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Abstract—In this paper, a delay-sensitive multi-hop wireless
sensor network is considered, employing an M/G/1 with vaca-
tions framework. Sensors transmit measurements to a predefined
data sink subject to maximum end-to-end delay constraint. In
order to prolong the battery lifetime, a sleeping scheme is adopted
throughout the network nodes. The objective is to present an
expression for maximum hop-count as well as an approximate
expression of the probability of blocking at the sink node upon
violating certain end-to-end delay threshold. Using numerical
simulations, we validate the proposed model and demonstrate
that the blocking probability of the system for various vacation
time distributions matches the simulation results.

Index Terms—Wireless sensor networks, queueing theory, end-
to-end delay, vacations, QoS

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been a revolu-
tionary emerging technology for many fields in science and
industry [1]. This is because of their ability to form a vast
network of small sensing devices, called motes, distributed
in a sparse area to observe the surrounding environment. In
such networks, not only nodes are capable of sensing and
forwarding data, but also are capable of carrying out simple
computations and filtering out transmitted data. Such features
ensure wide range of applications for wireless sensor networks
in many fields such as habitat monitoring, health monitoring,
industrial applications, and simple home applications.

Sensor nodes in WSN are battery-equipped, low-power,
and low-cost devices with limited sensing, data processing,
transmission range, memory, and communication capabilities.
For instance, the MICAz mote from Crossbow Technology
is based on the Atmel ATmega128L 8-bit microcontroller. It
supports only 8 MHz clock frequency, 128-KB flash program
memory and 4-KB EEPROM. Moreover, the transmit data rate
is limited to only 250 Kbps. In most applications, sensors
are stationary or with limited mobility, and communication is
typically either many-to-one (from sensors to sink) or one-to-
one (between nodes themselves).

WSNs operate in a complex real-time, real world noisy
environment. Such environment raises several challenges for
WSNs design due to the unreliability of wireless communica-
tion medium and the real-time requirements of control appli-
cations. That is, WSNs not only share wireless communication
challenges with regard to sensor-to-sensor communication,
but also introduce their own unique challenges. For example,
energy consumption in WSNs plays, in general, a much

more crucial role than energy consumption in other wireless
networks. Moreover, sensors often sense and sample data in
real-time subject to maximum end-to-end delay constraints.

There is a tremendous amount of research presented on
WSNs applications and challenges. However, limited research
went into investigating the tradeoff between sensor sleeping
time and latency. Today, most standards and protocols for
WSNs lack the support of real-time requirements and sensi-
tivity to delays. This limits the usefulness and applicability of
these protocols in WSNs and hence, large scale deployments
are hard or inefficient.

Considering the wireless sensor network applications, it is
critical to analyze and quantify the inherent tradeoffs between
latency and power efficiency. On one hand, end-to-end delay
is a key metric in analyzing the system performance. In fact,
wireless sensor networks are often subject to maximum latency
constraint in mission critical applications such as in combat
zones, where sensors detect moving targets, or in process
and control systems, where sensors detect chemical gases and
operating conditions of plant facilities. On the other hand,
wireless sensors are designed to operate on substantially long
time durations on small inexpensive batteries with limited
lifetimes [2]. Therefore, there have been extensive efforts to
devise efficient schemes for conserving energy in the network,
albeit at the expense of incurring higher latencies. Introducing
the concept of sleep and wake-up modes for relay hops is one
such scheme that conserves energy [3], [4]. This can be done
by allowing nodes to start a random vacation period when their
queues are empty.

Fig. 1. A motivating scenario on the effect of sleep cycle time on energy
consumption

The motivation behind introducing sleep cycles or vacations
is depicted in Figure 1. In this figure, it is assumed that data
traffic is limited, which is often the case in WSNs. Under
such conditions, power consumption is primarily driven by
polling. If the sleeping cycle is doubled, as is depicted in
Figure 1 where Scenario 2 has a sleeping cycle that is twice
as large as Scenario 1, then power consumption is nearly
reduced by a factor of 200%. Pictorially, it is apparent that



scenario one consumes more energy since it is switching to
poll for received packets more often. The effect of sleep cycle
duration extends to scenarios with active receptions and can
be intuitively derived. Figure 2 shows the effect of sleep cycle
times on the longevity of sensor motes. It is shown that a
sleep time of 1.0 seconds increase longevity by a factor of
10000% compared to 0.01 seconds when the amount of traffic
is negligible.

