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Abstract

Urban traffic prediction with high precision is always the unremitting pursuit of intelligent transportation
systems and is instrumental in bringing smart cities into reality. The fundamental challenges for traffic pre-
diction lie in the accurate modeling of spatial and temporal traffic dynamics. Existing approaches mainly
focus on modeling the traffic data itself, but do not explore the traffic correlations implicit in Origin-
Destination (OD) data. In this paper, we propose STOD-Net, a dynamic Spatial Temporal OD feature
enhanced deep Network, to simultaneously predict the in-traffic and out-traffic for each and every region of
a city. We model the OD data as dynamic graphs and adopt graph neural networks in STOD-Net to learn a
low-dimensional representation for each region. As per the region feature, we design a gating mechanism
and operate it on the traffic feature learning to explicitly capture spatial correlations. To further capture the
complicated spatial and temporal dependencies among different regions, we propose a novel joint feature
learning block in STOD-Net and transfer the hybrid OD features to each block to make the learning process
spatiotemporal-aware. We evaluate the effectiveness of STOD-Net on two benchmark datasets and experi-
mental results demonstrate that it outperforms state-of-the-art by approximately 5% in terms of prediction
accuracy and considerably improves prediction stability up to 80% in terms of standard deviation.
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1 | INTRODUCTION

Smart transportation systems shape the blood vessels of a city
and promote the fast development of social society. Along this
line, highly accurate urban traffic prediction plays an essen-
tial part in intelligent transportation systems and facilitates the
realization of smart cities!4. As per the knowledge of traffic
prediction, intelligent traffic control can be achieved to en-
hance travel efficiency, reduce traffic congestion, and improve
citizens’ quality of life. Traffic prediction can also strengthen
public safety by predicting the traffic volume for each and
every region of a city?. In addition, a significant number
of vehicular applications, such as route planning, navigation,
and travel time estimation, rely heavily on traffic condition
43ELE. Consequently, research on traffic prediction
problems #1112 has been active for decades and has received
massive attention from both academia and industry.
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Traffic prediction refers to the problem of predicting fu-
ture traffic statuses such as volume, speed, and congestion, by
modeling historical traffic data. The prediction horizon can
be either short-term, for example, fifteen or thirty minutes, or
long-term, for example, several hours later. Depending on the
application scenarios and data structures, the traffic prediction
can be applied for different road sensors/segments!d, or any
region of a city in arbitrary granularities!4. In this study, we
focus on short-term traffic volume prediction for all regions of
a city.

Although it has huge importance in intelligent transporta-
tion systems, traffic prediction with high precision still retains
an extremely challenging task, as traffic status evolves in a
highly complicated and nonlinear way, especially when the
status transits between free flow, unstable, congestion, and re-
covery!3. Thus the traffic volume series is of great nonlinear,
and there exist both spatial and temporal dependencies among
traffic series of different locations.
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Lots of work has been proposed to solve the traffic prediction
problem. Some initial works focus on using statistical mod-
els, such as Kalman filtering '9 and Auto-Regressive Integrated
Moving Average (ARIMA)!. These models have clear math-
ematical definitions, leading to high interpretability. However,
it is essential to recognize that they have few parameters and
come with low predictability limitations. In particular, they
become inefficient when traffic series are nonlinear and have
spatial dependencies.

The advancement of machine learning techniques!® and the
increasing availability of big traffic data have made data-driven
models strong competitors to statistical models for traffic pre-
diction. Support vector machines, random forests, and neural
networks have been explored for traffic prediction'®. In par-
ticular, deep neural networks have drawn the most significant
attention as their strong representation ability in an end-to-end
way %21, Long-short term memory networks (LSTM) and con-
volutional neural networks (CNN) are widely investigated in
current literature. LSTM can model temporal dependence as it
has feedback connections between different neurons. Together
with the inputs of other traffic series, the spatial dependence
can also be captured by LSTM. Similarly, CNN is able to cap-
ture both spatial and temporal dependencies when the input
has multiple sequences, as convolution operation is a natu-
ral way to fuse information?2. In particularly, a deep CNN
framework was proposed to solve the spatial-temporal mod-
eling of traffic prediction?3. Deep residual learning was also
introduced into traffic prediction for collectively forecasting
the in-traffic and out-traffic of a region simultaneously?4. Apart
from CNN-oriented frameworks, the growing prominence of
graph neural networks (GNN) 2326292829 has spurred interest
in designing graph-based learning methods with the ability to
naturally support spatial modeling of traffic prediction. Along
this line, spatial-temporal graph convolutional networks were
designed to extend traffic prediction from grid structures to
general domains?%B%22,

