEh (Pl, Ph, λl, λh)
(20a)

s.t. C1; C2; (20b)

where αs and αp are the weighting parameters of each metric.
It is difficult to find a joint structure, i.e., concavity, pseudo-
concavity, or quasi-concavity, of problem (20) with respect to
to all optimization variables. Therefore, we begin our solution
by maximizing problem (20) with respect to each variable
separately, i.e., Pl, λl, Ph, and λh, respectively.

The optimal Pl which maximizes problem (20) cannot be
obtained in a similar way to the optimal Pl which maximizes
(6). This is due to the existence of Pl in the exponential term
of Eh. Furthermore, it is not possible to, analytically, find the
zeros of the first derivative of Lagrangian function to solve (20)
with respect to Pl. That is because there is a weighted sum of
exponential terms and each one includes a different function
of Pl. For further illustration, note that the exponential term of

El is expressed as η′lλh
(
Ph
Pl

) 2
α

whereas the exponential term

of Eh is expressed as η′hλl
(
Pl
Ph

) 2
α

. To overcome this problem,
we introduce a new variable, i.e., Psp. This variable replaces Pl
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in HPU’s Eh term, i.e., Eh =
λh exp

(
−η′h

(
λh+λl

(Psp
P
h

) 2
α

))
(ktPh+kc)

. A
new constraint must be added to link both variables, i.e., Pl =
Psp. We then apply the change of variables to both Pl and

Psp, such that Pn = P
2
α

l and Pnp = P
2
α
sp . The maximization

problem of (20) is rewritten as follows,

max
(P−s )

2
α≤{Pn,Pnp}≤(P+

s )
2
α

αlEl (Pn) + αhEh
(
Pnp

)
(21a)

s.t. Pn = Pnp (21b)

Remark 2. Note that the second term of (21a) is constant

with respect to Pn, i.e.,
αhλh exp

−η′h
λh+λl

Pnp

P

2
α
h


(ktPh+kc)

is not a
function of Pn. Whereas the first term in (21a) is constant with

respect to Pnp, i.e.,
λl exp

−η′l
λl+λh P

2
α
h
Pn


ktP

α
2
n +kc

is not a function

of Pnp.

Utilizing Remark 2 and the geometric optimization tech-
niques, which are used in Sec. III, we obtain the optimal value
of Pl in the following proposition.

Proposition 1. The optimal value of Pn that maximizes (20),
given Ph and λh, is expressed as follows,

P̂n = min{max{P on ,
(
P−s
) 2
α },
(
P+
s

) 2
α } (22)

where

P on =

α+

√
α2 − 16µη′sλhP

2
α

h

4µ

 (23)

P+
s and P−s are expressed in (7) and (8), respectively.

Whereas, the optimal value of Pnp that maximizes (20), given
Ph, λl, and λh, is expressed as follows,

ˆPnp = min{max{P onp,
(
P−s
) 2
α },
(
P+
s

) 2
α } (24)

where

P onp =
P

2
α

h

η′pλl
log

[
η′pλlλhαpe

−η′pλh

µktP
2
α+1

h

]
(25)

The parameter µ, in both (23) and (25), is the Lagrangian
multiplier associated with the equality constraint in (21b). The
value of µ is obtained by finding the zeros of the following
function.

g(µ) =

[
2wµ−

µP
2
α

h

η′hλl
log(µ)− α

2

]2

− α2

4
+ 4µη′lλhP

2
α

h = 0

(26)

where w =
P

2
α
h

η′pλl

[
log
(
η′pλlαhλhe

−η′hλh
)
− log

(
ktP

1+ 2
α

h

)]
.

Proof. The proof is given in Appendix D.

