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Abstract

This paper studies the temporal characteristics of the intelligent reflecting surface (IRS)-based

visible light communication (VLC) channel using radiometric concepts. Throughout this study, we

account for the delays experienced by the transmitted power along the continuum of paths originating

at the source, passing through the IRS, reaching the detector. Then, we derive the impulse response

of multi-element phase-tunable metasurface and orientation-tunable mirror array-based reflector setups

for a general setting of source, reflector, and detector dimensions and relative positions. In addition,

we derive simpler expressions for the two special cases, namely, the point source and the large-source

small-reflector. Moreover, we present the exact expression for the delay spread and derive lower, upper

bounds and asymptotic expressions when the number of reflecting elements increases for both reflector

types. Finally, we study the impact of several system parameters on the temporal characterization of

the two IRS-based VLC systems.

Index Terms

Intelligent reflecting surfaces, Metasurfaces, Mirror arrays, Visible Light Communications, Channel

modeling

I. INTRODUCTION

Visible light communication (VLC) offers a viable competitive solution compared with the

radio-frequency technology thanks to the spectrum abundance, physical security, and low elec-

tromagnetic interference, in addition to the recent wide adoption of light-emitting-diodes for
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lighting [1]. Such favored features promote VLC as one of the main enablers of the sixth

generation networks [2], [3] required to support unprecedented data rates, a massive number of

devices, and a plethora of services [4]–[6]. Nonetheless, VLC systems performance is hindered

by some challenges. For instance, the fidelity of VLC links relies heavily on Line-of-Sight

(LoS) existence between the transmitter and the receiver. Moreover, VLC systems are required

to fulfill many illumination objectives as spatial uniformity of irradiance distribution, and limited

variability of instantaneous radiated optical power [7]. Recently, reconfigurable reflecting surfaces

are incorporated in VLC systems to increase the probability of having a LoS link between the

transmitter and the receiver [8]. In addition, they can aid VLC systems in achieving a better

tradeoff between the communication and the illumination quality of service.

Intelligent reflecting surfaces (IRS) are considered and studied to add more degrees of freedom

to optical wireless communication systems [8]–[13]. In [9], [10], Najafi et al. investigated

the incorporation of smart mirrors and metasurfaces to relax the LoS requirement for free-

space optical links. Additionally, in [11], Ajam et al. used the Huygens-Fresnel principle to

derive the channel model of the IRS-based FSO link. Moreover, in [14], Wang et al. derived

closed-form expressions for the output power density of IRS-assisted FSO systems where beam

splitting is taken into consideration. In [12], Valagiannopoulos et al. used the metasurfaces

to cover optical transmitters to add a programmable beam directivity feature for the optical

communication system. Similarly, in [13], Ndjiongue et al. proposed the use of intelligent

surfaces at the photodetector side to improve the transmission range. Recently, we proposed

metasurface and mirror array-based VLC systems and proved their effectiveness in focusing the

incident power towards the detector in [8]. The superiority offered by IRS-based optical systems

over their conventional counterparts is obvious in terms of received power and delay spread for

non-LoS scenarios. As for LoS scenarios, a received power gain is achieved when IRS-based

VLC systems are adopted whilst increasing the delay spread. The full exploitation of VLC

networks necessitates thorough characterization of the optical wireless channel under different

deployment scenarios.

Optical wireless channel modeling has been investigated thoroughly in the literature [15]–[18],

[19, Ch. 1] using the radiometric theoretical framework. Indoor optical wireless channel modeling

encompassed many scenarios ranging from deterministic channel models to stochastic ones [20,

Ch 3.1]. The deterministic channel models account for the relative transmitter, receiver positions,

and orientations in an empty room; however, the stochastic models account for blockages due
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to furniture and people’s motion. The main focus of optical channel modeling is on diffuse

reflections (unintentional and designed) as discussed in [20, Ch 3.1] and the references therein.

In contrast, less optical channel modeling research used specular reflections resulting from

perfect mirrors such as [21]. To account for more advanced reflection characteristics, Rufo

et al. proposed employing reflection models based on bidirectional reflectance distribution

function as Blinn’s or Lafortune’s models into the impulse response estimation of the indoor

wireless optical channels in [22]. In [23], Miramirkhani et al. compared the widely adopted

channel models for the wireless visible light channel and proposed a numerical ray-tracing based

channel modeling approach that accommodates general source radiation patterns and mixed

specular-diffuse reflections. In the previously mentioned works, the considered reflections were

either imposed by the static environment representing the confined indoor space walls or placed

deliberately to achieve directed non-line of sight communications. However, the considered

reflection design problems featured limited degrees of freedom due to the employed reflectors’

static reflection characteristics.

In our previous work [8], we proposed IRS-aided VLC systems and modeled the static

frequency flat channel, where the focused power is assumed to reach the detector instantaneously,

or equivalently, when the delay spread is negligible compared with the symbol duration. In this

work, we explore the temporal dispersive nature of the IRS-based VLC systems imposed by the

reflector topology, or the geometric layout of the source, reflector and detector, or the signaling

rate where the delay spread can not be neglected compared with the symbol duration. To this

end, we first derive the continuous-time channel impulse response and then use it to find the

tapped-delay line representation for both metasurface and mirror array-based VLC channels.

Moreover, we define the exact delay spread formula and derive a simplified version for the

asymptotically large number of elements. Also, we derive an upper bound for the delay spread

characterizing the two systems. Finally, we illustrate the effect of different system parameters as

the number of reflecting elements, reflector area, relative positions of the source, reflector, and

detector on the impulse response, and, consequently, the delay spread for both types of IRS. This

enables system designers avoid inter-symbol interference in the considered frequency selective

channel, or combat it by designing the required equalizers accordingly. It is worth mentioning

that the derived IRS-aided VLC channel model in this work is most suitable for indoor scenarios

(residential buildings, hotels, lecture halls, hospitals, to name but a few) imposing strict mobility

constraints and consequently the channel can be considered quasi-static [20, Ch. 3.1], [24]. To
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the best of our knowledge, this is the first channel modeling study for IRS-based non-coherent

VLC systems.

The rest of this paper is organized as follows: firstly, we present the metasurface and mirror

array-based reflectors system models in section II. Then, we derive the continuous channel

impulse response in section III. Next, we provide the tapped-delay-line channel model and

derive the delay spread of the two reflectors for different scenarios in section IV. After that, we

present extensive simulations for the two systems in section V. Finally, we give our conclusions

regarding the two reflecting systems in section VI.