Most of the above work models spatial-temporal depen-
dencies of different city regions using historical traffic only.
However, relying solely on historical traffic data may not
capture the heterogeneity of spatial dependencies well. The
reason is that almost all traffic sequences are time series
with autocorrelation and periodicity characteristics, resulting
in non-negligible spatial correlations for any two different traf-
fic series. The prediction model faces considerable challenges
when learning from this kind of data and is unable to dis-
tinguish which traffic series is relevant and which is not but
maybe noise, especially for urban traffic prediction in city-
wise?3. Besides, both spatial and temporal traffic dependencies
are not static. Instead, they are highly time-varying, depend-
ing on the current traffic situation and road network. Take for
example the places that are penetrated by highways, there exist

more areas with higher spatial correlation because the drivers
drive fast and the distance they move is long. On the contrary,
for the city center, the speed of cars is relatively low and the
areas with higher spatial correlations are less.

To cope with the above challenges and enhance spatial-
temporal dependencies modeling, we resort to introducing
origin-destination (OD) data into traffic prediction for two rea-
sons. First, the OD data records the traffic interactions among
regions of a city and provides detailed statistics that generate
the traffic data of each region. Thus, the OD data can reflect
the spatial correlation more directly. Second, OD data, together
with static road network data, can be regarded as auxiliary
information for regional dependence modeling from the per-
spective of data fusion. They provide different dimensions for
understanding spatial-temporal dependencies of regions. Thus,
based on the historical traffic data, the OD data and the static
road network information, we propose a novel deep learning
framework called STOD-Net, that is, Spatial-Temporal OD fea-
ture enhanced deep Network, for urban traffic prediction. To
the best of our knowledge, we are the first to predict grid-based
traffic volume by incorporating OD data and real-world road
network data. We leverage CNN to model the historical traf-
fic data as they are sequences of matrices. Moreover, since
the OD data are inherently in a graph structure, leading to the
ineffectiveness of traditional CNN, we use GNNs to model
them to obtain hidden representations. GNNs are novel neural
networks designed especially for non-Euclidean data and gain
increasing popularity in the deep learning field.

STOD-Net consists of four components. The first compo-
nent is traffic feature learning, from which we obtain the
hidden representations of different regions. In the second com-
ponent, we perform OD feature learning, followed by a gating
mechanism that functions as an enhanced spatial dependence
modeling. Then in the third component, we perform joint fea-
ture learning for the historical traffic data and the OD data
using convolutional layers with introduced dense connectivity.
To enhance the modeling of spatial-temporal dependencies, we
further transfer the learned OD features to the subsequent learn-
ing blocks and this yields the fourth component of STOD-Net.
In summary, our main contributions are listed as follows.

o We propose STOD-Net, a spatial-temporal deep learning
framework, for urban traffic prediction. STOD-Net accepts
not only historical traffic data but also the OD data and
static road network, and can model these two kinds of data
simultaneously.

e We introduce GNN to model the OD data, as they retain the
traffic interactions among regions. On the basis of the OD
representations, we further propose a gating mechanism
that operates on the traffic representations and acts as a
guide to enhance spatial-temporal dependencies modeling.
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We present a joint modeling scheme to both dynamic and
static OD data, making STOD-Net more robust in capturing
spatial dependence.

e We validate the effectiveness of our STOD-Net on two real-
world datasets, and the results demonstrate that STOD-Net
improves the prediction performance greatly.

The rest of this paper is organized as follows. Section II de-
votes to the related work on traffic prediction. Section III gives
the problem formulation and preliminaries on graph neural net-
works. The detail of our proposed STOD-Net is introduced in
Section IV. We report experimental results in Section V and
conclude our paper in Section VI.

2 | RELATED WORKS

Current studies on traffic prediction can be classified into
statistical model-based methods, traditional machine learning-
based methods, deep learning-based methods, and OD-related
traffic prediction. This section devotes to a brief review of
related works on these three categories.