We now solve for the value of λl that maximizes problem
(20). Utilizing similar geometric optimization techniques that
are used in Sec. III and after some algebraic manipulations
we find that maximizing problem (20) with respect to λl is

similar to the following maximization problem.

max
λl≤λ

+
s

log
(
e−η

′
lλl
(
asλl + cse

−dsλl
))

(27)

where as = αl
ktPl

exp

(
−η′lλh

P
2
α
h

P
2
α
l

)
, cs = αh

ktPh
exp (−η′hλh),

and ds = η′h
P

2
α
l

P
2
α
h

− η′s. The upper bound λ+
s is expressed

in (12). The solution of problem (27) is summarized in the
following proposition.

Proposition 2. The optimal spatial density of LPU that
maximizes (27), given Ph, Pl, and λh, is expressed as follows,

λ̂l = min{λol , λ+
s }, (28)

where

λol =

[
1

η′l
+

1

ds
W

[
−csds(η

′
l + ds)

asη′l
exp

(
−ds
η′l

)]]+

. (29)

Proof. The proof is given in Appendix E.

We optimize HPU’s transmission power in similar lines as
in optimizing the LPU’s parameters. We apply the change of
variable to Ph such that Pu = P

2
α

h . We then introduce a new
optimization variable related to the HPU’s transmission power,
i.e., Pus and the corresponding equality constraint Pus = Pu.
The optimal value of Pu which maximizes problem (20) is
derived in the following proposition.

Proposition 3. The optimal value of Pu that maximizes (20),
given Pl and λl, is expressed as follows,

P̂u = min{max{P ou ,
(
P−p
) 2
α },
(
P+
p

) 2
α } (30)

where

P ou =

α+

√
α2 − 16µpη′pλlP

2
α

l

4µh


α
2

(31)

and P+
p and P−p are expressed similar to that in (7) and (8),

respectively. Whereas, the optimal value of Pus that maximizes
(20), given Pl, λl, and λh, is expressed as follows,

P̂us = min{max{P ous,
(
P−s
) 2
α },
(
P+
s

) 2
α } (32)

where

P ous =
P

2
α

l

η′sλh
log

[
η′sλhλlαse

−η′sλl

µpktP
2
α+1

l

]
(33)

The parameter µp is the Lagrangian multiplier associated
with the equality constraint similar to that introduced for the
LPU’s power optimization case, in (21b). The parameter µh
is obtained by finding the zeros of the following function.

g(µp) =

[
2wpµp −

µpP
2
α

l

η′lλh
log(µp)−

α

2

]2

−α
2

4
+4µpη

′
hλlP

2
α

l

(34)

where wp =
P

2
α
l

η′sλh

[
log
(
η′sλhαlλle

−η′lλl
)
− log

(
ktP

1+ 2
α

l

)]
.

Proof. The proof is obtained using similar steps to the proof
of Proposition 1.
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In the following proposition, we find the value of λh which
maximizes problem (20).

Proposition 4. The optimal spatial density of HPU’s system
that maximizes (20), given Ph, Pl, and λl, is expressed as
follows,

λ̂h = min{λoh, λ+
p } (35)

The parameter λ+
p is found similar to that in (12). The

expression of λol is obtained as follows,

λoh =

[
1

η′h
+

1

dp
W

[
−cpdp(η

′
h + dp)

apη′h
exp

(
−dp
η′h

)]]+

(36)

where ap = αh
ktPh

exp

(
−η′hλl

P
2
α
l

P
2
α
h

)
, cp = αl

ktPl
exp (−η′lλl),

and dp = η′l
P

2
α
h

P
2
α
l

− η′p.

Proof. The proof is easy to obtain following similar steps as
in the proof of Proposition 2.

After finding the optimal values of {Pn, Pnp, λl, Pu, Pus,
λh} which, individually, maximizes (20), we now introduce
an algorithm which enables us to jointly maximize (20). This
algorithm utilizes the individual structure of the main problem
in (20) with respect to each optimization variables, i.e., no
need to verify the joint structure. The proposed algorithm,
Algorithm 1, iterates over the previously found optimal values
and update them in each iteration to obtain a joint optimal set.
The following theorem introduces the joint optimal solution of
problem (20).