Notations: In this paper, we represent a vector by two capitalized bold letters as AB, where it

starts from A and ends at B. A starts from from origin and ends at A. AB = [ABx ABy ABz]
T =

B − A, where ABx, ABy, and ABz representing its x, y and z coordinates, respectively, and

(.)T represents the transpose operator. ÂB is the unit vector of AB and represents the di-

rection of a vector starting at point A and ending at point B. AB represents a line segment

between the points A and B. Moreover, we use J(a,b
c,d

) to denote the determinant of the Jacobian

matrix J̄(a, b, c, d) associated with mapping c and d variables into a and b variables, where

J̄ ,
[[

∂a
∂c

∂b
∂c

]T [
∂a
∂d

∂b
∂d

]T]. Also, we use ek denote the k-th column of the identity matrix.

Furthermore, we use ||.||2 to denote the `2-norm, while we use |.| to represent the absolute

value of a scalar. I(C) represents an indicator function where I(C) = 1 if the condition C is

satisfied and I(C) = 0, otherwise. Regarding the fonts, we use calligraphic and blackboard fonts

to represent symbols for sets and matrices, respectively.

II. SYSTEM MODEL

In this work, we consider the metasurface-based and mirror array -based VLC systems pro-

posed in [8], where a non-coherent light emitting diode (LED) transmitter that is horizontally-

oriented and attached to the room ceiling separated vertically by a distance hd from the detector

plane as depicted in Fig. 1 and Fig. 2. The positive x, y and z axes orientations are set such that

the z-axis is normal to the ceiling, pointing at the room floor, while the y-axis is orthogonal to a

wall and points inside the room, and the x-axis forms a right handed coordinate system with the

y− and z− axes. Moreover, we assume an extended planar source spanning an area As = wsls

where ws and ls represent the side lengths of the source rectangular aperture measured along the

x-direction and y-direction, respectively. The transmitter aperture points are characterized by the
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same radiance expressed as [8, Eqn. (1)]

L(θs, t) =
(m+ 1)p(t)

2πAs

cosm−1 (θs) , (1)

where m = − ln(cos
(
φ1/2

)
), φ1/2 represents the half power beamwidth, p(t) denotes the trans-

mitter instantaneous optical radiated power at time t, θs is the angle between the normal vector

exiting the source aperture and the direction of radiance measurement.

Moreover, we assume a receiver having horizontal orientation whose center x-direction offset

from the source center is xd, while it is offset by yd from the reflector along the positive y-

direction, as shown in Fig. 1 and Fig. 2. The detector aperture is assumed to be rectangular with

edges parallel to the x and y- axes having side lengths wd and ld, respectively. Furthermore, the

detection pattern is assumed to be Lambertian having a field-of-view of 90◦.

Finally, we detail the structure of the considered reflectors in the following sections.

A. Intelligent metasurface reflector

For the metasurface reflector, we assume a co-planar np × np array of identical rectangular

optical metasurface patches whose widths and heights are wp and hp, respectively, lying in a

vertical surface orthogonal to the y-axis. The offsets between patches along the z-axis and the

x-axis are ∆hp and ∆wp , respectively. The reflector location is defined with respect the source

location by a minimum clearance along the positive z- direction zs, with a minimum offset xs

along the positive x-direction and constant separation ys along the negative y-direction with all

offsets being measured from the source center. Moreover, we assume that the introduced phase

discontinuity (Θ) of each metasurface patch is individually controllable and constant along the

patch.

B. Intelligent mirror array

As for the mirror array system, we consider an nM × nM two-dimensional array of identical

rectangular mirrors whose centers form a rectangular grid in the x − z plane. We assume that

the each mirror supports two rotational degrees of freedom as shown in Fig. 2, such that the

mirror orientation is determined by two successive rotations; the first is about the mirror local

z-axis with an angle β and the second is about the rotated version of the mirror local negative

x-axis (negative x-axis) with an angle α as depicted in Fig. 3. In the reflector default position,

(αk,` = 0 ∀k, `, βk,` = 0 ∀k, ` ), each mirror spans wm and hm along the x-direction and the
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Fig. 1: Metasurface-based IRS Model

Fig. 2: Mirror Array-based IRS Model

z-direction, and adjacent mirrors centers are separated by wm + ∆wm and hm + ∆hm along the

x-axis and the z-axis, respectively.

The thicknesses of the employed materials in the considered reflectors are much larger than

the penetration depth in the visible range, and hence, transmittance for both reflector types is
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Fig. 3: Rotational Degrees of Freedom of each Mirror

negligible.

III. CONTINUOUS CHANNEL MODEL

In this section, we derive the impulse response of the two considered IRS-based systems, with

the system input being the total radiated optical power and the system output being the received

optical power at the detector. Towards this aim, firstly we present the set of assumptions adopted

assumptions as follows:

• The phase discontinuities of all metasurface patches are tuned such that the chief incident

rays1 are reflected at the detector center based on [8, Eqn. 21, 22]. Moreover, they are

assumed linear without restrictions on their bounding values.

• The mirrors’ orientations are set such that the incident chief rays are reflected at the detector

center and determined according to [8, Eqn. 36, 37]. In addition, the angles of rotation α

and β accept values between −π/2 and π/2.

• The detector location is perfectly known at the IRS controller and the IRS mirrors orientation

or introduced phase discontinuity errors are assumed negligible.2

• The surfaces of the both reflectors’ elements are perfectly smooth.

1A chief ray is the ray traveling from the source center towards a reflecting element center.
2This assumption can be realized in practice by having an incorporated positioning system which reports the detector location

IRS-aided VLC system upon significant location variation or periodically based on statistical estimate of the channel coherence

time.
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• The reflection coefficient magnitude is invariant with the direction of incidence for both

reflectors.

• The data transmission is achieved via a monochromatic source. Hence, spectral dependencies

of the reflection coefficients can be neglected.

• The detector dimensions are assumed to be small compared with all the distances between

the reflector points and the detector points. Hence, irradiance at the detector surface can be

assumed constant and equal to that at the detector center.

Before delving into the derivation details, providing a brief discussion on the spatial illumi-

nation uniformity and eye safety aspects of the considered setups is due.

Firstly, the spatial illumination uniformity will not be perturbed significantly if the reflected

beam is well-focused within the detector area. In such case, only the tails of the power density

spatial distribution profile will be outside the detector boundaries which will be insignificant

compared with the ambient lighting. The power density profile spatial extent in the detector

plane is controlled by the source dimensions and the IRS reflecting elements dimensions [8].

Consequently, a large number of small reflecting elements and a source with small enough

physical dimensions should provide the necessary reflected beam confinement.

Secondly, the sensitivity of different parts of the eye depends heavily on the wavelength of the

incident light. Eye retina is the most sensitive part to light in the visible frequency range, hence,

exposure limits are set with the aim of retinal injury (photoretinitis) avoidance. Towards this

end, irradiance at the retina surface is the key quantity to be monitored. The retinal irradiance is

proportional to the source radiance [25, Eqn. 3] for the extended source case where the source

subtends more than 10 arc minutes measured at the observer. In case of very small angular extent

of the source as perceived by the observer (point source), the corneal irradiance represents the

determining quantity for setting the exposure limits [26, Ch. 4.5.3]. Eye safety can be guaranteed

via pursuing two approaches simultaneously. The first of which is controlling the irradiance at

the detector center (focused power density), which represents an upper bound on the corneal

irradiance, through controlling the activity of reflecting elements and their reflection coefficients.

