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Distributed Artificial Intelligence (DAI) is one of the most promising techniques to provide intelligent services under strict privacy
protection regulations for multiple clients. By applying DAI, training on raw data is carried out locally. At the same time, the
trained outputs, e.g., model parameters from multiple local clients, are sent back to a central server for aggregation. DAI is recently
studied in conjunction with wireless communication networks to achieve better practicality, incorporating various random effects
brought by wireless channels. However, because of wireless channels’ complex and case-dependent nature, a generic simulator for
applying DAI in wireless communication networks is still lacking. To accelerate the development of DAI in wireless communication
networks, we propose a generic system design in this paper and an associated simulator that can be set according to wireless channels
and system-level configurations. Details of the system design and analysis of the impacts of wireless environments are provided to
facilitate further implementations and updates. We employ a series of experiments to verify the effectiveness and efficiency of the
proposed system design and reveal its superior scalability.

Index Terms—Distributed deep learning (DDL), federated learning (FL), system design, simulator design, wireless environment,
convergence analysis.

I. INTRODUCTION

As speculated in the perspective paper, ‘What should 6G
be?’ [1], sixth-generation (6G) communication networks are
expected to be human-centric, posing much higher require-
ments for privacy protection. On the other hand, based on
existing artificial intelligence (AI) architectures, protecting
digital privacy is, to some extent, contradictory to the demand
for user data by intelligent communication services [2]. This
is because user data are required to be collected, processed,
and utilized to precisely identify user demands so that truly
intelligent and high-quality communication services can be
provided to end-users [3]. These user data inevitably contain
personal and sensitive information that users are unwilling to
share and should be restricted by legislation [4]. Collecting and
processing user data by such a centralized architecture could
also lead to a high divulging risk, which has become much
more common nowadays [5]. Moreover, relying on such a
centralized architecture for intelligent communication services,
one can never rule out the possibility that a malicious Big
Brother takes advantage of user data and manipulates users
and even the entire society with ulterior motives [6].

To solve the dilemma between high-intelligence communi-
cation services and user privacy protection, distributed deep
learning (DDL) is proposed. It soon attracted researchers’
attention in the communication and computing research com-
munities [7]. The large-scale DDL was first investigated in
[8] to solve the insufficient computation ability in a single
node, in which a central server aggregates the one-step model
gradients updated from all agents with the randomly assigned
dataset. However, aggregating the gradients at each stochastic
gradient descent (SGD) updating round increases communica-
tion overhead [9], constraining it to be only suitable at high-
bandwidth data centers. To reduce communication overhead
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and extend the deployment on edge devices, local SGD [10]
has been proposed. Instead of gradients, the multiple clients
update model parameters to the central server for aggregation
after a preset local SGD updating steps. However, all clients
synchronously updating model parameters makes it unsuitable
for the application scenarios under unreliable communications
and heterogeneous computing resources. Federated learning
(FL) is a further advancement of local SGD [10], by which
only a subset of clients will update their model parame-
ters to the central server instead of all clients. Due to the
variability of the local steps and the proportion of activated
clients, FL is sometimes believed to supersede the concepts
of DDL and local SGD. However, the theoretical convergence
guarantees of these learning strategies are distinct, leading to
varied applicability in practice depending on the reliability
of communications and homogeneity of computing devices.
Despite subtle differences among these learning strategies,
they all belong to the distributed artificial intelligence (DAI)
family [11] due to the decoupling of client training and
server aggregation. Hence, we apply the term DAI instead
of carefully distinguishing them.

Different from classical machine learning (ML) or deep
learning (DL) techniques adopting centralized processing ar-
chitectures [12]–[14], DAI utilizes a distributed processing
architecture that consists of one DAI server (viz. the model
owner) and multiple clients (viz. the data owners) [15]. The
clients directly collect users’ raw data and process them by lo-
cal training algorithms to obtain local model parameters. These
local model parameters are then aggregated in a certain way
at the DAI server. The aggregated model produced at the DAI
server is called the global model, which will subsequently be
updated to the clients for intelligent communication services.
In this way, the global model training and first-hand raw data
accessing can be decoupled, and thereby the data minimization
principle for the privacy of consumer data is followed [16].

Due to the distributed processing architecture and exemp-
tion from users’ raw data, DAI is believed to be one of
the most promising techniques to provide intelligent services
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under strict privacy protection regulations [15], [17]–[19]. In
addition, DAI can also facilitate the implementations of other
promising 6G communication techniques by releasing privacy
concerns and reducing the volume of data required to transmit
[10]. Consequently, spectral efficiency, energy efficiency, and
latency of communication systems would all be improved by
DAI [20].

As described above, DAI computation is performed at both
the DAI server and clients, and the exchange of model param-
eters is frequent and necessary. As a result, the communication
and computing procedures of DAI are coupled, which should
be jointly considered and analyzed as a whole. Recently,
many research works have analyzed both communication and
computing issues related to DAI in wireless communication
networks [21]–[23] (details of them will be given and reviewed
in the next section). However, existing works on wireless
communications treat DAI as isolated optimization algorithms
in ideal and guaranteed wireless environments. Their objective
functions aim at optimizing specific model characteristics,
such as transmission time and energy consumption [21]–
[23]. To solve the formulated optimization problems, they
assume simple wireless communications constraints and spe-
cific communication models without considering the effects of
unreliable and diversiform communication and computational
resources in realistic situations, resulting in a difficulty to be
deployed in practice. Meanwhile, a generic system for de-
signing and testing DAI algorithms in wireless communication
networks is still lacking, which impedes DAI development
in wireless environments and DAI-aided wireless networks.
First, without a benchmark system, researchers interested in
DAI algorithms implemented in wireless environments need to
program individual communication scenarios for investigation.
Also, the simulation results provided by DAI can hardly be
verified by reproduction and compared with results gener-
ated by other benchmark algorithms. At last, even with the
increasing awareness of the generic design of DAI systems
[24], [25], the researchers neglect the simulations on wireless
environments, which proves to be an essential factor in our
work.

In this regard, we propose distributed artificial intelligence
over-the-air (AirDAI), a generic system design for DAI over
the air, aiming at accelerating the relevant research progress
on DAI in wireless environments1. Compared to existing so-
lutions, the proposed system can be easily adapted to different
settings for designing, testing, and investigating DAI applied
in different wireless scenarios with more realistic parame-
ter settings. Designers can alter the wireless communication
environment and introduce self-defined quality of service
(QoS) metrics with our provided simulator to examine newly-
designed DAI algorithms and generate reproducible results.
The contributions of this paper are listed as follows:

• To ensure generality and practicability, we generalize
the system design by considering a series of realistic
wireless features, including path loss, shadowing, multi-
path fading, and mobility.

1The codes associated with the proposed system as well as its simulator
can be found from the open GitHub repository link: https://github.com/
KAUST-Netlab/AirDAI

TABLE I: Notations and the corresponding descriptions applied in
this paper.

Notations Descriptions
cell A simulated cellular space containing multiple wire-

less connected clients.
Cr The number of CPU cores applied during simulation.
C The number of simulated cells.
M The number of wireless connected clients per cell.
N The number of total clients during simulation.
pn The percentage of the partitioned dataset for client

n.
r The ratio of activated clients during simulation.

RBER The received bytes error rate.
E The number of local SGD updating steps.
bs The local training batch-size.

NISa The addictive noise caused by malicious clients.
NISm The multiplicative noise caused by malicious clients.

ηt The local learning rate at communication round t.

• We further analyze the convergence rate of DAI applied in
wireless environments and affected by a set of stochastic
factors.