Theorem 2. Given a strict quasi-concave structure of problem
(20) with respect to each of the optimization variable, the
global optimal solution of problem (20) is found through two
steps. First, find the optimal variables (Pl, λl, Ph, λh) as
in (22), (28), (30), (35), respectively. Second, update and
iterate over these values (Pl, λl, Ph, λh) using the proposed
alternating algorithm in Algorithm 1.

Proof. The proof is given in Appendix F

Note that Ppk, mentioned at the initialization stage of the
algorithm is the maximum allowable transmission power.

V. NUMERICAL EVALUATION

In this section, we evaluate the EE performance of the
proposed problems, i.e., El (Sec. III ) and ETS (Sec. IV).
Note that through out the numerical results we use the fol-
lowing notations. The legend OPL is used to note that this
result is associated with optimizing both spatial density and
transmission power of the targeted system, whereas, OP or
OL are used to note that this result is obtained by optimizing
only the transmission power or the spatial density of the
targeted system, respectively. The performance measure EEl
represents the LPU’s EE as formulated in Sec. III, whereas,
EETS represents the linear combination of both LPU and HPU
systems’ EE as formulated in Sec. IV. It is worth noting that
under EETS scenario, the OPL and OP schemes optimize (in
addition to spatial densities) w.r.t. ζ =

Pl
Ph

not Pl and Ph,
individually. Hence, the denominator of El and Eh in (20),

Algorithm 1: LSM Algorithm
input : η′l, η′h, εl, εh, α, αs, αp, kt, Ppk, ε

1 Initialize: λ(0)
l = 1

η′s
, λ(0)

h = 1
η′
h

, P (0)
l = Ppk, P (0)

h = Ppk,
cond = True;

2 q = 1
3 while cond do
4 To find LPU’s transmission power, we first solve for µ

using (26), given fixed Ph = P
(q−1)
h , λl = λ

(q−1)
l , and

λh = λ
(q−1)
h . By finding µ we guarantee that Pn = Pnp.

Thus, LPU’s power is found as P (q)
l = P̂n, in (22).

5 For the values of Pl = P
(q)
l , Ph = P

(q−1)
h , and

λh = λ
(q−1)
h , find the LPU’s spatial density, i.e.,

λ
(q)
l = λ̂l, as in (28).

6 Given Pl = P
(q)
l , λl = λ

(q)
l , and λh = λ

(q−1)
h , we find the

parameter µp which guarantee that Pu = Pus. We then
find the HPU’s transmission power, i.e., P (q)

h = P̂u, as in
(30).

7 Find HPU’s spatial density, i.e., λ(q)
h = λ̂h, by substituting

Pl = P
(q)
l , λl = λ

(q)
l , and Ph = P

(q)
h in (35).

8 Evaluate E(q)TS =

αlEl(P (q)
l , λ

(q)
l , P

(q)
h , λ

(q)
h )+αhEh(P (q)

l , λ
(q)
l , P

(q)
h , λ

(q)
h ),

where
9 El(Pl, λl, Ph, λh) and Eh(Pl, λl, Ph, λh) are LPS’s and

HPS’s EE, respectively.

10 if
∥∥∥∥E(q)TS − E

(q−1)
TS

∥∥∥∥ < ε then: cond = False

11 q = q+1;
12 end

output: {P (q)
l , λ

(q)
l , P

(q)
h , λ

(q)
h }

becomes Pl = ζPh and Ph, respectively, since we assume that
the HPS’s power is not likely to be changed. The reason behind
this substitution is that we find it more numerically stable to
optimize w.r.t. to ζ. Note that the unit of EE is successful
transmission per watt per unit-area, it could be easily converted
to nats per joule per unit area via multiplying the objective
function by log(1 + θs).
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OL,{0.9,v}
OP,{0.9,v}

(e)

(f)

(d)

(a)

(b)

(c)

Fig. 2. LPS’s EE versus tolerance threshold. Parameters:
Pl,h=25dBm,θl,h=10.5dB,Rl,h=2m,kt=1, λl,h=0.5e-4.