At the same time, a source with eye safe and adequate radiance for illumination should be chosen

(radiance transfer by the reflector arrays will only attenuate it). 3,

3Activity refers here to the state of the reflecting element whether it is participating in power focusing or not.
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It is worth mentioning that the user data transmission maps to temporal variations in the

radiance of the non-coherent LED source. Hence, it is crucial to apply the radiometric principles

whilst accounting for the delays of different paths, i.e., all the previously discussed radiometric

quantities in [8] are time varying in this study. The adopted radiometric treatment in this work

ignores interference as this effect requires special arrangements to be significant when non-

coherent sources are employed [27, Ch. 7.3.4]. We denote the radiance measured at a point X,

along the direction
−→
XY representing a ray traveling from X to Y at a time instant t by L

X,
−→
XY

(t).

Consequently, the radiance invariance principle in free space can be generalized to account for

the temporal dependency as follows:

L
X,
−→
XY

(t) = L
Y,
−→
XY

(
t+
||XY||2

c

)
, (2)

where c is the speed of light in free space.

The irradiance contribution measured at P of a differential area element (dAR) located at an

arbitrarily chosen point R belonging to one of the reflecting elements can be expressed as

dEb
P(t) = L

P,
−→
RP

(t) cos
(
θbR,P

)
cos
(
θP

R

)
BI
(
IbR,P ∈ S

)
dAR/||RP||22, (3)

where b, appearing hereafter in the superscripts and the subscripts of the variables indicates

the type of the reflector considered, such that b = Ms and b = Mi are used for metasurface

and mirror array reflectors, respectively. θbR,P, represents the angle between the normal to the

differential area element and RP, θP
R is the angle between the normal to the detector plane and

RP, B is a binary variable that accounts for the inter-element blockage between the reflector

array elements, IbR,P is the point in the source plane from which the incident ray on the IRS at

R is reflected towards P, and S is the set of points representing the source aperture.

Using radiance invariance principle along straight lines, it can be deduced that L
P,
−→
RP

(t) =

L
R,
−→
RP

(t − ||RP||2
c

). Based on the specular reflection assumption for both reflector types, it can

be deduced that L
R,
−→
RP

(t) = ρbL
R,
−−−→
IbR,PR

(t), where ρb represents the reflection efficiency. By

exploiting the radiance invariance principle once more, it can be seen clearly that L
R,
−−−→
IbR,PR

(t) =

L
IbR,P,

−−−→
IbR,PR

(t− ||I
b
R,PR||2
c

). Consequently, L
P,
−→
RP

(t) = ρbL
IbR,P,

−−−→
IbR,PR

(t− ||I
b
R,PR||2+||RP||2

c
).

By adding the irradiance contributions of all the reflecting elements, the total irradiance at P

can be written as

Eb
P(t)=ρb

∑
k,`

∫∫
Rb

k,`

L
IbR,P,

−−−→
IbR,PR

(
t−
||IbR,PR||2 + ||RP||2

c

)
cos
(
θbR,P

)
cos
(
θP

R

)
BI
(
IbR,P ∈ S

)
||RP||22

dAR,

(4)
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where RMS
k,l ∀k, l represents the set of points lying on an arbitrarily chosen metasurface patch/

mirror in the k-th row and l-th column of the reflector array.

By plugging the radiance expression of the uniform-emittance generalized Lambertian source

(1), the previous expression can be re-written as

Eb
P(t)=ρb

∑
k,`

∫∫
Rb

k,`

p(t− τ(IR,P,R,P))(m+ 1) cosm−1

(
θ

IbR,P

R

)
2πAs||RP||22

cos
(
θbR,P
)

cos
(
θP

R

)
BI
(
IbR,P∈S

)
dAR,

(5)

where τ(A,B,C) = ||AB||2+||BC||2
c

, and θIR,P

R is the angle between the normal to the source aperture

and IR,PR. Finally the impulse response of the two reflecting systems can be expressed as

hb(t) = Eb
D(t)|p(t)=δ(t)APD, (6)

where δ(.) represents the dirac-delta function such that δ(0) =∞, δ(x) = 0 ∀x 6= 0,
∫∞
−∞ δ(x) =

1, and APD = `dwd is the photodetector area.

In the following subsections, we consider special practical cases for the optical source and

derive upper bounds or approximations of the corresponding impulse response.

A. Point Source

We define the optical source to be a “point source” when its dimensions are very small

compared with the distances to the reflector and the detector. We first derive the irradiance at

the detector center (D) as the source dimensions tend to zero as follows,

Eb
D,PS(t) = lim

ws→0,`s→0
ρb
∑
k,`

∫∫
Rb

k,`

p(t− τ(IbR,P,R,P))(m− 1) cosm−1

(
θ

IbR,P

R

)
2πAs||RD||22

cos
(
θbR,P

)
cos
(
θP

R

)
×BI

(
IbR,P ∈ S

)
dAR. (7)

Since B ≤ 1, and in a similar way to the transition from [8, (53)] to [8, (54)], Eb
D,PS(t) can be

upper-bounded as

Eb
D,PS(t) ≤ ρb

∑
k,`

p(t− τ(S,Rk,`,D))(m+ 1) cosm−1
(
θS

Rk,`

)
2π||Rk,`D||22

cos
(
θbRk,`,D

)

× cos
(
θD

Rk,`

)
J

(
IbR,D,x, I

b
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

, (8)
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where Rk,` represents the center point of Rk,`, θS
Rk,`

, represents the angle between the normal to

the source aperture and SRk,`, θbRk,`,D
represents the angle between the normal to the reflecting

element Rk,` and Rk,`D, θD
Rk,`

represents the angle between the normal to the photodetector

surface and Rk,`D, IbR,D,x, Rx, and Rz represent the x− coordinate of IbR,D, the x− coordinate

of R, and the z− coordinate of R, respectively. Consequently, the impulse response can be

expressed as

hbPS(t) ≤ ρb
∑
k,`

APD(m+ 1) cosm−1
(
θS

Rk,`

)
2π||Rk,`D||22

cos
(
θbRk,`,D

)
cos
(
θD

Rk,`

)

× J

(
IbR,D,x, I

b
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

δ(t− τ(S,Rk,`,D)). (9)

For the mirror array reflector, the previous expression can be simplified using [8, (62)] to

hMi
PS(t) ≤ ρb

∑
k,`

APD(m+ 1) cosm
(
θS

Rk,`

)
2π (||Rk,`S||2 + ||Rk,`D||2)2 cos

(
θD

Rk,`

)
δ(t− τ(S,Rk,`,D)). (10)

As for the metasurface reflector, the impulse response can be simplified by approximating the

Jacobian term appearing in (9) in a similar way to [8, (66)], into

hMs
PS(t) ≈ ρb

∑
k,`

APD(m+ 1) cosm
(
θS

Rk,`

)
2π (||Rk,`S||2 + ||Rk,`D||2)2 cos

(
θD

Rk,`

) cos
(
θMS

Rk,`,D

)
N̂

T

k,`R̂k,`D
δ(t− τ(S,Rk,`,D)),

(11)

where N̂k,` represents a unit vector orthogonal to the reflecting element Rk,`.