• We also provide a Python-based simulator according to
the proposed system, which can be easily integrated into
popular ML and DL frameworks, e.g., PyTorch [26] and
TensorFlow [27].

• Moreover, the proposed system design and simulator
modules can be customized because of their generic
nature.

The rest of the paper is organized as follows. In Sec-
tion II, we carry out comprehensive literature research on the
works related to DAI in wireless communication networks.
Summarizing the existing literature and research directions,
we propose the system design in Section III and present
the details of wireless environmental setups and convergence
analysis in Section IV. The effectiveness and efficiency of
the proposed system design and its associated simulator are
verified through several applications in Section V. Finally, the
paper is concluded in Section VI. For readers’ convenience,
we list key notations and the corresponding descriptions used
in this paper in Table I.

II. RELATED WORKS

Before planning the generic simulator design of AirDAI, we
need to have a profound insight into the research trends and
demands of DAI in wireless communications in recent years.
To capture the research trends and demands well, we carry out
a comprehensive literature review of most key research works
and milestones in this section.

It has been recognized in [15], [28] that communications are
the critical bottleneck for DAI because of the heterogeneity of
wireless networks. Therefore, communication-efficient proto-
cols are imperative for sending messages of model updates as
part of the training process, which should stipulate the number
of communication rounds and the size of transmitted messages
at each round [29]–[31]. Another core challenge mentioned
in [15] is that massive clients’ unreliable connections must
be considered when modeling and analyzing DAI in wireless
communication networks. Most importantly, the statistical
heterogeneity of clients must be considered, which indicates
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that the signal propagation environments and system config-
urations of clients are diverse. As a result, personalized and
client-specific modeling for DAI in wireless communication
networks is required.

An essential application of DAI in wireless communication
networks is related to mobile edge computing [7]. In [4],
DAI in mobile edge networks is comprehensively reviewed,
and a DAI-aided edge computing system is constructed. This
work also summarizes three unique characteristics of DAI-
aided edge computing networks: Slow and unstable communi-
cations, heterogeneous clients, and privacy/security concerns.
The resource allocation problems for DAI-aided edge comput-
ing networks are briefly discussed, including client selection,
adaptive aggregation, and incentive mechanisms. It has also
been pointed out in [4] that DAI-aided edge computing can
help with several wireless applications, e.g., base station (BS)
association and vehicular communications.

In a broader context, the motivation, opportunities, and
challenges of leveraging DAI for wireless communications are
discussed in [20]. The optimization of learning time versus en-
ergy consumption by using the Pareto efficiency model and the
equilibrium between computation and communication for DAI
in wireless communication networks are presented in [22], in
which qualitative insights into DAI in wireless communication
networks and a simplified multi-access communication model
are provided. The model quantifies the transmission time and
energy consumption for a given amount of data in DAI-aided
wireless communication networks. The following study on
the resource allocation problems, including transmission time,
energy consumption, and DAI convergence, is presented in
[21]. However, they optimize the total energy or transmission
time consumption of all users while constrained by a simplified
communication and computation model. A more realistic
communication model of DAI for wireless communication
networks is constructed in [23], in which learning, wireless
resource allocation, and client selection are jointly optimized
to minimize the DAI loss function under the constraints of
latency and energy consumption. The same model is also
utilized in [32] to reduce the convergence time for DAI over
wireless communication networks.

DAI has also been utilized in more complicated wireless
application scenarios, e.g., the Internet of Things (IoT), wire-
less sensor networks, and vehicular communication networks.
In [33], DAI is applied to power-constrained IoT devices with
slow and sporadic connections, and a fully decentralized DAI
system without the DAI server is proposed. The decentralized
DAI system relies on device-to-device (D2D) communication
protocols and is particularly suited for dense networks con-
sisting of massive cooperative devices. In [34], an incentive
mechanism is proposed and studied to encourage clients to
contribute to DAI in the IoT. The participation of massive
clients in the DAI system is formulated as a Stackelberg
game, and the Nash equilibrium of the game is derived.
DAI is also employed to estimate the tail distribution of
vehicle’s queue lengths in vehicular communication networks,
which has been verified to produce comparable accuracy to
centralized learning methods [35].

III. SYSTEM PROPOSAL

We propose the AirDAI system in this section. We analyze
and decompose the essential elements of DAI in general, intro-
duce the programming procedures for its associated simulator,
and expound on its scalability. The AirDAI process can be
expressed directly as follows: Iteratively, a server aggregates
messages from clients and broadcasts updates back, while
clients train the local models with the received message on
local datasets. To make a global view of the holistic process
and visualize it, we abstractly decompose the process into two
observation aspects: temporal and spatial. From the temporal
perspective, the process comprises the computing module
(local training) and the communication module (broadcast and
aggregation) due to the mutually exclusive time slots, in which
the two modules are executed iteratively. From the spatial
perspective, an AirDAI task mainly comprises the computing
clients and the central server, whose topology varies according
to the instant characteristics at each communication round due
to dynamical wireless environments. For the convenience of
illustration, we refer to both clients and servers as agents in
the following without ambiguity.

Specifically, at the beginning of each time slot, clients
process the pre-defined training tasks based on the local
datasets and send the computed results to the server for
aggregation. Once received messages from the clients, the
server further processes messages by a pre-defined aggregation
function. Then, based on specific broadcasting strategies, the
server sends the processed data back in a limited time window
or after completing the reception phase from all clients. The
interaction, which begins with the server broadcasting and
ends when the server aggregates the result, is defined as a
round, as illustrated in fig 1.

With the above explanations and settings, we represent the
τ th round abstractly as follows:{

Server : Kn
τ ←− broadcast{aggregate{J n

τ }}
Clients : J n

τ+1 ←− ΦDn(J n
τ ,Kn

τ )
, (1)

where we utilize J n
τ to denote messages sent out from the

client n at round τ and Kn
τ to indicate messages sent back

from the server to the client n at round τ . After one complete
iteration, the system begins the (τ +1)th round and the client
k processes its pre-defined task Φ based on its own dataset
Dn with received messages Kn

τ at round τ . After finishing the
computation phase, it sends the computed result J n

τ+1 to the
server for aggregation. It is worth noting that the ‘aggregation’
and ‘broadcast’ may only affect a subset of clients according to
specific policies. The above (1) is a generic virtualized process
that covers the most well-known DAI paradigms of FL, local
SGD, and DDL [24], [36].

1) Synchronous and Asynchronous Settings
Considering whether clients receive the same messages from

the server during each round, DAI schemes can be classified
into synchronous and asynchronous categories [10], [37]. With
the asynchronous settings, the server receives the data from a
single client, then aggregates it with the historical data from
other clients, and sends it back to the corresponding client
before aggregating the data from newly coming clients. The
server has to suspend broadcasting before aggregating data
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Fig. 1: Virtualization of two successive operational rounds of AirDAI.

from all clients or the activated clients within a pre-defined
time window with the synchronous settings. The broadcast re-
sults after aggregation are identical to the activated clients dur-
ing each round. These schemes can be achieved by adjusting
the virtual functions of broadcast{·} and aggregate{·} at
the server end, making both the synchronous and asynchronous
schemes compatible within the format of virtualization (1).

2) Network Topology and Virtual Channels

To enable topological formulations, we can treat the agents,
including clients and servers, as vertices and the communica-
tion channels as edges. The network topology can be built as
a bi-directional graph. Intuitively, we can represent the system
as a graph G = (N ,Θ), where N denotes the set of the clients
and server, and Θ denotes the set of effective virtual channels.
The system can be flexibly configured with varied wireless
environmental settings by assigning specific parameters to
corresponding vertices and edges, such as communication and
computation power to different agents or WiFi/LTE settings.