Fig. 2. Amount of time required to drain batteries for different sleep cycle
times with no workload

Nevertheless, introducing sleep cycles or vacations increases
latency due to residual sleeping time. To mitigate such impact,
several approaches have been proposed to optimize the vaca-
tion scheduling algorithm such that the delay experienced in
the network from source to sink does not harm the desired
quality of service (QoS). For example, on-demand sleep-wake
schemes have been suggested where a node wakes up upon
receiving packets, thus triggering its working mode [5], [6].
Moreover, Kim, et al. proposes an anycast packet-forwarding
scheme, where each node has a set of forwarding nodes and
it chooses the node that wakes up the earliest to forward its
packet to [7]. Using this approach, the delay introduced due
to the residual vacation time is reduced.

Analyzing the performances of WSNs from a delay perspec-
tive has been the focus of a number of research works. For
instance, authors in [8] investigated the system performance,
in terms of energy consumption and data delivery delay, of a
sensor network with sleeping mode presented as a Markov
model. In [9], the delay performance of a wireless sensor
network with date aggregation has been presented from a
scheduling viewpoint. Authors in [10] presented event delay
analysis of an event-driven WSN data transmission considering
an M/G/1 vacation queueing model.

In this paper, we examine the performance of wireless
sensor networks with an arbitrary vacation time distribution.
Specifically, we look into a relay network that carries sensor
measurements to a data sink node, and analyze how its
maximum hop-count is determined by maximum end-to-end
delay constraint. In addition, we look into probability of packet
dropping, which arises if sensor packets do not adhere to the
desired delay threshold constraint.

The rest of the paper is organized as follows. First, we
introduce the system model in Section II. Then, we provide the
mathematical analysis for the proposed model in Section III.
Section IV demonstrates validation of the analytic model via
simulation results. Finally, conclusions and future work are

provided in Section V.

II. SYSTEM MODEL

We consider a wireless sensor network, shown in Figure 3,
in which M sensors collect observations from the surrounding
environment. Then, transmit them to the adjacent relay nodes.
Sensor events (i.e., data packet arrival) is modeled as an
exponential inter-arrival times with rates γm,m = 1, 2, ...,M .
In addition to data packets, control packets are also injected
into the network from external sources. The relay nodes are
modeled as single server facilities with two priority queues
and are responsible for forwarding sensor measurements to
the data sink node.
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Fig. 3. An overview of the system: we have multiple sensors reporting
measurements to relay node, which forwards packets across the network to a
data sink node.

We assume that the control packets are of high priority, and
thus will be scheduled to the higher priority queue denoted
as QHk , where k = 1, 2, ...,K is the node index. The data
packets are scheduled to the lower priority queue QLk , k =
1, 2, ...,K. In some emergency situations, some data packets
are scheduled in the high-priority queue with probability 1−pt.
In general, both control and data packet arrivals are assumed

to be Poisson distributed with rates λC and λD =

M∑
m=1

γm,

respectively. Whereas data traffic is assumed to originate only
from the sensors, control traffic is assumed to be injected into
each relay hop from external sources as mentioned earlier.
The model presented herein can be easily extended to the case
where both data and control traffic might arrive from external
sources, but this setup will be avoided in this paper to simplify
discussion and notation.

Since there are two different types of traffic and two
different priority queues, where data traffic can be scheduled
in some emergency cases to the high-priority queues, the total
rate of high-priority traffic λH and low-priority traffic λL is
given by:

λH = λC + (1− pt) · λD (1)
λL = pt · λD (2)

Generally, nodes are modeled as non-preemptive priority
queues with exponentially distributed service time of mean



Xi for node i ∈ {1, 2, . . . ,K}. For the purpose of energy
conservation at each node in the network, a sleeping policy is
adopted such that a node goes immediately to sleep when it
finds that both of its queues are empty. Such sleeping period or
vacation time is assumed to have an arbitrary distribution with
mean Vi and second moment V 2

i for node i ∈ {1, 2, . . . ,K}.
To ensure that the Poisson property of traffic is not severely
disturbed, we assume that V � 1

λH+λL
. In other words, the

mean inter-arrival time of traffic is much larger than mean
vacation time. In practice, this is a reasonable assumption since
the purpose of introducing sleeping times is to conserve energy
without severely impacting end-to-end delay. In addition, we
assume that a node continues to receive packets during its
sleep periods, and starts to serve them upon waking-up. A
node is assumed to wake-up when the random sleeping period
ends, which depends on the vacation time and follows a certain
distribution. This introduces extra delay for the jobs of both
flows due to the residual vacation time they encounter.