Figure 2 evaluates EE, EEl, against tolerance parameters
εl and εh, for different schemes (i.e., OPL, OL, and OP)
and different parameter sets of {εl, εh}, i.e., {v,0.1}, {v,0.9},
{0.9,v}, (‘v’ is to note variable εl or εh). In general, it is
observed that EEl improves with the increase of εl and εh
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Fig. 3. LPS’s EE versus SIR. Parameters: Pl,h = 25dBm,
εl,h=0.3,Rl,h=2m,kt=1, λl,h=0.5e-4.
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Fig. 4. Combined LPS and HPS EE versus tolerance threshold. Parameters:
Rl,h=4m,εl,h = 0.2,θl,h=4dB,kt=1,λl,h=1e-4.

(since the feasibility region becomes larger), except for OP
with εl = 0.9 where both constraints are always inactive. Also,
as expected OPL outperforms both OL and OP schemes. Under
OL scheme, we note an increase in EEl up-to a certain point,
(a) or (b), then the performance saturates. This is because the
constraint related to εh is active at (a), whereas, the one related
to εl becomes inactive and the optimal λl has been achieved at
(b). Point (a) occurred before (b) because of the difference in
constraint tolerance, εh = 0.1, 0.9, respectively. Same behavior
is noted for OP scheme, as lower power constraint is inactive
after point (c), where it was active before this point. As for
point (d) on scheme OPL, the node density constraint related
to εh is active for curve {v,0.1} (hence the optimal λl is
constant). Yet, improvement could be made for both ({v,0.1}
& {v,0.9}) curves because of the impact of increasing εl on
power lower bound, P−s . The saturation after point (e) on both
curves ({v,0.1} & {v,0.9}) occurs because there is no impact
of εl on the optimal power. Similar behavior is inferred for
the {0.1,v} curve at (f).

Figure 3 evaluates the EEl versus θl or θh, noted in the leg-
end as {θh, θl} and set as {v,10.5}, {v,0.5}, {10.5,v},{0.5,v}
(‘v’ is to note variable θl or θh). It is clear that EEl is
decreasing with θ, while variable θl has higher effect on the
variance of EEl, in compared to variable θh. Note that {v,10.5}
intersects with {10.5,v} around θl = 10.5 for OPL, OL, and
OP curves. Hence, to have relatively high EEl (in compared to

EEh) it is preferred to set θl < θh. As expected, it is observed
that OPL scheme outperforms both OP and OL for all values
of θl and θh.

Figure 4 evaluates EE, EETS, against variable εl
and εh, for both OL and OP schemes, under several
variation of power and weight sets, i.e., {Pl, Ph, αh} =
{15, 5, 0.5}, {5, 15, 0.5}, {15, 15, 0.5}, {0, 15, 0.5}, {0, 15, 0.9}.
Note that Unlike Fig. 2, both εl and εh change similarly, as
an x-axis. A general observation for both schemes is that if
the Pl/Ph ratio is high or low (>> 1 or << 1), then the
dominating EE is the one corresponding to the lower power
(if Pl/Ph is low it follows that EEl is dominating). However,
if Pl/Ph is close to one, then the dominating EE is the one
with higher weight, αl or αh. Also, the OP performance
for different curves of {5, 15, 0.5}, {15, 15, 0.5}, {0, 15, 0.5}
is the same because we model the denominator of Eh and
El to be ktPh and ktPl = ktζPh, respectively, (fixing Ph
while optimizing the ratio ζ). Hence, the critical parameters
are the constant Ph and αh. We observe that for OL curves
decreasing the ratio Pl/Ph will shift the intersection point
of the curves OL and OP to the right, i.e., it requires higher
tolerance, εl and εh, for OP to outperform OL.