3) QoS and Termination Conditions

While not only paying attention to the validation accuracy
or loss similar to conventional DL tasks, the proposed AirDAI
system focuses on the output of system QoS, e.g., total
energy/time consumed, the number of activated clients per
round, the number of packets lost, etc. Meanwhile, the server
monitors the simulator states for each round and stops the
simulation if one or more user-defined termination conditions
are satisfied, e.g., validation accuracy reaches 98%; simulation
time is more than 30 minutes; total energy consumed is more
significant than 300 J, etc.

A. AirDAI Programming Procedures

According to the proposed system, a typical AirDAI task
can be generalized into three steps:

• Building the network topology with virtual channels;
• Defining the aggregating and broadcasting functions;
• Partitioning the training dataset and building the DL

model.

We give introductions to all these steps as follows.
1) Building network topology

We provide a Python-written interface to automatically build
the network topology with a specified data structure as input.
The input is organized by agents with varied attributes. Each
agent is represented by a tree-like data structure with its
identity denoting the tree root. We arrange different layers for
each agent data structure to place the attributes according to
the corresponding characteristics. For instance, we manually
set the attribute “role” in the first layer of each tree with
different string values to distinguish between the clients and
the server. Generally, we arrange the attributes related to the
agent itself in the first layer, such as the battery capacity,
the initial location and mobility speed, the computation and
communication power, etc. We cannot omit the attributes
between a pair of adjacent nodes considering asymmetric
channels between nodes. For those attributes shared among
multiple nodes, such as the virtual channels between pairs of
adjacent nodes, we set the attribute “adj” in the first layer
and the adjacent node identities in the second layer with the
related attributes in the third layer. Therefore, this definition of
data structure is also memory efficient. The embedded inter-
face will parse the data structure and complete the topology
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automatically. The underlying codes for simulating wireless
networks are achieved within the system of ns-3 [38] to take
advantage of the existing functions of network simulators. We
present an example of the bi-directional network topology in
Fig. 2 where one server, four APs, and several mobile clients
are communicated through optical fiber, wireless broadcasting,
and WiFi. The corresponding data structures of server 0, AP
1, and Client 1-1 are demonstrated in Fig. 3.

2) Defining aggregation and broadcasting functions
The system provides a programming paradigm to define

personalized aggregating and broadcasting functions. It keeps
a buffer placeholder for each agent to receive or send new data
from/to other agents and a memory placeholder to memorize
the buffer during each round. As a result, aggregating and
broadcasting functions may only work within the activated
agents in predefined network topology during each round
to emulate the failure of transmissions in realistic wireless
environments due to certain QoS constraints or powered off.

Once an agent receives new data sequentially from the
others, the buffer will record the data and update its value
according to the personalized update function. In addition, the
memory keeps tracking the latest buffer value. Mathematically,
the process can be formulated as follows:{

buffer←− Update(buffer, memory)

memory←− buffer
, (2)

where the function Update(·, ·) represents the user-defined
buffer updating scheme. Taking FedAvg [10] as an example,
Update(·, ·) is the weighted average function of the latest
received data and its memory. The buffer for clients is the
returned data at the end of each round. Then, the buffer updates
itself with the latest received data and the memorized data from
previous rounds.

Meanwhile, the synchronous and asynchronous settings can
also be achieved by determining when the server sends the
updated buffer to its adjacent client nodes. Specifically, when
adopting asynchronous settings, the server immediately returns
the updated buffer to its recently communicating client. In
contrast, with synchronous settings, the server broadcasts
the recently updated buffer only after receiving data from a
required number of clients.

3) Partitioning dataset and building DL models
The DAI tasks presume that the training dataset must be

partitioned into multiple computing clients before training.
We provide a paradigm to define the strategy of dataset
partition. Each simulation process loads the identical raw
dataset from shared memory and splits it according to the
predefined partition ratio of each client. Subsequently, each
client with a unique rank will be assigned the corresponding
sub-dataset. If the partition ratio is not specified, the dataset
will be, by default, partitioned into all clients in a uniform and
random manner. After dataset partitioning, the definition of the
DAI model is just the same as the centralized counterparts.
The proposed system provides a Python wrapper function for
the model to automatically aggregate and broadcast required
values during the training process at each round while keeping
users unaware of it unless users would like to customize the

aggregate and broadcast functions. Users can perform the same
for the other training settings as if there were only one client
in centralized tasks.

B. Scalability

The DAI tasks in natural environments usually involve
many computing devices with limited computing power and
storage space, such as intelligent IoT devices and wireless
sensors. We implement two ingenious methods to emulate this
characteristic of limited available computing resources, e.g., a
powerful workstation with several computing cores or a small
computing cluster.

First, the proposed system can run on multiple computing
cores through distributed multi-processing interface (MPI)
communication backends [26]. Before initiating simulations,
the system automatically partitions the clients and the server
into different computing cores and gives each core a unique
rank identity. Each core maintains the identical wireless
topology, in which the clients and server partition details
are recorded. To distinguish multiple clients simulated in
parallel but on different computing cores, we assign a unique
address to each client as (rank id, node id), where node id
is the index of the agent in its corresponding core. During
aggregating and broadcasting in each round, the clients send
and receive data to/from the corresponding computing core
where the server is located through communication backends.
Also, the whole communication process is unaware to users.

Second, within each computing core, we propose and utilize
the scheme called “series-tube”, which provides a wrapper
function and serially executes a list of objects defined in
Python to enhance the capability of the simulator. The wrapper
function replicates the original “objects” into a list according
to the number of clients in a single computing core while
maintaining its functions and values as a series-tube object. By
calling the wrapped object, the simulator serially processes the
functions of the replicated objects and returns the results into a
list format. Therefore, it keeps the whole process user-unaware
and makes the codes scalable with just a few modifications.

IV. WIRELESS ENVIRONMENTAL SETUPS AND
CONVERGENCE ANALYSIS

As we introduced the system in the last section, the suc-
cessful implementation of DAI in realistic transmission envi-
ronments depends on the reliability of the wireless channels
over which model parameters are transmitted. It is undoubtedly
that training a model in an unreliable wireless environment
will degrade the efficiency compared to that in a fully reliable
environment. Therefore, it is worth investigating and quanti-
fying the impacts of the randomness of wireless channels on
the training procedure of DAI. As the simulator’s core, we
try to keep our design as generic as possible and expound
on the wireless system setups. Then, based on the given
wireless environmental configurations, we further analyze the
convergence of a generic DAI algorithm.
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Fig. 2: An example of bi-directional network topology with one
server, four APs and several clients communicated through optical
fiber, wireless broadcasting and WiFi.
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Fig. 3: The data structures of server 0, AP1 and Client 1-1 for
demonstration purposes.

A. Effects of Wireless Environmental Setups

There are two kinds of wireless channels pertaining to the
uplink and downlink. The former refers to the transmission
links from the clients to the DAI server, while the latter refers
to the links from the DAI server to the clients. Because the
global model parameters transmitted from the DAI server are
the same for all clients, we can easily adopt a broadcast
protocol for the downlink transmission with sufficiently large
transmit power and bandwidth. Therefore, its reliability can
be guaranteed. On the contrary, a unicast protocol is adopted
for uplink transmissions because all clients are required to
send unique local model parameters. However, because clients
generally have less transmission capability, uplink transmis-
sion reliability is problematic, and uplink communication
efficiency is of paramount importance [10]. Furthermore, the
unstable uplink transmission will result in a reduced number
of clients’ responses within a time window2 ϵ, which could
lead to inefficient aggregation at the DAI server and thereby
a low training efficiency overall. Consequently, the wireless
communication models of the uplink require special attention
and are worth investigating. In the following, we analyze how
the randomness of wireless uplink channels affects the number
of clients’ responses within a predetermined time window.