In order to maintain a predefined QoS, the expected delay
experienced by each data packet since its transmission till
it reaches the data sink node must not exceed a predefined
threshold TQoS. Therefore, a data packet with a cumulative
delay exceeding TQoS upon arrival to the data sink node will
be dropped. Thus, if we let D be a random variable that stands
for end-to-end delay, then the probability of dropping a data
packet at the sink node is given by:

Pblocking = Pr {D > TQoS} (3)

The objective of the framework folds into:
1) Computing the maximum allowable hop-count K∗ such

that E[D] < TQoS .
2) Estimating the packet dropping probability for a given

number of hops.
It is worth mentioning that the objective is not to minimize

packet dropping probability since selecting maximum hop-
count such that E[D] ≈ TQoS actually implies that almost
half of the packets will be dropped. A more realistic approach
would be to compute the maximum hop-count K(ν) such
that D < TQoS with a probability that is at least given by
1 − ν. However, in this framework, we will not pursue the
latter approach, and we will restrict our analysis to the two
above objectives. Looking into how the above metrics vary
with service, scheduling, and sleeping policy in the network
presents a complex model that captures many of the inherent
tradeoffs in wireless sensor network design.

III. ANALYSIS

In this section, we present analytical expressions for the
maximum hop-count K∗ as well as the packet dropping
probability. The approach used in this paper follows closely
standard derivations for M/G/1 queues (see for instance [11],
[12]). A summary of notations is given in Table I.

As stated in the model description, we have K non-
preemptive relay nodes in the network with two priority

TABLE I
NOTATIONS

Symbol Definition

M Number of sensors taking measurements

K Total number of relay nodes in the network up
to the data sink node

λC,i Poisson arrival rate of control packets at hop i

λD,m Poisson arrival rate of data packets from sensor m

λp Aggregate Poisson arrival rate of priority p,
p ∈ {H,L}

Xj Service time random variable for packet j

χi Service time random variable at node i

pt probability of scheduling a data packet to QL

in an emergency situation

ρp,i Utilization of priority p flow, p ∈ {H,L} at node i

Vi Mean vacation time duration at node i

V 2
i Second moment of vacation time duration at node i

Rv Residual vacation time

Rs Residual service time

Wp,i Waiting time in the queue for packets of priority p,
p ∈ {H,L} at node i

ωp,i Waiting time in node i for packet of priority p,
p ∈ {H,L}

Ti Average response time at node i

τi Propagation delay between node i− 1 and node i

Np Number of packets scheduled in the queue with priority p,
p ∈ {H,L}

queues and, possibly, different service rate or vacation time
distributions. Despite the fact that both packet arrival rate
as well as service times are assumed to be exponentially
distributed, the overall system is not M/M/1 because vacation
time distribution is arbitrary. Hence, the overall system is
model as M/G/1. Initially, we are interested in obtaining the
mean waiting time WD and second moment W 2

D that will be
experienced by data packets at each relay hop. Without loss
of generality, we can look into each relay hop in isolation
and temporarily drop the node index i. This is because,
under stated assumptions of exponential service times and
small average vacation times, the output of each queue is
approximately Poisson distributed. To achieve our goal, we
first note that the waiting time of a high priority packet,
denoted WH , is given by:

WH =

NH∑
j=1

Xj +R. (4)

where, Xj is the service time of packet j and R is the residual
time. Here, R can be either residual service time Rs or residual
vacation time Rv depending on utilization. The first moment
of this residual time can then be written as

R =
1

2

[
(ρH + ρL) · X

2

X
+ (1− ρL − ρH) · V

2

V

]
. (5)



From (4), and upon applying Little’s formula to the average
size of high priority queue NH , we obtain:

WH =
R

(1− ρH)
. (6)

To reiterate, ρH = λH · X̄ is the fraction of time a relay
node is serving high priority traffic. Proceeding with additional
algebraic manipulations yield the desired second moment of
waiting time for high-priority traffic:

W 2
H = NH ·Var(X)+

[(
1 +

ρH
1− ρH

)
R

]2
+Var(R), (7)

where

NH = λH WH ,

ρH = λH ·X,
Var(R) = R2 −R2

.

Note that equation (7) was obtained by raising both sides
of (4) to the 2nd power and taking expectation.