VI. CONCLUSION

In this work, we tackled a cognitive radio environment
where multiple LP and HP users coexist in the same area. We
maximize the energy efficiency of each system by proposing
two schemes. The strict quasi-concave and pseudo-concave
structures of the addressed problems have been proved. We
further construct a multi-objective optimization problem to
maximize both HP and LP energy efficiency performance.
This multi-objective problem is solved via linear combination
scheme and product combination scheme. An iterative alter-
nating algorithm is proposed to guarantee a global optimal
solution for the multi-objective problem. Selected numerical
results have shown the improvement of jointly optimizing
the spatial density and transmission power in comparison to
individual optimization. The improvement reaches up to 11
dB for certain parameters.

APPENDIX A
PROOF OF LEMMA 1

In order to proof Lemma 1 it is necessary to show that
the objective function El in (5) is concave or pseudo-concave
with respect to Pn. In [17], it is shown that to show that a
function is pseudo-concave it is enough to verify its quasi-
concavity and show that it has a local maximum. Satisfy-
ing the pseudo-concavity structure enables us to utilize the
Lagrangian theorem and the KKT conditions to obtained
the optimal solution [17]. To verify this structure we divide
El into numerator and denumerator, i.e., El = Ese

Esd , where

Ese = λl exp

(
−η′l

(
λl + λh

P
2
α
h

Pn

))
and Esd = ktP

α
2
n . It is

easy to verify that Ese is strictly concave and Esd is strictly
convex with respect to Pn, given α > 2 (which is a valid
assumption this framework). These structures of Ese and Esd
are utilized in the following proof of strict quasi-concavity
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structure of El. We first define a quasi-concave function as
follows,

Definition A function f(x) is strict quasi-concave if

f(λx(1) + λx(2)) > min{f(x(1)), f(x(2))}. (37)

Then, the strict quasi-concavity proof is provided as follows,

Ese
(
λP

(1)
l + (1− λ)P

(2)
l

)
(38a)

> λEse
(
P

(1)
l

)
+ (1− λ)Ese

(
P

(2)
l

)
(38b)

> λEsd
(
P

(1)
l

) Ese (P (2)
l

)
Esd
(
P

(2)
l

) + (1− λ)Ese
(
P

(2)
l

)
(38c)

>
Ese
(
P

(2)
l

)
Esd
(
P

(2)
l

) [Esd (λP (1)
l + (1− λ)P

(2)
l

)]
(38d)

=⇒ El
(
λP

(1)
l + (1− λ)P

(2)
l

)
≥ El

(
P

(2)
l

)
, (38e)

where (38c) results by assuming that El(P (2)
l ) < El

(
P

(1)
l

)
,

(38d) is valid because of the strict convex property of Esd (Pl).
This proof verifies the strict quasi-concave property of El with
respect to Pl.

After verifying the quasi-concavity structure of El, we now
need to show that El has a local maximum. It is clear that
∇El (P ∗l ) = 0 iff ∇Ese (P ∗l ) Esd (P ∗l )−Ese (P ∗l )∇Esd (P ∗l ) =
0. Then, ∇Ese (P ∗l ) = El (P ∗l )∇Esd (P ∗l ). Utilizing the prop-
erties of Ese function,

Ese (Pl) < Ese (P ∗l ) +∇Ese (P ∗l ) (Pl − P ∗l ) (39a)
= Ese (P ∗l ) + El (P ∗l )∇Esd (P ∗l ) (Pl − P ∗l ) (39b)
< Ese (P ∗l ) + El (P ∗l ) (Esd (Pl)− Esd (P ∗l )) (39c)
= Ese (P ∗l ) + El (P ∗l ) Esd (Pl)− Ese (P ∗l ) (39d)

=⇒ Ese (Pl)

Esd (Pl)
≥ El (P ∗l ) , (39e)

where (39a) follows from the strict concave property of Ese
and (39c) is due to the strict convex structure of Esd (Pl).

Showing that El has a maximum point and it is quasi-
concave, then it is clear that El is strict pseudo-concave.
Therefore, the Lagrangian theory and KKT can be utilized
to find the optimal solution [17], as provided by Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

To verify Lemma 2 we use similar approach as in Appendix
B, i.e., proving the pseudo-concavity structure of the problem
with respect to to λl. To show the pseudo-concavity structure
of El we utilize the first order definition, as in [17].