Temporarily neglecting packet transmission errors, whether
or not a packet from a certain client can be received is directly
related to the random event that whether the transmission
latency of the packet from the nth client, denoted as Ln, is less
than or equal to time window ϵ, ∀ n ∈ {1, 2, . . . , N}, where
N is the total number of clients. Referring to the Shannon-

2The time window is dynamically managed by pace steering techniques,
depending on the number of clients and service requirements [4], [24]. For
example, when the number of clients is small, the time window ϵ should be
set to a relatively large value so that a sufficient number of responses from
clients can be collected and aggregated at the DAI server. On the other hand,
when the number of clients goes large, the time window ϵ should be reduced
to reduce the computing burden at the DAI server. The time window ϵ is, in
essence, a trade-off factor between computing and communication efficiencies.

Hartley theorem, the transmission latency Ln is dominated by
four factors: 1) bandwidth Bn; 2) transmit power PTn; 3)
packet size Sn; 4) channel power gain Gn. To be explicit, we
can also express the transmission latency as a function of these
four factors: Ln(Bn, PTn, Sn, Gn).

The first three factors mentioned above are specified by
communication and DAI computing protocols. They are de-
terminate, while the last factor, i.e., the channel power gain
Gn, is stochastic and randomly varies over time, frequency,
and space. Statistically, channel power gain Gn is mainly
affected by four wireless propagation phenomena: 1) path loss;
2) shadowing; 3) multi-path fading; 4) molecular absorption
(applicable to millimeter-wave and terahertz radios). The joint
impacts of these wireless propagation phenomena can be
described and simulated by different channel models, e.q.,
Rayleigh, Rician, and Nakagami channel models, as well
as a variety of compound channel models [23], [39]–[42],
depending on the use of spectrum, node mobility, geographical
and atmospheric conditions. To maintain generality, we do not
specify the use of the channel model in this paper.

Meanwhile, considering that errors in the received packet
might exist, error check and re-transmission are imperative
in most modern communication protocols. Incorporating both
mechanisms, the total transmission time of a client, denoted as
TLn = LnΣn, depends on the transmission latency of a single
transmission attempt Ln and the number of re-transmissions
Σn. Note that the number of re-transmissions Σn is also a
random variable related to the coding and modulation setups
and characterized by packet error rate PERn. For simplicity,
we can adopt the geometric distribution with parameter PERn

to model the random number of re-transmissions Σn. Based on
the formulation and explanation presented above, we can sim-
ply define the packet loss rate of the nth client in the physical
layer to be ρn = F̂TLn

(ϵ) = P {TLn > ϵ} = 1 − FTLn
(ϵ),

where FTLn
(ϵ) and F̂TLn

(ϵ) are the cumulative distribution
function (CDF) and the complementary CDF (CCDF) of the
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total transmission time TLn(TLn,Σn) considering packet
errors and re-transmissions.

We can now characterize the number of clients’ correct
responses Ñ within the preset time window ϵ. Assuming only
the correct responses received within ϵ will be recorded at
the DAI server, the number of recorded correct responses
from clients Ñ is a dependent random number on the total
transmission time {TLn}Nn=1. Because the transmissions of
all N clients are mutually independent, the randomness of Ñ
can be characterized by the probability mass function (PMF)
infra:

ΦÑ (η) = P
{
Ñ = η

}
=

∑
Ñ (η)⊆N

 ∏
n∈Ñ (η)

FTLn
(ϵ)

 ∏
n∈N\Ñ (η)

F̂TLn
(ϵ)

 ,

(3)

where N is the full set of N clients and Ñ (η) is an arbitrary
subset of η clients that transmit correct responses within the
given time window ϵ; the summation operation is carried out
over all

(
N
η

)
subsets of η clients.

Assuming all clients are homogeneous, which implies all
their channel distribution parameters and other wireless setups
to be identical, we have ρ = ρ1 = ρ2 = · · · = ρN . As a
result, the number of clients’ correct responses Ñ within the
preset time window ϵ abides the binomial distribution with N
dependent trials and success probability r = 1− ρ. Therefore,
we can reduce (3) to be ΦÑ (η) =

(
N
η

)
rη(1 − r)N−η . When

the total number of clients N is large, we can rely on the law
of large numbers and have the following relation:

Ñ ≈ E{Ñ} = Nr. (4)

Based on this simplification, although r is defined as the
probability that a packet can be correctly received within the
time window, it quantitatively equals the ratio of activated
clients for large N . We denote both measures by r herein
for notational simplicity unless otherwise specified.

B. Analysis of Algorithmic Convergence of DAI

In the previous subsection, we qualitatively analyzed that
the time window can influence the ratio of activated agents
and thus yields an effect on the algorithmic convergence of
DAI. In this subsection, we present the quantitative analysis
of the convergence rate concerning the ratio of activated
agents. Although the internal processes can be understood
from the abstraction given in (1), it can hardly help for
analytical formulations and derivations. Hence, for facilitating
the following analysis of convergence, we begin with re-
defining the mathematical problem as follows:

min
w

{
F (w) ≜

N∑
n=1

pnFn(w)

}
, (5)

where pn is the weight of the client n such that pn ≥ 0 and∑N
n=1 pn = 1. Suppose that the client n holds the sn training

data samples: xn,1, xn,2, · · · , xn,sn ; local objective function
Fn(·) is defined as

Fn(w) ≜
1

sn

sn∑
j=1

ℓ (w;xn,j) , (6)

where ℓ(·; ·) is a user-specified loss function. The problem
aims at minimizing the averaged loss value through mini-
mizing the local objective function at each distributed device.
Without losing of generality, we make some common assump-
tions for simplifying the analysis:

• Fn is L-smooth function, ∀ n ∈ N ;
• Fn is µ-strong convex function, ∀ n ∈ N ;
• The variance of stochastic gradients in each client is

bounded σ2;
• The expected squared norm of stochastic gradients is

uniformly bounded by G2.
Interested readers can refer to Appendix A for mathematical
implications and the inherent rationality of these assumptions.

Taking the well-known FedAvg algorithm proposed in [16]
as an example, we describe the process of its τ th round
by utilizing the abstraction given in (1). Firstly, the server
broadcasts the latest model parameters wτ , to all clients, and
hence, the message Kn

τ received at client n is wτ assuming
a perfect downlink channel. Secondly, every client takes the
received wτ as the update at beginning of the local round, i.e.,
wn

t = wτ , and performs E(≥ 1) local SGD updates based on
its own dataset:

wn
t+i+1 ←− wn

t+i − ηt+i∇Fn

(
wn

t+i, ξ
n
t+i

)
, (7)

for i = 0, 1, · · · , E − 1, where ηt+i is the learning rate,
and ξnt+i denotes the samples uniformly chosen from the
local dataset at each SGD updating step. Thirdly, after locally
updating through E steps, every client sends the latest model
parameters to the central server. The message J τ+1

n sent out
from the client n is represented by wn

t+E . Last, the cen-
tral server aggregates the local models received from clients
{J τ+1

1 , · · · ,J τ+1
N } to produce a new global model wτ+1 for

the next round.
Because of the non-iid data distribution and partial-client

participation issue when applying DAI in realistic wireless
environments, the aggregation steps can be various. Ideally, if
the server receives messages from all clients (a.k.a. full-client
participation) before broadcasting, the aggregation could be

wτ+1 ←−
N∑

n=1

pnw
n
t+E . (8)

Otherwise, the partial-client participation issue rises, which
can lead to low training efficiency without taking proper
countermeasures. Specifically, the server receives the first K
(1 ≤ K ≤ N ) messages and stops to wait for the rest.
Let Sτ (|Sτ | = K) be the set of the indices of the responded
clients in the τ th round. Then, the aggregation with partial
clients’ responses is performed according to

wτ+1 ←−
N

K

∑
n∈Sτ

pnw
n
t+E . (9)

Comparing (9) with (7), it is evident that the partial-client
participation issue slows down the algorithmic convergence of
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DAI by reducing the number of aggregated samples. The con-
vergence rate of the FedAvg algorithm has been well studied
when the required number of clients is constant in [43]–[45].
Therefore, we focus on the convergence when the number of
required clients is changeable among communication rounds,
which reflects the realistic scenario in wireless environments,
especially when we set a small time window. Our analysis is
based on the recent research of federated learning on Non-IID
data [45].