B. Large source small reflector

In this case, we assume the reflector dimensions are very small compared with the minimum

distance between source points and reflector points. Similarly, the reflector dimensions are

assumed to be very small compared with the minimum distance between reflector points and D.

Moreover, the source is assumed to be large enough such that all the incident rays corresponding

to reflected rays hitting D originate within S. Accordingly, the total irradiance at the detector

center in this case reduces to

Eb
D,LSSR(t) =

∑
k,`

(m+ 1) cosm−1
(
θS

Rk,`

)
cos
(
θbRk,`,D

)
2πAs||Rk,`D||22

B cos
(
θD

Rk,`

)∫∫
Rb

k,`

p(t− τ(IbR,D,R,D))dAR.

(12)
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Hence, the impulse response can be expressed as

hbLSSR(t) = APD

∑
k,`

(m+ 1) cosm−1
(
θS

Rk,`

)
cos
(
θbRk,`,D

)
2πAs||Rk,`D||22

B cos
(
θD

Rk,`

)
Ib(t), (13)

where

Ib(t) =

∫∫
Rb

k,`

δ(t− τ(IbR,D,R,D))dAR. (14)

The previous expression can be further simplified for negligible path delays for rays hitting the

same reflecting element as

hbLSSR(t) ≈ APD

∑
k,`

(m+ 1) cosm−1
(
θS

Rk,`

)
cos
(
θbRk,`,D

)
2πAs||Rk,`D||22

B cos
(
θD

Rk,`

)
ARδ(t− τ(S,Rk,`,D)),

(15)

where AR represents the area of the reflecting element.

IV. TAPPED-DELAY LINE CHANNEL MODEL

This section considers the temporal dispersive nature of the optical wireless channel and

develops a tapped-delay line representation of the end-to-end channel. Towards this end, by

following a similar procedure to that adopted in [28, Ch. 2], we express the received signal as

a weighted sum of differently delayed replicas of the transmitted signal as

yb(t) =
L∑
a=0

qbax(t− `

Bx

) + n(t), (16)

where qba represents the a−th tap coefficient and can be expressed as

qba = hb(t) ∗ sinc(Bxt)|t= a
Bx

, (17)

where ‘*’ represents the convolution operator. Using (5), (6), and evaluating the previous con-

volution, qb
a can be expressed as

qba =
∑
k,`

∫∫
Rb

k,`

ρbAPDsinc(a−Bxτ(IR,P,R,P))(m+ 1) cosm−1

(
θ

IbR,P

R

)
2πAs||RP||22

cos
(
θbR,P
)

cos
(
θP

R

)
BI
(
IbR,P∈S

)
dAR,

(18)
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where x(t) is a band-limited signal with bandwidth Bx, n(t) represents the noise term, L ≈ τdBx

is the number of significant taps, i.e., the number of resolvable paths, and τ bd represents the

channel delay spread. Consequently, (18) reduces to

qba ≤ ρb
∑
k,`

APD(m+ 1) cosm−1
(
θS

Rk,`

)
2π||Rk,`D||22

cos
(
θbRk,`,D

)
cos
(
θD

Rk,`

)

× J

(
IbR,D,x, I

b
R,D,y

Rx,Rz

)∣∣∣∣∣
R=Rk,`

sinc(a−Bxτ(IR,P,R,P)), (19)

for the point source case, and

qba ≈ APD

∑
k,`

(m+ 1) cosm−1
(
θS

Rk,`

)
cos
(
θbRk,`,D

)
2πAs||Rk,`D||22

B cos
(
θD

Rk,`

)
ARsinc(a−Bxτ(IR,P,R,P)),

(20)

for the large source small reflector case.

In this work, we define the delay spread as the difference between the maximum and the

minimum delays encountered by the rays exiting the source and hitting the detector center,

τ bmax, τ
b
min, respectively. Hence, the delay spread is written as

τ bd = τ bmax − τ bmin, (21)

where τ bmax is found from,

τ bmax = max
R

τ
(
IbR,D,R,D

)
subject to R ∈

⋃
k,`

Rk,`, I
b
R,D ∈ S, (22)

that can be rewritten equivalently as,

τ bmax = max
k,`

max
R

τ
(
IbR,D,R,D

)
subject to R ∈ Rk,`, I

b
R,D ∈ S,

(23)

while τ bmin is given by,

τ bmin = min
R

τ
(
IbR,D,R,D

)
subject to R ∈

⋃
k,`

Rk,`, I
b
R,D ∈ S, (24)



14

or equivalently from,

τ bmin = min
k,`

min
R

τ
(
IbR,D,R,D

)
subject to R ∈ Rk,`, I

b
R,D ∈ S. (25)

By expressing the second constraint in the previous optimization problems in terms of Rx and

Rz based on [8, Eqn. (58), (59)] for the mirror array reflector, and their counter parts for the

metasurface reflector, the complexity of the feasibility region becomes self evident. Consequently,

we derive upper-bounds for the delay spread of both reflector types, the asymptotic case with

very large number of reflecting elements, and the point source.