The above expression for W 2
H is nearly complete except that

we need to evaluate R2. To do this, we use the law of total
expectation, which states that E[Y ] = E[E[Y |X]]. Applying
this, we obtain:

R2 = ρHR2
H + ρLR2

L + (1− ρH − ρL)R2
v

=
1

3

(
(λH + λL)X3 + (1− ρH − ρL)

V 3

V

)
. (8)

The above equations were derived for the high-priority
traffic. As a sanity check, suppose that we have very limited
high priority traffic, i.e. ρH → 0. Then, from (7) we obtain
W 2
H ≈ R2, which agrees with expectation because in the

latter case WH → R. In other words, if high priority traffic is
limited, then high priority queues contain at most one packet
almost all the time, and waiting time for high priority packets
is chiefly due to residual time only. Similarly, as ρH → 1, we
know that ρL → 0 by assumption of stability. Consequently,
the same equation implies that Var(Wc) ≈ N c·Var(Xc), under
specified limit, which agrees with well-known sum of variance
law that holds in this particular scenario.

For lower-priority traffic, the waiting time of a low priority
packet can be expressed as

WL =

NH∑
j=1

Xj +

NL∑
j=1

Xj +

WL·λH∑
j=1

Xj +R. (9)

Equation (9) essentially states that the waiting time of a low-
priority packet can be decomposed into four components: 1.
residual time due to service or vacation, 2. the time to serve
existing high priority packets, 3. the time to serve existing
low-priority packets that are ahead in the queue, and 4. the
time to serve new high priority packets that arrive while the
low-priority packet is waiting. Algebraic manipulations yield

the following expressions for the first and second moments of
the waiting time

WL =
R

(1− ρH) (1− ρH − ρL)
, (10)

and

W 2
L = qL · Var(X) + qH · Var(X) (11)

+ (qH + qL)2 ·X2
+R2 + qZ ·R

where the coefficients qL, qH and qZ are defined as

qL = NL,

qH = NH + λH ·WL,

qZ = 2 (qH + qL) ·X.

The desired equations for the first two moments of the
waiting time are complete. One immediate sanity check is to
note that 11 reduces to 7 whenever λH → 0, which agrees
with expectation because in the latter case lower-priority traffic
essentially becomes higher-priority traffic.

A. Maximum Hop-count

The maximum allowable hop-count that respects the QOS
delay constraint is given by

K∗ = arg max
K

{
K∑
i=1

T i ≤ TQoS

}
, (12)

where

T i = (1− pt) ·WH,i + pt ·WL,i +

K∑
i=1

τi, (13)

with WH,i and WL,i are respectively given by (10) and (11)
for each i = 1, 2, · · ·K.

In a particular case, if all relay nodes were identical, then
we obtain a simpler expression as,

K∗ ≈ TQoS

T
, (14)

with T = T i, i = 1, 2, · · ·K.

B. Blocking Probability

Knowing the first and second moments of the random
variables, we assume that the overall sum of all service times
and waiting times experienced by a packet from source to sink
can be approximated by a normal distribution. Such assump-
tion is quite reasonable even if distributions of the random
variables are not necessarily identical. In fact, many variants
of the central limit theorem such as Lyapunov’s show that the
Gaussian property of the sum of random variables hold under
more general conditions, including the sum of independent but
not necessarily identical random variables [13]. In our case, we
are interested in end-to-end delay D =

∑K
i=1Wi +

∑K
i=1Xi

for both high-priority traffic DH and low-priority traffic DL.
Thus, we have

Dp ∼ N (µp, σp) (15)



where

µp =

K∑
i=1

χi +

K∑
i=1

ωp,i, (16)

σ2
p =

K∑
i=1

Var(χi) +

K∑
i=1

Var(ωp,i), (17)

with χi denotes service time at node i and ωp,i denotes waiting
time at node i for traffic with priority p ∈ {L,H}.

Therefore, the final desired blocking probability is a
weighted sum according to whether a data packet is scheduled
in the high-priority queue or the low-priority queue:

P[D > TQoS] ≈ 1

2
(1− pt)

[
1− erf

(
1√
2
· TQoS − µH

σH

)]
+

1

2
pt

[
1− erf

(
1√
2
· TQoS − µL

σL

)]
. (18)

where erf(·) is the error function [14, Eq.(8.250.1)].

IV. NUMERICAL RESULTS

To validate the above framework, different scenarios have
been simulated. First, to verify correctness of the analytic
expressions for WH and W 2

H (i.e., moments of waiting time in
single priority queues), we simulated a single M/G/1 queue
with generally distributed vacation and service times. Here,
we opt to test the analytic expression for arbitrary service
time distributions even though service time was originally
assumed to be exponentially distributed because the formulas
hold, in general, for single hops since data traffic is always
Poisson by assumption. A summary of test scenarios is shown
in Table II. Here, the number of packets is set to N = 105

and λ = 1. As shown in Table III, simulation results match
analytic expressions for the different distributions used.