Assume that the server receives Ñt (say the t-th communi-
cation round) activated clients within the preset time window,
and assume that the total number of communication rounds
is T . Let ∆t ≜ E ∥wt −w⋆∥2, defined as the expected
distance to the optimum, where wt =

∑N
k=1 pkw

k
t is the

weighted average of model parameters among all clients, and
w⋆ denotes the optimized model parameters.

Lemma 1. Assume that the central server received Ñt ac-
tivated clients in the preset time window. Define Γ = F ∗ −∑N

k=1 pkF
∗
k to quantify the degree of heterogeneity of non-iid

distributions. Letting ∆t = E ∥wt+1 −w⋆∥2, we have

∆t+1 ≤ (1− ηtµ)∆t + η2t (B + Ct), (10)

where B =
∑N

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2, and Ct =

N−Ñt

N−1
4
Ñ
E2G2.

Proof. Please refer Appendix A for details.

Apparently, Ct = 0 if and only if Ñt = N . Because of
this inequality, we are unable to obtain the optimal solution
directly. Alternatively, we can find the bound on the solution
by analyzing its supremum. We use sup(∆t) to denote the
supremum of ∆t for t = 1, 2, . . . , T , given ηt−1 being the
learning rate at the (t−1)th step. Besides, we let sup sup(∆t)
denote the supremum of ∆t for t = 2, 3, . . . , T , given ∆t−1

reaching its supremum sup(∆t−1) at the (t − 1)th step with
ηt−2 being the learning rate at (t − 2)th step. With these
denotations, it follows thatsup(∆t+1) = min

ηt

[
(1− ηtµ)∆t + η2t (B + Ct)

]
sup sup(∆t+1) = min

ηt

[
(1− ηtµ) sup(∆t) + η2t (B + Ct)

]
,

(11)
∀ t = 1, 2, . . . , T−1, by which we can determine the minimum
by {

sup(∆t+1) = ∆t − µ2∆2
t

4(B+Ct)

sup sup(∆t+1) = sup(∆t)− µ2 sup(∆t)
2

4(B+Ct)
.

(12)

For the quadratic function f(x) = x− µ2x2

4(B+C) , we can obtain

its maximum to be B+C
µ2 when x = 2(B+C)

µ2 and derive
f(x1) ≤ f(x2) when x1 ≤ x2 ≤ 2(B+C)

µ2 . As a result,
letting x = ∆t−1, we know that sup(∆t) ≤ B+Ct−1

µ2 . Because
of B > Ct, ∀ t = 1, 2, . . . , T , we can derive the inequal-
ity B+Ct−1

µ2 ≤ 2(B+Ct)
µ2 . Finally, we obtain sup(∆t+1) ≤

sup sup(∆t+1).
Recursively let

∆̃t+1 = min
ηt

[
(1− ηtµ) ∆̃t + η2t (B + Ct)

]
, (13)

for t = 0, 1, . . . , T − 1, and let ∆̃0 = ∆0. Given t′ < t,
it can be found that ∆̃t is the supremum of ∆t by setting
all its previous ∆t′ being the corresponding supremum. With
the analysis above, we know that the supremum converges
fastest when ηt = µ∆̃t

2(B+Ct)
. With the above analysis, we

want to find the relations between the learning rates of partial
device participation and full device participation conditions.
The result is presented as follows.

Lemma 2. Denote η̄t to be the learning rate at communication
round t to guarantee the algorithm convergence when full
devices are participated. Let rt = Ñt

N be the device partic-
ipation ratio at communication round t. The convergence of
the algorithm when partial devices are participated can be
guaranteed by setting ηt = rtη̄t.

Proof. Hint: By analyzing the relation of learning rates be-
tween Ct = 0 and Ct > 0, we can find an equation to combine
the two conditions. Please refer Appendix A for details.

Withe the analysis of Lemma 1 and 2, we can begin to
analyze the convergence rate in the wireless environments as
follows.

Theorem 1. Let the assumptions hold and L, µ, σk, G be
defined therein. Choose κ = L

µ , γ = max{8κ,E} and the
learning rate ηt =

2rt
µ(γ+t) . Then FedAvg algorithm in wireless

environments satisfies

E [F (wT )]− F ∗ ≤ 2κ

γ + T

(
B +D

µ
+ 2L ∥w0 −w∗∥2

)
,

where B =
∑N

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2, and D =

4E2G2.

Proof. Hint: Assume Ct = 0 and from Lemma 1, find the
bound of ∆t by induction. Apply the assumptions on F , find
the relations between F (wt) and ∆t. Combining with Lemma
2 to find the learning rate in wireless environments. Please
refer Appendix A for details.

V. EXPERIMENTS

In this section, we take the well-known FedAvg algorithm
as an example to validate the effectiveness of the proposed sys-
tem. In particular, we systematically evaluate the performance
of FedAvg with different parameter settings, which can be
roughly split into model-related hyper-parameters and system-
related parameters. The target of a series of experiments is to
study the accuracy, efficiency, robustness, and fairness of a
given algorithm based on our proposed system. Besides, we
also validate the scalability of the system.

A. Experiment Setups

To demonstrate the generality of our proposed system,
we consider two completely different tasks on the PyTorch
platform. The first is a multi-class image classification problem
for digital recognition, and the second is a regression problem
for wireless traffic prediction [46]–[48]. We perform the first
task on the MNIST dataset [49]. This dataset is one of the
most classical ones in the ML/DL realm and has been widely
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TABLE II: Suggested values and explanations of independent channel
distribution and system configuration parameters.

Parameters Suggested values and explanations

Bn Bandwidth of wireless communications; 10-29 Mbps for
802.11g, 150 Mbps for 802.11n, 3-32 Mbps for 802.11a,
210 Mbps - 1 Gbps for 802.11ac; We choose 10 Mbps
here.

PTn Wireless transmission power; 80-720 mW for WiFi mod-
ulem; We choose 720 mW here.

Sn Communication packet size; usually less than 64K bits
for UDP and TCP protocols; We choose 1K bits here.

Gn The factor of logarithmic distance propagation loss mod-
els; 1.4125-2.2387 for LoS links, 2.1878-3.0549 for non-
LoS links; We choose 2 here.

M Number clients per cell; 1-6 clients per cell; We choose
4 clients per cell here.

data rate Data rate of P2P channel between the server and Ap
nodes; We choose 500 Mbps here.

delay Delay of P2P channel between the server and Ap nodes;
We choose 20 ms here.

applied in the literature. We attempt to predict which class
the input image belongs to for the multi-class classification
problem, and the prediction accuracy is adopted as the evalu-
ation metric. In the experiment, the model architecture adopted
for this task is described as follows: A CNN with two 5 × 5
convolution layers (the first layer with 10 channels and the
second layer with 20 channels; each followed by a 2 × 2
max pooling and the rectified linear unit (ReLU) activation
function), a fully connected layer with 50 units utilizing the
ReLU activation function for neural computing, and a final
softmax output layer [16]. The total number of the applied
model parameters equals 1199882. The initial learning rate is
set to unity, with an exponential decay rate at 0.9 every 5 local
training steps.