A. Upper bound on the delay spread

The fundamental idea behind the upper bounds derived in this section and the next section is

based on considering all the rays exiting the source and hitting the IRS as contributors to the

delay spread. This can be formulated as

τ bd,UB = τ bmax,UB − τ bmin,LB, (26)

where

τ bmax,UB = max
R,̄I

τ
(
Ī,R,D

)
subject to R ∈

⋃
k,`

Rk,`, Ī ∈ S, (27)

τ bmin,LB = min
R,̄I

τ
(
Ī,R,D

)
subject to R ∈

⋃
k,`

Rk,`, Ī ∈ S, (28)

1) Mirror array reflector: To further simplify the computational complexity for the mirror

array setup, we relax the locality constraint of the reflection point to be within the tightest

bounding box for the mirror array setup. Consequently, the delay spread upper bound for the

mirror array setup can be formulated as

τMi
d,UB = τMi

max,UB − τMi
min,LB, (29)

where

τMi
max,UB = max

R,̄I
τ
(
Ī,R,D

)
subject to R ∈ B, Ī ∈ S, (30)
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where B = {A : xL ≤ Ax ≤ xU, yL ≤ Ay ≤ yU, andzL ≤ Az ≤ zU} and S = {A : xs
min ≤

Ax ≤ xs
max, y

s
min ≤ Ay ≤ ys

max, and zs
min ≤ Az ≤ zs

max} , such that

xL = min
R∈

⋃
k,`Rc

k,`

Rx, xU = max
R∈

⋃
k,`Rc

k,`

Rx, (31)

yL = min
R∈

⋃
k,`Rc

k,`

Ry, yU = max
R∈

⋃
k,`Rc

k,`

Ry, (32)

zL = min
R∈

⋃
k,`Rc

k,`

Rz, zU = max
R∈

⋃
k,`Rc

k,`

Rz, (33)

Rc
k,` represents the set of four corner points of Rk,`, and

τMi
min,LB = min

R,̄I
τ
(
Ī,R,D

)
subject to R ∈ B, Ī ∈ S. (34)

It can be seen clearly in (30) and (34) that the constraint qualification condition is satisfied.

Hence, the necessity of the Karush-Kuhn-Tucker (KKT) conditions is guaranteed [29, Ch. 13].

The Lagrangian of (30), (34) can be expressed as

L =

√
(hd − Rz)

2 + (xd − Rx)
2 + (yd − Ry)

2 +

√(
Īx − Rx

)2
+ R2

z +
(
Īy − Ry

)2

+ ν1 (Rx − xL) + µ1 (Rz − zL) + ν2 (Rx − xU) + µ2 (Rz − zU) + κ1

(
Īx − xs

min

)
+ ζ1 (Ry − yL) + ζ2 (Ry − yU) + κ2

(
Īx − xs

max

)
+ o1

(
Īy − ys

min

)
+ o2

(
Īy − ys

max

)
, (35)

where Īx, Īy represent the x− and y− coordinates of Ī, Hence, the KKT stationarity conditions

can be expressed as:

∂L
∂Rx

= 0 =⇒ Rx − xd

`RD

+
Rx − Īx
`RĪ

+ ν1 + ν2 = 0. (36)

∂L
∂Ry

= 0 =⇒ Ry − yd

`RD

+
Ry − Īy
`RĪ

+ κ1 + κ2 = 0, (37)

∂L
∂Rz

= 0 =⇒ Rz − hd

`RD

+
Rz

`RĪ

+ µ1 + µ2 = 0, (38)

∂L
∂ Īx

= 0 =⇒ Īx − Rx

`RĪ

+ κ1 + κ2 = 0, (39)

∂L
∂ Īy

= 0 =⇒ Īy − Ry

`RĪ

+ o1 + o2 = 0, (40)

where `RD =
√

(hd − Rz)
2 + (xd − Rx)

2 + (yd − Ry)
2, and `RĪ =

√(
Īx − Rx

)2
+ R2

z + Ī2
y.

We assume that ys
min > yU, hence, the optimal value for Īy (̄I∗y) for (30) and (34), respectively, is
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ys
max and ys

min. By considering the different possibilities of the Lagrange multipliers associated

with Rx,Ry,Rz, and Īx variables due to complementary slackness, the KKT stationary points of

interest belong to one of the following cases:

TABLE I: KKT stationary points where yL < R∗
y < yU, x

s
min < Ī∗x < xs

max,

Case 1 xL < R∗
x < xU,

zL < R∗
z < zU

Not a KKT point

Case 2 xL < R∗
x < xU,

R∗
z = Rc

z ∈ {zL, zU}

Ī∗x = R∗
x = xd, (41)

R∗
y,1 = Rc

z

(
yd − Īy

)
/hd + Īy, (42)

R∗
y,2 = hdĪy − Rc

z

(
yd + Īy

)
/(hd − 2Rc

z). (43)

Case 3 R∗
x = Rc

x ∈ {xL, xU}
zL < R∗

z < zU
Not a KKT point

Case 4 R∗
x = Rc

x ∈ {xL, xU}
R∗

z = Rc
z ∈ {zL, zU}

Ī∗x = Rc
x, (44)

R∗
y,1 =

−∆1 + Īy
(
(xd − Rc

x) 2 + h2
d

)
+ (Rc

z)2
(̄
Iy − yd

)
− 2hdRc

z Īy

(xd − Rc
x) 2 + hd (hd − 2Rc

z)
, (45)

R∗
y,2 =

∆1 + Īy
(
(xd − Rc

x) 2 + h2
d

)
+ (Rc

z)2
(̄
Iy − yd

)
− 2hdRc

z Īy

(xd − Rc
x) 2 + hd (hd − 2Rc

z)
, (46)

∆1 =
√

(Rc
z)2
(
yd − Īy

)
2 ((xd − Rc

x) 2 + (hd − Rc
z) 2)

TABLE II: KKT stationary points where yL < R∗
y < yU, Ī∗x = Īcx ∈ {xs

min, x
s
max},

Case 5 xL < R∗
x < xU,

zL < R∗
z < zU

Not a KKT point

Case 6 xL < R∗
x < xU,

R∗
z = Rc

z ∈ {zL, zU}

R∗
x,1 =

Rc
z

(
xd − Īc

x

)
hd

+ Īc
x, (47)

R∗
x,2 =

hdĪc
x − Rc

z

(
xd + Īc

x

)
hd − 2Rc

z

, (48)

R∗
y =

yd

(
R∗

x − Īc
x

)
+ Īy (xd − R∗

x)

xd − Īc
x

. (49)

Case 7 R∗
x = Rc

x ∈ {xL, xU}
zL < R∗

z < zU

R∗
y,1 =

ydRc
x − ydĪc

x + xdĪy − Rc
xĪy

xd − Īc
x

, (50)

R∗
y,2 =

−ydRc
x + ydĪc

x + xdĪy − Rc
xĪy

xd − 2Rc
x + Īc

x

, (51)

R∗
z =

hd

(
R∗

y − Īy
)

yd − Īy
. (52)

Case 8 R∗
x = Rc

x ∈ {xL, xU}
R∗

z = Rc
z ∈ {zL, zU}

R∗
y,1 =

∆2 + Īy
(
(xd − Rc

x) 2 + (hd − (Rc
z)) 2

)
+ yd

(
−
(
Rc

x − Īc
x

)
2 − (Rc

z)2
)(

xd − Īc
x

) (
xd − 2Rc

x + Īc
x

)
+ hd (hd − 2Rc

z)
,

(53)

R∗
y,2 =

−∆2 + Īy
(
(xd − Rc

x) 2 + (hd − (Rc
z)) 2

)
+ yd

(
−
(
Rc

x − Īc
x

)
2 − (Rc

z)2
)(

xd − Īc
x

) (
xd − 2Rc

x + Īc
x

)
+ hd (hd − 2Rc

z)
,

(54)