Definition A function f(x) is pseudo-concave if it is increas-
ing then decreasing on x with a local maximum.

The first derivative of El is expressed as follows,

∂El
∂λl

= (ktPl)
−1e
−η′s

(
λl+λh

(
Ph
P
l

) 1
α

)
[1− λlη′l] (40)

From the first derivative we note that El is increasing for
λl <

1
η′s

and decreasing for λl >
1
η′s

, and it has a local
maximum at λl = 1

η′s
. Thus, it is clear that El is a strict

pseudo-concave on λl. Hence Lemma 2 can be verified by
satisfying the Lagrangian theorem and KKT conditions.

APPENDIX C
PROOF OF THEOREM 1

In order to prove Theorem 1 it is sufficient to show
that problem (17) is pseudo-concave with quasi-concave con-
straints. The constraints are clearly quasi-concave. To show
that the objective function is jointly pseudo-concave, we utilize
the fact that a jointly log-concave function is a jointly pseudo-
concave with respect to to all variable [18]. Therefore, we now
focus on proving the log-concavity characteristic of (17a). The
logarithm of function (17a) is expressed as follows,

log(El) = log(λl)− η′lλl − η′lλhζs − log(ktPh) +
α

2
log(ζs)

(41)
We can show the joint concavity of log(El) via two ways,
we can either prove the negative semi-definite property of
log(El) or we can express log(El) as a sum of two func-
tion and prove the concavity of each one as follows. Let
log(El) = g1(λl) + g2(ζs), where g1(λl) = log(λl) − η′lλl
and g2(ζs) = −η′lλhζs − log(ktPh) + α

2 log(ζs). It is straight
forward to show that g1(λl) is concave with respect to λl and
g2ζs is concave with respect to ζs. We know from optimization
theory that a sum of concave function result in a joint concave
function. Therefore, log(El) is jointly concave function with
respect to to both λl and ζs. Hence, El is jointly pseudo-
concave function and problem (17) can be solved by satisfying
the Lagrangian theory and KKT conditions.

Form geometric optimization theory, we know that trans-
forming the objective function with a monotone function re-
sults in equivalent problem, thus, equivalent solution [16]. We
then derive the associated Lagrangian function with log(El)
and the corresponding constraints as follows,

Lsr = log(λl)− η′sλl − η′sλhζs − log(ktPh) +
α

2
log(ζs)

− λ1

(
λl + λhζs

log(1− εs)
η′s

)
− λ2

(
λl + ζs

(
λh +

log(1− εh)

η′p

))
(42)

The optimal expressions in (18) and (19) are found by obtain-
ing the zeros of ∂Lsr

∂ζs
= 0 and ∂Lsr

∂λl
= 0, respectively.

APPENDIX D
PROOF OF PROPOSITION 1

To proof Proposition 1, we must show that utilizing the
generalized theory of convex optimization, i.e., Lagrangian
function and KKT conditions, applies to problem (21). Hence,
in here, we proof the strict quasi-concavity of ETS in Pn and
Pnp. The necessity of proving the strictness is because in Alg.
1 we will utilize this property to propose an iterative global
solution for problem 20. The proof of strict quasi-concavity
of ETS with respect to Pn can be derived by straight forward
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steps from Appendix A. Whereas, the strict quasi-concavity of
ETS with respect to Pnp is easily observed since the function
is strictly decreasing on Pnp. To derive the expression in (23),
we must observe that maximizing ETS with respect to Pn is
equivalent to the following problem,

max
(P−s )

2
α≤Pn≤(P+

s )
2
α

αl

λl exp

(
−η′l

(
λl + λh

P
2
α
h

Pn

))
ktP

α
2
n

(43a)
s.t. Pn = Pnp (43b)

Note that the solution of this problem is different than that of
(9) because we including the equality constraint Pn = Pnp.
We then use the transformation on the objective function
in (43a) using monotone increasing function, i.e., log(.).
The corresponding Lagrangian function of problem (43) is
expressed as follows,

L = log

(
αsλl
kt

)
−η′sλl−η′sλh

Pu
Pn
−α

2
log (Pn)+µ

[
Pn − Pnp

]
,

(44)
where Pu = P

2
α

h . Taking the derivative of the Lagrangian
function in (44) and finding its zeros results in the following,

2µP 2
n − αPn + 2η′sλhPu = 0. (45)

Hence, the expression in (23) is easily obtained by solving
(45).