We perform the second task on the Call Detail Record
(CDR) dataset from ‘Telecom Italy Open Big Data Challenge’
[50]. The CDR dataset contains three kinds of wireless traffics
from different cells: The number of text messages, the number
of calls, and the number of Internet data packages. For this
problem, we attempt to predict the future traffic volume of
a cell, given the historical traffic volumes, and the mean
square error (MSE) is adopted as the evaluation metric. In the
experiment, the model architecture adopted includes a stacked
long short-term memory (LSTM) structure with two LSTM
layers (each layer with 64 hidden units) and a fully connected
layer with a single output. The total number of the applied
model parameters equals 12961. The initial learning rate is
set to be3 0.05, with an exponential decay rate at 0.9 every 5
local epochs.

We assume that all clients connect to the APs through
wireless links. In the following experiments, if without further
annotations, we assume all computing clients are located
randomly in several wireless cells. Each cell is simulated
within one CPU core process, while the server is simulated in
another independent core process. Within each cell, we assume

3Note that the models and (hyper-)parameters we adopted here are relatively
straightforward since the design and optimization of network architecture and
(hyper-)parameters are out of the scope of this paper.

that a limited number of computing clients randomly walk in a
squared area and communicate with the server through an AP
node. We further consider the wireless channel model for each
client to be the constant speed propagation delay model and
logarithmic distance propagation loss model. We assume that
each AP node connects to the server without losing generality
through a virtual point-to-point link with a limited data rate
and delay. For the sake of simplicity, we assume that all clients
in every cell have the same system configurations and adopt
the suggested channel and system parameters in [51], which
are listed in Table II.

The computing time is closely related to the CPU frequency,
IO throughputs, memory cache, and the existing tasks running
on the agent’s device and thereby hard to formulate mathe-
matically. To precisely simulate the computing time of agents,
we assume it to be ten times the computing time on our com-
putational platform, which is a workstation with two physical
CPUs, 20 core processes per CPU, and 256 GB memory cache.
To avoid interference from the existing tasks running on the
workstation, we simultaneously build the simulations for each
experiment to keep the same operational conditions. These
system configurations are fixed unless otherwise specified.

B. Accuracy

In this subsection, we present the overall prediction per-
formance of our simulator. The experiments are conducted
as follows. We set the number of cells (C) to 1, 2, and 8,
respectively. Each cell is simulated in a single CPU core.
The number of activated agents (M) in each cell sets to be
four by default. Besides, we consider the number of active
agents per cell to be 1 and 2 when the number is 8. Thus,
we have five scenarios in total. We assume that each agent
has a sub-dataset with the same size and distribution for each
scenario. Furthermore, we assume that the image classification
task in different experiments has the same size as the whole
dataset. However, we assume that the sub-dataset size for the
traffic prediction task is constant, implying that the full dataset
size increases with the number of clients. We also stipulate
different learning rates according to Lemma 2 for different
activated ratio scenarios. Specifically, we set the learning rate
ratio as the sub-dataset size dividing the whole dataset size for
each client.

We utilize the accuracy and MSE loss on an independent test
dataset to represent the performance of both image classifica-
tion and wireless traffic prediction tasks. We utilize different
colors of red, black, and green in the figures to denote the
cases corresponding to the number of cells of 1, 2, and 8,
respectively. Besides, we utilize dot-line, dash-line, and solid-
line to represent the cases with the number of active agents per
cell of 1, 2, and 4, respectively. As the results presented in both
sub-figures of Fig. 4, we draw two sets of lines to represent the
performance and time versus the number of training rounds.

From Fig. 4, it is clear that the scenario with one cell
and four active agents achieves the best performance among
all settings in the image classification task. In contrast, the
experiment with eight cells and four active agents per cell
outperforms the others in the wireless traffic prediction task.
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Fig. 4: Accuracy and time of two real-world ML tasks versus epochs, given different number of WiFi cells and different number of activated
clients in each cell.
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Fig. 5: Test dataset performance of two real-world ML tasks versus energy with four variables: Error rate, active ratio, local epochs, and
batch size.

However, for the scenarios with the same number of cells in
both tasks, the more active agents per cell will lead to better
performance. These phenomenons can be applied to explain
both the weakness and strength of the FedAvg algorithm.
When the number of active clients per cell equals four, no
matter how many cells are utilized for training, the whole
training dataset keeps unchanged for the image classification
task. The mathematical theory has proved the convergence of
FedAvg. However, it does not perform as well as a centralized
algorithm in practice. At least, it converges slower than
a centralized algorithm. Nevertheless, the conclusion is the
opposite in the wireless traffic prediction task. The dataset is
not static, and the more cells utilized in the training phase, the
larger the training dataset. A more extensive training dataset
generally yields better prediction performance. The FedAvg
algorithm, as a result of this, works better with a large number
of cells, reflecting the negative influence caused by increasing
the number of cells.

As for the consumed time, the two tasks perform differently
as usual. For the image classification task, the scenarios
with a small number of cells spend a significant amount of
time to finish the same number of rounds. In contrast, the
conclusion is the opposite for the traffic prediction task. The
reason is that the computing phase is dominant compared
to the communication phase in the image classification task.

Therefore, the scenarios with a small number of cells spend
more time on computation than those with more cells. The
computational time consumed in the traffic prediction task is
almost the same for all cells, as they have the same sub-dataset
size for training. Therefore, the scenarios with plenty of cells
need more time for communication than those with a small
number of cells, which causes the opposite results to the image
classification task.

C. Efficiency

In this subsection, we study the factors that affect the
efficiency of the FedAvg algorithm in a single cell with four
activated agents and other systematic settings in Table II by
default. We define the efficiency of our system as the energy
and time consumed for a task to reach the termination con-
dition. We set the termination condition for our experiments
when the FedAvg algorithm reaches an accuracy or a loss
threshold. The studied variables include the received bytes
error rate (RBER), the agent activated ratio (r), the number
of local training epochs (E), and the training batch size (bs).
Other variables may also affect the efficiency, but we only
study the abovementioned variables due to their dominant and
direct impacts.

In particular, we set the accuracy thresholds for the image
classification task starting from 0.9 and ending at 0.98 with
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0.002 as steps and the loss thresholds for the traffic prediction
task starting from 0.3 and ending at 0.245 with -0.001 as steps.
We accumulate each threshold’s consumed energy and time to
draw simulation curves. From previous experience, the simula-
tion curves would present a ladder shape if the energy has not
changed between two consecutive thresholds. Therefore, we
only keep the first result if the energy value is constant among
several successive thresholds. The performance of energy and
time with different settings are presented in Fig. 5 and Fig.
6. We discuss the simulation results for two tasks affected by
variable settings separately.

The RBERs are chosen from [10−4, 10−5, 10−6, 10−7].
Notice that the server averages and aggregates the received
bytes, whether correct or corrupted. The figures show that
varying RBERs have no significant effects on the test dataset
convergence, as they reach the same maximum accuracy or
minimum MSE loss. While not the same as the conventional
applications, which require the correct received packets or
redundant error correction codes (ECC), AirDAI is inherently
robust against noise and other channel imperfections, leading
to new research on the protocol design of data transmissions.
However, it makes sense and can also be observed that a
significant RBER will considerably increase the energy and
time to reach convergence.