∆2 =
√(

yd − Īy
)

2 ((xd − Rc
x) 2 + (hd − (Rc

z)) 2)
((

Rc
x − Īc

x

)
2 + (Rc

z)2
)
.
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TABLE III: KKT stationary points where R∗
y = Rc

y ∈ {yL, yU}, xs
min < Ī∗x < xs

max,

Case 9 xL < R∗
x < xU,

zL < R∗
z < zU

Ī∗x = R∗
x = xd, (55)

R∗
z,1 =

hdRc
y − hdĪy + ydzs − Rc

yzs

yd − Īy
, (56)

R∗
z,2 =

hdĪy − hdRc
y

yd − 2Rc
y + Īy

(57)

Case 10 xL < R∗
x < xU,

R∗
z = Rc

z ∈ {zL, zU}
Ī∗x = R∗

x = xd (58)

Case 11 R∗
x = Rc

x ∈ {xL, xU}
zL < R∗

z < zU

Ī∗x = Rc
x (59)

R∗
z,1 =

−∆3 + zs

(
(xd − Rc

x) 2 + y2
d

)
− hd

(
Rc

y − Īy
)

2 + Rc
yzs

(
Rc

y − 2yd

)(
yd − Īy

) (
yd − 2Rc

y + Īy
)

+ (xd − Rc
x) 2

(60)

R∗
z,2 =

∆3 + zs

(
(xd − Rc

x) 2 + y2
d

)
− hd

(
Rc

y − Īy
)

2 + Rc
yzs

(
Rc

y − 2yd

)(
yd − Īy

) (
yd − 2Rc

y + Īy
)

+ (xd − Rc
x) 2

(61)

∆3 =
√

(hd − zs) 2
(
Rc

y − Īy
)

2
(
(xd − Rc

x) 2 +
(
yd − Rc

y

)
2
)

Case 12 R∗
x = Rc

x ∈ {xL, xU}
R∗

z = Rc
z ∈ {zL, zU} Ī∗x = Rc

x. (62)

TABLE IV: KKT stationary points where R∗
y = Rc

y ∈ {yL, yU}, Ī∗x = Īcx ∈ {xs
min, x

s
max},

Case 13 xL < R∗
x < xU,

zL < R∗
z < zU

R∗
z,1 =

hd

(
Rc

y − Īy
)

yd − Īy
, (63)

R∗
z,2 =

hd

(̄
Iy − Rc

y

)
yd − 2Rc

y + Īy
, (64)

R∗
x =

Īx (hd − R∗
z) + xdR∗

z

hd
. (65)

Case 14 xL < R∗
x < xU,

R∗
z = Rc

z ∈ {zL, zU}

R∗
x,1 =

∆4 + Īc
x

((
yd − Rc

y

)
2 + (hd − Rc

z) 2
)
− xd

((
Rc

y − Īy
)

2 + (Rc
z)2
)(

yd − Īy
) (
yd − 2Rc

y + Īy
)

+ hd (hd − 2Rc
z)

(66)

R∗
x,2 =

−∆4 + Īc
x

((
yd − Rc

y

)
2 + (hd − Rc

z) 2
)
− xd

((
Rc

y − Īy
)

2 + (Rc
z)2
)(

yd − Īy
) (
yd − 2Rc

y + Īy
)

+ hd (hd − 2Rc
z)

(67)

∆4 =
√(

xd − Īc
x

)
2
((
yd − Rc

y

)
2 + (hd − Rc

z) 2
) ((

Rc
y − Īy

)
2 + (Rc

z)2
)

Case 15 R∗
x = Rc

x ∈ {xL, xU}
zL < R∗

z < zU

R∗
z,1 =

h2
d

hd −
√

h2
d((xd−Rc

x)2+(yd−Rc
y)2)((Rc

x−Īcx)2+(Rc
y−Īy)2)

(Rc
x−Īcx)2+(Rc

y−Īy)2

, (68)

R∗
z,2 =

h2
d

hd +

√
h2
d((xd−Rc

x)2+(yd−Rc
y)2)((Rc

x−Īcx)2+(Rc
y−Īy)2)

(Rc
x−Īcx)2+(Rc

y−Īy)2

. (69)

Case 16 R∗
x = Rc

x ∈ {xL, xU}
R∗

z = Rc
z ∈ {zL, zU}
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The optimal solution of (30), and (34), respectively, can be expressed as

(R∗max,Mi, Ī
∗
max) = arg max

(R∗ ,̄I∗)∈
⋃16

n=1 Pn

τ (̄I,R,D), (70)

(R∗min,Mi, Ī
∗
min) = arg min

(R∗ ,̄I∗)∈
⋃16

n=1 Pn

τ (̄I,R,D), (71)

where Pn represents the set of feasible stationary points satisfying the conditions of the n−th

case presented in the previous tables4.

2) Metasurface reflector: For the metasurface reflector, the delay spread upper bound can be

computed directly using (26) based on (27) and (28). It can be noticed that (30) and (34) reduce

to (27) and (28), respectively, for Ry = yL = yU = 0. Consequently, the optimal values of Rx,

Rz, Īx, and Īy can be computed as follows

(R∗max,Ms, Ī
∗
max) = arg max

(R∗ ,̄I∗)∈
⋃

9≤n≤16

Pn

τ (̄I,R,D), (72)

(R∗min,Ms, Ī
∗
min) = arg min

(R∗ ,̄I∗)∈
⋃

9≤n≤16

Pn

τ (̄I,R,D), (73)

with e2
TĪ
∗
max = ys

max, e2
TĪ
∗
min = ys

min, and Rc
y = 0.