TABLE II
SIMULATION SCENARIOS

Service/Vacation
Time Distribution X X2 X3 V V 2 V 3

Exp / Exp 1
3

2
9

2
9

1 2 6

Exp / Deterministic 1
3

2
9

2
9

1 1 1

Gaussian / Exp 1
3

109
900

127
2700

1 2 6

Deterministic / Deterministic 1
3

1
9

1
27

1 1 1

With regard to end-to-end delay, a summary of test results is
shown in Table IV. As expected, the analytical model becomes
more accurate as V · (λH + λL) → 0, and λC/λD → 0,
and K → ∞. In the first two cases, the Poisson property
of data traffic is preserved at the specified limits, and hence
queues remain M/G/1 so that traffic sees time averages (a.k.a
PASTA). In the last case, our normal approximation to the
variance of end-to-end delay becomes more accurate as K
increases.

TABLE III
BASIC SIMULATION RESULTS

Service/Vacation Analytic Sim Analytic Sim
Time Distribution WH WH W 2

H W 2
H

Exp / Exp 1.1667 1.171 2.2932 2.485

Exp / Det 0.6667 0.6785 0.6173 0.6858

Gauss / Exp 1.091 1.102 2.021 2.250

Det / Det 0.5833 0.5924 0.4236 0.4599

TABLE IV
END-TO-END DELAY RESULTS

Test Parameters Analytic Sim Analytic Sim
µ, V , λD , λC , K µT µT σT σT

1, 0.1, 0.5, 0.1, 35 92.5 93.7 13.8 10.1

5, 0, 1, 0.2, 50 13.7 13.8 1.89 1.91

10, 0.2, 3, 0.1, 60 23.9 21.4 2.35 1.74

3, 0, 0.7, 0.1, 100 46.8 46.8 4.63 4.20

In order to verify that the normal approximation for large
K � 0 is valid, we plotted histograms for various settings
and the resulting distribution is indeed approximately normal.
Two samples are depicted in Figures 4 and 5 for K = 30 and
K = 60 respectively.

Fig. 4. Histogram of end-to-end delay for K = 60. End-to-end delay
distribution is approximately Gaussian.

Fig. 5. Histogram of end-to-end delay for K = 30. End-to-end delay
distribution is also approximately Gaussian.

With regard to maximum hop-count, Table V shows maxi-
mum hop-count for various settings of vacation time distribu-
tion. As shown in the table, simulation results match almost
perfectly with analytical results. As stated earlier, the mean
vacation time V is assumed to be small compared to mean



inter-arrival time λD+λC . So, Table V only shows the results
for V · λD ≤ 0.2.

TABLE V
MAXIMUM HOP-COUNT VS. VACATION TIME DISTRIBUTION

(SIMULATION / ANALYTICAL)

(λD = 1, λC = 0.1, µ = 5)

Vacation Time V
Distribution 0 0.05 0.1 0.15 0.2

Exponential 18/18 14/15 13/13 11/11 10/11

Gaussian 18/18 17/17 15/15 14/14 13/13

Deterministic 18/18 16/17 15/15 14/14 13/13

Finally, the packet dropping probability as a function of K
is plotted in Figure 6. Both simulation and analytic results are
displayed for the three vacation time distributions: Exponen-
tial, Normal, and Deterministic. Here, the setting of parameters
is similar to that of Table V, with a fixed mean vacation time
at V = 0.1. As shown in the figure, simulation results closely
match analytical results. Similar results were obtained when
relay hops had different settings of control traffic rate and
sleeping policy.
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Fig. 6. Packet dropping probability vs. number of hops for three different
distributions of vacation time: Exponential, Normal, and Deterministic.

V. CONCLUSION

End-to-end delay and energy consumption are the two key
issues in wireless sensor networks. Since wireless sensor
networks are deployed to operate for very long periods of time,
it is essential to reduce energy consumption in the network
nodes, giving rise to an inherent tradeoff between QoS and
energy conservation in the network. In this paper, we modeled
a delay-sensitive network that adopts a vacation scheme. We

provided an analytical derivation for the proposed model and
verified its results with numerical simulations.

There are several potential extensions to this framework. For
instance, we may define the QoS by a tuple that is composed of
the maximum end-to-end delay and the probability of packet
blocking, and then calculate the corresponding maximum
allowable hop-count beyond which the imposed QoS would be
violated. In other words, for efficient relay nodes deployment,
we impose a constraint on the blocking probability in the
system as opposed to the mean end-to-end delay. Accordingly,
we compute the maximum number of relay nodes that would
deliver the sensing measurements without violating the QoS
requirements with a high probability.
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