The figures show that a sizeable active ratio performs better
than a small one. The reason is that compared to a small active
ratio, a larger one has more datasets involved in the training
phase, making the test performance reach the same value
while consuming less energy. As for the time consumed, the
conclusion is not so clear. A more extensive training dataset
generally converges faster than a smaller one. However, a
large active ratio may increase the time for communications,
increasing the total time consumed. Although the figures in
our experiments present that a larger active ratio consumes
less energy and time to reach the same test performance, we
cannot conclude that a sizeable active ratio will always be
helpful.

The number of local epochs refers to the number of training
epochs for each client during the training phase. A generally
accepted common knowledge is that increasing the number
of training epochs will significantly decrease the communica-
tion over computation ratio and require fewer communication
rounds to complete the same number of epochs. A large
number of epochs will lead to faster convergence than a
small one. However, the results present a counter-intuitive
conclusion. There might be two reasons for this phenomenon.
First, the computation time takes a significant ratio of a
complete round compared to the communication time. Second,
it depends on the algorithm. The local training overfits when
the number of local epochs reaches a threshold. A further step
in increasing the number of epochs will not accelerate the
convergence of corresponding tasks.

The simulation results also show that the batch size only
affects the training phase. The optimal batch size to reduce
energy and time cost for one round depends on the agents’
specific tasks and computation power. As shown in the figures,
in our experiments, 32 is the best choice for the image
classification task among all other options, while 64 is the

best for the traffic prediction task.

D. Robustness

Any practically implementable algorithm must be robust to
malicious users in reality [52], [53]. We carry out experiments
on the FedAvg algorithm to validate its robustness to malicious
agents based on our system. We assume that the agents are
malicious and spam erroneous data to the central server. The
erroneous data in the following simulations are produced
by adding Gaussian noise to the original data. It is worth
noting that the added noise strength must be less than a
threshold. Otherwise, the central server can easily distinguish
the malicious agent by comparing it with the average value
and will reject the malicious data. We set up the experiments
by considering two kinds of noise: additive and multiplicative.
The additive noise is generated as wnoise:a = w+N (0, NISa),
and the multiplicative noise is generated as wnoise:m = w ×
(1 +N (0, NISm)), where w is a model parameter capturing
the baseline of the correct data, andN (0, NIS) is a zero-mean
and NISa/m-deviation Gaussian distributed random variable.

The simulation results regarding the robustness test are
shown in Fig.7, from which one straightforward observation is
that the same noise will affect different tasks differently. For
instance, the performance has been significantly degraded for
the classification task when NISa of the additive noise equals
0.1. In contrast, the traffic prediction still has a competitive
performance with the same additive noise. We can observe a
similar phenomenon when applying the multiplicative noise.
The classification task is more robust to the multiplicative
noise than the prediction task. Moreover, the slight value
noise has an in-distinctive impact on the accuracy or MSE
loss performance. However, it will consume more energy and
time than the benchmark without noise to reach the same
performance. In conclusion, even applying the same FedAvg
algorithm under identical experimental conditions, different
tasks with different model parameters will vary from noise
levels.

E. Fairness

Fairness is also an important metric and should be evaluated
when applying an algorithm in multi-agent environments.
Some agents have more raw data than other agents and thus
consume more energy during the local training phase. Such a
situation could cause service imbalance and reduced training
efficiency. We simulate this scenario with different dataset
partitions and focus on the system consumed energy, time,
training performance, and the consumed energy ratio between
two agents when the system reaches the termination condition.
The following experiments consider the configurations with
one WiFi AP and four agents served by the WiFi AP. The
dataset is partitioned according to the partition ratio at the
beginning of each experiment. We examine the system outputs
when the number of rounds equals 10 for the classification task
and 25 for the traffic prediction task.

The partition values given in the header of Table III denote
the sub-dataset size ratio among four agents. The energy
and time denote the total energy and time consumed when
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(b) Wireless traffic prediction task.

Fig. 6: Test dataset performance of two real-world ML tasks versus time with four variables: Error rate, active ratio, local epochs, and batch
size.
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Fig. 7: Training performance comparisons among different types of noise on the real-world two ML tasks.

TABLE III: Energy and time consumed with different dataset parti-
tions.

Image Task

Partition Energy Time Accuracy Ratio

8 : 1 : 1 : 1 1.030 2.287 0.980 6.190
64 : 1 : 1 : 1 1.059 2.950 0.980 19.462
512 : 1 : 1 : 1 1.058 3.023 0.980 25.548
4096 : 1 : 1 : 1 1.074 3.064 0.980 25.259

512 : 512 : 512 : 1 0.996 1.233 0.980 14.031
4096 : 4096 : 4096 : 1 0.994 1.235 0.980 14.021

Traffic Task

Partition Energy Time Accuracy Ratio

8 : 1 : 1 : 1 0.965 2.343 0.248 7.381
64 : 1 : 1 : 1 0.934 2.899 0.251 35.863
512 : 1 : 1 : 1 0.938 3.017 0.252 72.126
4096 : 1 : 1 : 1 0.904 2.914 0.257 77.928

512 : 512 : 512 : 1 1.002 1.257 0.250 53.895
4096 : 4096 : 4096 : 1 0.994 1.248 0.251 58.560

reaching the preset termination condition. Also, to significantly
compare the energy and time consumed among different
partitions, the values are normalized to that of a uniform
dataset partition. The values in the ratio column mean the
consumed energy proportion of the agents with the largest
dataset size and the smallest. From Table III, we can observe
that the energy consumed and evaluation results with different
partition scenarios stay unchanged within acceptable errors.
Although the impact of unbalanced datasets is insignificant, we
can still tell that the unbalanced dataset partitions will affect
the training performance for the traffic prediction task. On the
other hand, we can observe from Table III that the unbalanced
dataset partitions significantly affect the total time consumed
and energy ratio among different agents for both tasks. Besides
comparing the time columns of two sub-tables, the normalized
consumed time for the same partition keeps the same within
acceptable errors. However, this observation is unsuitable for
the values in the ratio columns because the consumed energy
ratios between the computation module and communication
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TABLE IV: Wall-clock time in seconds consumed per round with
different numbers of cells and cores.

Image Classification Task

C
Cr

1 2 4 8 16 32

32 5862 3329 1595 932 624 623
100.0% 56.8% 27.2% 15.9% 10.6% 10.6%

64 12712 6073 3318 1763 1282 1404
100.0% 47.8% 26.1% 13.9% 10.1% 11.0%

Traffic Prediction Task

C
Cr

1 2 4 8 16 32

32 54 28 17 10 6 6
100.0% 52.8% 30.2% 17.0% 11.3% 11.3%

64 110 58 32 19 13 14
100.0% 52.3% 28.4% 17.4% 11.0% 11.9%

128 225 135 64 39 29 33
100.0% 59.8% 28.6% 17.0% 12.9% 14.3%

256 496 247 133 88 80 93
100.0% 49.7% 26.9% 17.8% 16.2% 18.8%

module are different for these two tasks, affecting each agent’s
consumed energy while not involving the total consumed time.

F. Scalability

Although the scalability of our proposed system is unrelated
to the performance of an algorithm, we still would like to em-
phasize its importance for users when implemented in practice.
We evaluate the scalability against the wall-clock (simulation
running) time. The results for both image classification and
traffic tasks are presented in Table IV. The cores and cells in
each table header denote the numbers of computing cores and
simulated cells utilized in each simulation. The simulated cells
are uniformly distributed in all computing cores. We present
each scenario’s average running time per round in the first row.
We offer the percent of the wall-clock time of different cores
with one core in the second row. Due to the enormous wall-
clock consumption of the image classification task, we only
conduct the experiments with cells number no greater than 64.