B. Asymptotic delay spread

In this section, we derive the asymptotic delay spread for both reflector types as nm and np

increase unboundedly. It can be noticed that in such case, all the rays reaching the detector

center from both reflector types, originate at the source center. On the other hand, all the rays

coming from other points on the source will not reach the detector center by the virtue of the

uniqueness of reflection direction imposed by the generalized law of reflection. Consequently,

the asymptotic delay spread can be expressed as

τAsym
d = lim

nb→∞
τd = τAsym

max − τ
Asym
min , (74)

where nb ∈ {np, nm},

τAsym
max = max

R∈
⋃
k,`
Rk,`

τ (S,R,D) , (75)

τAsym
min = min

R∈
⋃
k,`
Rk,`

τ (S,R,D) . (76)

4For the proof of the non-stationarity of the points belonging to P1, P3, and P5 cf. Appendix A.
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TABLE V: Default simulation parameters.

zs = 1 m ls = 10 cm ws = 5 cm xs = −0.5 m ys = 1 m

xd = −3 m yd = 1 m hd = 2.15 m ld = 1 cm wd = 1 cm

np = 10 wp = 10 cm hp = 1.5 cm ∆wp = 0 cm ∆hp = 0 cm

np = 10 wp = 10 cm hp = 1.5 cm ∆wp = 0 cm ∆hp = 0 cm

m = 2 ρp = 0.8 ρm = 0.8

It can be seen that (75), and (76) are special cases of (27) and (28), respectively, when Ī→ S,

yL = yU = Rc
y = 0. Consequently, the optimal solution of (75), and (76) can be expressed as

R∗max,Asym = arg max
R∗∈

⋃
13≤n≤16

Pn

τ(S,R,D), (77)

R∗min,Asym = arg min
R∗∈

⋃
13≤n≤16

Pn

τ(S,R,D). (78)

C. Point source

It is clear that when AS → 0, only the chief rays originating at S and hitting the IRS at

Rk,` ∀k, ` will be reflected to D and, hence, contribute to the delay spread. Consequently, the

point source delay spread can be expressed as

τPS
d = lim

As→0
τd = τPS

max − τPS
min, (79)

τPS
max = max

k,`
τ (S,Rk,`,D) , (80)

τPS
min = min

k,`
τ (S,Rk,`,D) . (81)

It is worth mentioning that τPS
d represents a lower bound on τ bd as τPS

max ≤ τ bmax and τPS
min ≥ τ bmin

as (23), (24), (80), and (81) possess the same objective function and the feasibility region of

(80) and (81) is a subset of the feasibility region of (23) and (24).

V. SIMULATION RESULTS

In this section, we evaluate the temporal behavior of the IRS-based VLC channel and its sus-

ceptibility to changes in several system parameters. Towards this aim, we present the continuous-

time impulse response for both reflectors and the equivalent tapped delay line model. In addition,

we study the impact of the number of reflecting elements, the source area, the reflector size,

the reflector aspect ratio and the detector location on the channel delay spread for both reflector
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types. The significance of these parameters on the power distribution in the detection plane and

the received power has been highlighted in [8]. Hence, it is necessary to evaluate their impact

on the delay spread performance metric and shed the light on the potential tradeoff between

the two metrics. We assume the system parameter values provided in Table V; unless otherwise

stated. The assumed source and detector specifications are inspired by their counterparts in [30],

[31] and practical LED luminaires, while the relative geometric layout is chosen to set a general

asymmetric configuration to avoid drawing conclusions based on special cases. Moreover, the

reflector dimensions and number of elements were adjusted such that the reflected power is

large enough to neglect the LoS received power if available at the detector and are inherited

from [8]. In all the conducted simulations, the reflectors are assumed to be tightly packed,

i.e., ∆wp = ∆wm = ∆hp = ∆hm = 0, and the source center is horizontally aligned with both

reflectors centers.

In the first simulation, we study the normalized impulse response of both reflectors (h̃b(τ), b ∈

{MS,Mi}), where h̃b(τ) = hb(τ)/
√∫∞

0
h2

b(τ)dτ , for different reflector aspect ratio (wb/hb)

values. Throughout this simulation, the total compact area of both reflectors AR = nbwbhb

is kept 0.15 m2, where the reflector total compact width takes the values {0.387, 1, 2.5} m,

while the reflector height values are {0.387, 0.15, 0.06} m. It can be seen in Fig. 4a and Fig.

4b, that the impulse response of both reflectors constitutes as a superposition of overlapping

pulses representing the individual contributions of the metasurface patches and the mirror array

reflecting elements. The non-uniform spacing between the received pulses owes to the non-

uniform travel times of the rays reaching the detector from different reflectors. It can be seen

clearly from Fig. 4a and 4b that as the aspect ratio of the reflector increases, the received power

at the detector is distributed over a longer time span. The null channel response between some

of the successive pulses is attributed to the inactive portions of the reflecting elements when the

reflecting element width increases.

In the second simulation, we monitor the normalized impulse response of both reflector types

for different reflector area values. We assume the reflector compact width admits the following

values {0.25, 1, 2.5} m, whilst the compact reflector height is kept constant. It can be seen

from Fig. 5a and Fig. 5b that, in agreement with the aspect ratio simulation, as the reflector area

increases, the total received power is distributed over a larger time span. It can be further noticed

that the pulses representing the individual contributions of the reflecting elements become wider

and hence the number of nulls decreases as can be seen clearly in Fig. 5a for the AR = 0.375 m2
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(b) Mirror Array reflector

Fig. 4: Normalized impulse response for different aspect ratios
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(b) Mirror Array reflector

Fig. 5: Normalized impulse response for different reflector total areas

reflector.

In Table VI and VII, we summarize the normalized tapped-delay line coefficients for the two

previously mentioned simulations, where q̄a = qa/
√∑6

k=0 q
2
k ∀a.

In the third simulation, we evaluate the impact of the reflector area and the number of reflecting

elements on the number of taps of the tapped-delay line model. Throughout this simulation, the

total area of both reflectors is kept constant. It can be seen in Fig. 6a and Fig. 6b that Lb is a non-
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TABLE VI: Tapped delay line model parameters for the metasurface reflector

wR (m) hR (m) q̄0 q̄1 q̄2 q̄3 q̄4 q̄5 q̄6

0.3873 0.3873 0.5346 0.8451 0 0 0 0 0

1 0.15 0.4876 0.8277 0.2704 0.0637 0 0 0

2.5 0.06 0.5986 0.7538 0.1488 0.1999 0.0483 0.0948 −0.0039

0.25 0.15 0.8410 0.5411 0 0 0 0 0

1 0.15 0.4876 0.8277 0.2704 0.0637 0 0 0

2.5 0.15 0.6204 0.7343 0.1512 0.2018 0.0434 0.1021 −0.0051

TABLE VII: Tapped delay line model parameters for mirror the array reflector

wR (m) hR (m) q̄0 q̄1 q̄2 q̄3 q̄4 q̄5 q̄6

0.3873 0.3873 0.57472 0.81835 0 0 0 0 0

1 0.15 0.5427 0.80069 0.25371 0 0 0 0

2.5 0.06 0.68531 0.68287 0.12293 0.19173 0.038994 0.10318 0

0.25 0.15 0.85358 0.52096 0 0 0 0 0

1 0.15 0.5427 0.80069 0.25371 0 0 0 0

2.5 0.15 0.66735 0.6975 0.13277 0.19341 0.042121 0.10637 −0.0045051

(a) Metasurface reflector (b) Mirror Array reflector

Fig. 6: Tapped delay line filter order vs Reflector area and number of reflecting elements

decreasing function of the number of reflecting elements and the total reflector area. Nonetheless,

the rate of increase of the function with AR is more significant than the corresponding rate of

change of the function with Nb. The observed performance owes to the underlying delay spread

behavior with the number of reflecting elements and the total reflector area, as detailed in the

following simulations.