We then derive the expression in (25), by observing that
maximizing ETS with respect to Pnp is equivalent to the
following problem,

max
(P−s )

2
α≤Pnp≤(P+

s )
2
α

αh

αhλh exp

(
−η′h

(
λh +

λlPnp

P
2
α
h

))
(ktPh)

(46a)
s.t. Pn = Pnp. (46b)

We then formulate the Lagrangian function of (46), devise its
first derivative and find its zeros as follows,

−αpλhη′pλle
−η′pλh

ktP
α
2
u

exp
−η′pλlPnp

Pu
+ µ = 0. (47)

Solving (47) leads to the exact solution in (25).

APPENDIX E
PROOF OF PROPOSITION 2

To verify Proposition 2 we show that ETS is strictly quasi-
concave with respect to λl. This enables us to use the prin-
ciples of generalized convexity theory, Lagrangian theory and
KKT conditions, in addition to guarantee convergence of the
alternating optimization algorithm proposed in Algorithm 1.

Let us use ETS ↑ to note that ETS is increasing and ETS ↓
to note that ETS is decreasing. The first derivative of ETS with
respect to λl can be expressed as follows,

∂ETS
∂λl

= E(λl)
TS =

[
a− abλl − cde−(d−b)λl

]
e−bλl (48)

where a, b, c, and d are positive constants with respect to λl.
Let us analyze the behavior of ETS as λl →∞, it is clear that

lim
λl→∞

E(λl)
TS

ETS↑
≷
ETS↓

0⇔ lim
λl→∞

a− abλl − cde−(d−b)λl
ETS↑
≷
ETS↓

0

= −∞
ETS↓
< 0

(49)
This means that ETS is decreasing at large λl. We now analyze
the behavior of ETS as λl → 0,

lim
λl→0

E(λl)
TS

ETS↑
≷
ETS↓

0⇔ lim
λl→0

a− abλl − cde−(d−b)λl
ETS↑
≷
ETS↓

0

= a− cd
ETS↑
≷
ETS↓

0

(50)
It is necessary to verify the number of local stationary points
(maxima or minima) for ETS . This is can be easily identified
as the number of zeros of (48). We know that (48) has only
one zero, which is found in (29). This means that this zero
lies in the positive domain of λl, i.e., λ∗l ∈ [0,∞), or the zero
lies in the negative domain, i.e., λ∗l ∈ (−∞, 0]. We conclude
from the first case that ETS is strictly pseudo-concave with
respect to λl. Since, the negative values of λl are not in the
domain of this problem, then ETS is strict quasi-concave with
respect to λl, hence there is a unique maximum point of ETS
This conclude the proof of Proposition 2.

APPENDIX F
PROOF OF THEOREM 2

To proof Theorem we need to satisfies the conditions of the
findings in [19]. Grippo and Sciandrone, in [19], verified that
using Gauss-Seidel method to optimize over several variable
guarantee a global optimal solution without the necessity
of proving joint concavity/convexity structure. The condition
which must be met is to prove that the targeted problem is
strict quasi-concave with respect to to each individual variable.
Therefore, to proof F, it is enough to verify the strict quasi-
concave property of problem ETS with respect to each variable
Pn, Pnp, Pu, Pus, λl, λsp. We have already proven the strict
quasi-concave of Pn, Pnp, and λl in Appendices D and E,
respectively. In similar lines as in Appendices D and E we can
prove the strict quasi-concave structure of ETS with respect to
Pu, Pus, and λh. This conclude the proof of Theorem 2.
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