Comparing the results of different cells within the same
number of cores makes it straightforward to observe that the
wall-clock increases almost linearly with the number of cells.
By comparing the results of different cores within the same
number of cells, the wall-clock time decreases as expected
with the increase in cores number. However, it takes almost the
same wall-clock time to simulate one round when the number
of cores equals 16 and 32. It is caused by the limitations
of the multi-processing scheme and our hardware platform.
Compared to the consumed wall-clock time by the simulator
for computing purposes, sharing messages among multiple
cores takes more time. As a result, increasing the number of
computing cores in this situation will not help decrease the
wall-clock time.

VI. CONCLUSION

In this paper, we virtualized the basics of DAI in wireless
environments and proposed the AirDAI system, which can
evaluate the training performance metrics and a set of system-
related QoS metrics. In addition, we introduced a general

wireless channel model and analyzed the impacts of operating
DAI under different wireless setups on the convergence rate.
The experimental results revealed how wireless transmission
parameters and system configurations affect the training effi-
ciency of the DAI algorithms. Based on the proposed AirDAI
system, we designed a Python-built simulator that works
on single and multiple computing cores and is compatible
with existing ML systems. We took the well-known FedAvg
algorithm as an example and conducted extensive experiments
with the designed simulator. The experimental results per-
taining to prediction accuracy and QoS metrics verified the
effectiveness and efficiency of the proposed system and its
associated simulator. With this generic system design and the
simulator codes, the research progress on DAI in wireless
communication systems is expected to be accelerated.

VII. APPENDIX A

The appendix first introduces four general assumptions
commonly applied in the SGD convergence analysis. Secondly,
we define a new term to distinguish the scenarios of iid and
non-iid dataset distributions. Then, we present the lemmas that
give the limitation of one-step SGD update and the linear ratio
relationship between learning rates. At last, we provide the
proof of convergence based on the above two lemmas.

Assumption 1. F1, F2, · · · , FN are all L -smooth: for all v
and w, leading to Fk(v) ≤ Fk(w) + (v− w)T∇Fk(w) +
L
2 ∥v −w∥22.

Assumption 2. F1, F2, · · · , FN are all µ -strongly convex: for
all v and w, leading to Fk(v) ≥ Fk(w)+(v−w)T∇Fk(w)+
µ
2 ∥v −w∥22.

Assumption 3. Letting ξkt be randomly sampled from the
kth device’s local data in a uniform manner, the vari-
ance of stochastic gradients in each device is bounded by
E
∥∥∇Fk

(
wk

t , ξ
k
t

)
−∇Fk

(
wk

t

)∥∥2 ≤ σ2
k, ∀ k = 1, 2 · · · , N .

Assumption 4. The expected squared norm of stochastic gra-
dients is uniformly bounded, i.e., E

∥∥∇Fk

(
wk

+, ξ
k
+

)∥∥2 ≤ G2,
∀ k = 1, 2 · · · , N and ∀ t = 0, 1 · · · , T −1 for k = 1, · · · , N .

The assumptions mentioned above on functions
F1, F2, · · · , FN are general and necessary for the convergence
analysis; typical examples include the ℓ2 -norm regularized
linear regression, logistic regression, and softmax classifier.

To extend the analysis on both the iid and non-iid dataset
partition scenarios, we propose a new term to quantify the
degree of non-iid. The definition is as follows.

Definition 1. Let F ∗ and F ∗
k be the minimum values of F and

Fk, respectively. We use the term Γ = F ∗ −
∑N

k=1 pkF
∗
k to

quantify the degree of heterogeneity of non-iid distributions.
That is, if the data are iid, then Γ goes to zero as the number of
samples grows. If the data are non-iid, then Γ is nonzero, and
its magnitude signifies the heterogeneity of data distributions.

With the above assumptions and definition, we formally
present Lemma 1, which limits the expected distance between
the current value and the optimum with one-step SGD.



14

Lemma 1. Assume that the central server received Ñt ac-
tivated clients in the preset time window. Letting ∆t =
E ∥wt+1 −w⋆∥2, we have

∆t+1 ≤ (1− ηtµ)∆t + η2t (B + Ct), (14)

where B =
∑N

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2 and Ct =

N−Ñt

N−1
4
Ñ
E2G2.

Proof. The proof of the presented lemma can be found in
[45].

We present Lemma 2 as follows, in which we aim at finding
the learning rate relations between the full device participation
setting and the partial device participation setting caused due
to limited time window.

Lemma 2. Denote η̄t to be the learning rate at communication
round t to guarantee the algorithm convergence when full
devices are participated. Let rt = Ñt

N be the device partic-
ipation ratio at communication round t. The convergence of
the algorithm when partial devices are participated can be
guaranteed by setting ηt = rtη̄t.

Proof. Let η̄t = µ∆̃t

2B , which implies that Ct = 0 and the
number of clients are all activated, we can obtain the following
relations:

ηt =η̄t
B

B + Ct
= η̄t

[
1 + ε

(
N −Kt

Kt

)]−1

, (15)

where ε = Ct

B ×
Ñt

N−Ñt
is a Ñt-irrelevant constant. For

simplicity, ε could be stipulated to be unity, and hence, we
obtain the following relation

ηt =
Ñt

N
η̄t = rtη̄t, (16)

which indicates that we can adapt the learning rate linearly
with respect to the number of activated clients.

With the lemmas and assumptions mentioned above, we
are able to give the bound on the convergence of FedAvg
algorithm in wireless environment settings as follows,

Theorem 1. Let the assumptions hold and L, µ, σk, G be
defined therein. Choose κ = L

µ , γ = max{8κ,E} and the
learning rate ηt =

2rt
µ(γ+t) . Then FedAvg algorithm in wireless

environments satisfies

E [F (wT )]− F ∗ ≤ 2κ

γ + T

(
B +D

µ
+ 2L ∥w0 −w∗∥2

)
,

where B =
∑N

k=1 p
2
kσ

2
k + 6LΓ + 8(E − 1)2G2, and D =

4E2G2.

Proof. Our proof starts with the full device participation
condition. Let Ct = 0, from Lemma 1 we obtain as follows,

∆t+1 ≤ (1− ηtµ)∆t + η2tB, (17)

For a diminishing step size, ηt = β
t+γ for some β > 1

µ

and γ > 0 such that η1 ≤ min
{

1
µ ,

1
4L

}
= 1

4L and
ηt ≤ 2ηt+E . We will prove ∆t ≤ v

γ+t where v =

max
{

β2B
βµ−1 , (γ + 1)∆1

}
. We prove it by induction. Firstly,

the definition of v ensures that it holds for t = 1. Assume the
conclusion holds for some t, it follows that

∆t+1 ≤ (1− ηtµ)∆t + η2tB

=

(
1− βµ

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

(18)

Then by the strong convexity of F (·)

E [F (wt)]− F ∗ ≤ L

2
∆t ≤

L

2

v

γ + t
. (19)

Specifically, if we choose β = 2
µ , γ = max

{
8L
µ − 1, E

}
and denote κ = L

µ , then ηt =
2
µ

1
γ+t and

E [F (wt)]− F ∗ ≤ 2κ

γ + t

(
B

µ
+ 2L∆1

)
. (20)

For Ct > 0 (partial participation), from Lemma 2, we know
that the convergence is guaranteed by setting ηt = rtη̄t, where
η̄t is the learning rate in full participation condition. Therefore,
let ηt = 2rt

µ(γ+t) and replace B with B + Ct, we have

E [F (wt)]− F ∗ ≤ 2κ

γ + t

(
B + Ct

µ
+ 2L∆1

)
≤ 2κ

γ + t

(
B +D

µ
+ 2L∆1

)
,

(21)

where D = 4E2G2 is the upper bound of Ct.
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