In the fourth simulation, we investigate the behavior of the delay spread imposed by the two
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(b) AR = 0.0375 m2, As = 0.125 m2

Fig. 7: Delay spread vs number of reflecting elements

reflector types versus the number of reflecting elements. In this regard, we plot τMS
d , τMi

d , their

corresponding upper bounds τMS
d,UB, τMi

d,UB , and the point source delay spread, which acts as a

lower bound for τ bd versus nb. We consider two different cases for the relationship between the

source area and the reflector area. It is important to recall that the delay spread is affected by

two key factors: the active source area and the active reflector area, i.e., the set of points on

the source and the reflector, respectively, contributing to the computed irradiance. It can be seen

in Fig. 7a that as nb increases, while the total reflector area is kept constant, the delay spread

exhibits, in general, a unimodal behavior. This owes to the increase of the total active reflector

area which dominates the performance for small nb values, and the decrease of the active source

area which dominates for large nb values.

Hence, the general behaviour of the overall delay spread for both reflectors is that it increases

(chief ray delay variations dominate when the number of reflecting elements is small) till it

reaches a maximum, then decreases when the delay spread is dominated by the local delay

variations of rays reflected from the same element as can be seen in Fig. 7a, which finally settles

at the asymptotic delay spread. It can be seen in Fig. 7b that as the delay spread decreases with

nb till it reaches τAsym
d . This is attributed to the decreasing source active area and the constant

reflector active area.

In the fifth simulation, we study the impact of the source area on the delay spread for both

reflector types. It can be seen from Fig. 8 that the delay spread increases till it saturates. The delay
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Fig. 8: Delay spread vs source area

spread performance owes to the increase of the active area of the individual reflecting elements.

However, it is limited by the source area for small As values, where the active reflector area

becomes the whole reflector area. In addition, it can be noticed that the gap between the delay

spread upper bound and the delay spread increases as As increases, as they are controlled by

the source and reflectors physical areas, not the active ones.

Finally, we study the effect of the detector location on the delay spread for both reflectors. It

can be observed in Fig. 9 that as the detector moves further from the reflector, rd increases, the

delay spread decreases. This is explained by the significant similarity between the path lengths

of all the rays traveling from the reflector to the detector center due to small reflection point

location variation compared with R̄D for large rd values.

A. System performance evaluation

This section uses the previously derived channel model to evaluate the two proposed reflector-

based systems performance. To this end, we assume an on-off keying transmission scheme with
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Fig. 9: Delay spread vs detector location

a signaling rate of 800 Mbps, and rectangular pulse shapes. We use a zero-forcing equalizer

cascading the photodetector at the receiving end to combat the inter-symbol interference from

the channel temporal dispersion. The receiver experiences random thermal noise modeled by an

additive white Gaussian random process.

For benchmarking purposes, we compare the performance of the proposed system against a

VLC system where we replace the IRS-based system with an array of generalized Lambertian

point sources. We assume the locations of the point sources coincide with the centers of the

reflecting elements and possess the same overall output power as the source. Moreover, we use

a uniformly allocated power amongst the individual source array elements, and their Lambertian

order is assumed to be 2, which is typical for LEDs. Furthermore, each element is oriented such

that the line joining the source element and the detector center is perfectly aligned with the

normal to that element.

In Fig. 10, we plot the bit error rate of both reflector-based systems for the scenario associated

with the channel taps provided in the third row of Table VI and VII against the LoS signal to

noise ratio. This scenario serves as a lower bound on the performance of the considered IRS-

aided systems associated with the first three rows of Table VI and VII (associated with the
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Fig. 10: Bit error rate vs LoS signal to noise ratio

aspect ratio simulation) due to the large delay spread imposed by such reflector geometry. It

is clear that the mirror array IRS-based system outperforms its metasurface-based counterpart,

owing to the less reflected beam spreading captured by the reflected beam intensity metric in

[8, (78)] and [8, Fig. 10a]. In addition, both IRS-aided systems outperform the LoS, due to the

signal gain they achieve as a result of their power focusing capability highlighted in [8, (80)]

and [8, Fig. 9a,9b]. The performance degradation of the source array system is due to its low

directivity abilities compared with the proposed IRS-based schemes, despite the close location

to the receiver and the orientation alignment.

VI. CONCLUSION

We characterized the temporal behavior of the metasurface and the mirror array IRS-aided VLC

systems. Specifically, we derived the exact continuous-time impulse response for both reflector

types. In addition, we provided simpler expressions for the point source and the large source

small reflector schemes. Moreover, we presented the corresponding tapped-delay line model for

the derived impulse response. Furthermore, we derived upper and lower bounds for the delay

spread incurred for the two reflector types, in addition to the asymptotic delay spread when
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the number of reflecting elements increases significantly. Finally, we did extensive simulations

to evaluate the system performance. It was found that the smaller the source area, the tighter

the derived upper and lower bounds become. In addition, it was found that the delay spread

experiences unimodal performance with a local maximum as the number of elements increases.

APPENDIX A

EXCLUDED STATIONARY POINTS

Case 1: yL < R∗y < yU, x
s
min < Ī∗x < xs

max, xL < R∗x < xU, zL < R∗z < zU

Rz − hd√
(hd − Rz) 2

(
(yd−Īy)2

(hd−zs)2 + 1

) +
Rz − zs√

(Rz − zs) 2

(
(yd−Īy)2

(hd−zs)2 + 1

) = 0. (82)

The previous equation holds only if R∗z > hd or R∗z < 0 which contradicts the assumptions.

Hence, this case does not represent a KKT point.

Case 3: yL < R∗y < yU, x
s
min < Ī∗x < xs

max,R
∗
x = Rc

x ∈ {xL, xU}, zL < R∗z < zU

Rz − hd√
(hd−Rz)2(yd−Īy)2

hd
2 + (xd − Rx) 2 + (hd − Rz) 2

+
Rz√

(yd−Īy)2(Rz)2

hd
2 +

(
Rx − Īx

)
2 + (Rz) 2

= 0.

(83)

For this equation to hold, R∗x = xd which violates the assumptions. Consequently this is not a

KKT point.

Case 5: yL < R∗y < yU, Ī
∗
x ∈ {xs

min, x
s
max}, xL < R∗x < xU, zL < R∗z < zU

Rz − hd√
(hd−Rz)2((xd−Īx)2+(yd−Īy)2+(hd−zs)2)

(hd−zs)2

+
Rz − zs√

(Rz−zs)2((xd−Īx)2+(yd−Īy)2+(hd−zs)2)
(hd−zs)2

= 0. (84)

This equation does not have a feasible solution. Hence, it does not represent a KKT point.
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