21 |
tion

Statistical model based traffic predic-

Methods that fall into this category mainly center on ARIMA
and its variants. One of the earliest works that used ARIMA
model for traffic prediction was completed in?4 by Ahmed and
Cook, in which they discovered that ARIMA model can be
more accurate than moving average and exponential smooth-
ing in representing traffic volume data. Afterward, researchers
explored other versions of ARIMA for traffic prediction includ-
ing ARIMAXPY and subset ARIMA 4. Notwithstanding the
popularity of ARIMA-based models in traffic prediction, they
face great limitations on predictive ability. The reason is that
they are simply linear models, which assume the traffic is sta-
tionary. Therefore, they usually fail when dealing with highly
complicated nonlinear traffic data?’. Despite a few nonlinear
models being proposed like heteroskedasticity-based models,
the analytical study of nonlinear models is still in its infancy
compared to linear models.

2.2 | Traditional machine learning based
traffic prediction

Due to the inefficacy of statistical models in solving the traf-
fic prediction problem, researchers resort to machine learning
models, which are flexible, data-driven, and can adjust the

parameters automatically. Wu et al. applied support vector re-
gression to traffic prediction?¥ and achieved better prediction
performances than statistical models since its strong gener-
alization ability and guaranteed global minimum. k-nearest
neighbor models were also explored for traffic prediction %4
and found that they can achieve better prediction performance
than support vector regression in terms of mean squared er-
ror. Besides, random forests and artificial neural networks
were also adopted for traffic prediction*!. Though machine
learning models have stronger predictive abilities than statis-
tical models, they were more challenging to train ten years
ago, particularly for neural networks. Besides, traditional ma-
chine learning models have few parameters, leading to limited
performance gains for traffic prediction.

2.3 | Deep learning based traffic prediction
Deep learning models have been the mainstream for traffic pre-
diction since the rise of deep neural networks. Different types
of neural networks can be adopted for traffic prediction based
on the data on hand. According to a recent survey %, point-based
data mainly adopt LSTM and GNN, and trajectory-based data
use CNN more.

For point-based data, LSTM *2, bidirectional LSTM ™, and
LSTM with feature enhancement™ are investigated in current
literature, respectively. These models are good at capturing
the temporal dependency of traffic volume. To further model
the spatial dependency, GNN is introduced into traffic predic-
#3844, as it can model the spatial relationships of differ-
ent locations. Afterward, many works on GNN-based traffic
prediction methods were proposed, such as spatial-temporal
GNNM. GNN with attention scheme!d and multi-attention
scheme?.

For trajectory-based data, most prediction methods are built
on top of CNN such as DeepST? and ST-ResNet?. The
key difference between these two models is that ST-ResNet
introduces residual learning strategy into traffic prediction,
leading to a great performance improvement. CNN is also
the basic learning block of several other frameworks based
on meta-learning !4, context-aware learning*, and multi-view
learning#?1. These frameworks can capture both spatial and
temporal dependencies of different regions of city-wise but
from different perspectives.

tion

24 | OD-realted traffic prediction

Recently, some works on adopting OD data for traffic predic-
tion of a location or predicting OD matrix were proposed. For
example, OD traffic was predicted by a hybrid spatial-temporal
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network® and a dynamic graph convolutional recurrent net-
work was proposed? to model the dynamic characteristics
of correlations among locations. Besides, the ideas of multi-
task learning and generative adversarial networks were also
explored in current literature. InP!, a multi-task adversarial
spatial-temporal network model was proposed to simultane-
ously predict the traffic flow and OD flow. An encoder-decoder
structure was designed to capture the spatial-temporal depen-
dencies of different regions, and a discriminative loss on task
classification and an adversarial loss on shared feature extrac-
tion are incorporated to reduce information redundancy. The
discriminative loss was also adopted in?2 for traffic flow pre-
diction, yet under the framework of Generative Adversarial
Nets (GAN) and the proposed model is TrafficGAN. One ad-
vantage of TrafficGAN is that a deformable convolution kernel
for CNN is adopted to handle the input road network data
better. More recently, Wang et al. proposed MC-STGCNP?2,
a Multivariate Correlation-aware Spatio-temporal Graph Con-
volutional Networks for multi-scale traffic prediction. In MC-
STGCN, auxiliary information such as traffic speed and traffic
occupancy rate was introduced into traffic prediction for corre-
lation measurement and accuracy improvements.

The fundamental difference between our work and the above
works lies in that we use the OD data and static road network
information to enhance spatial dependency modeling, instead
of the static distance between locations. We further propose a
gating mechanism that can effectively fuse the historical traffic
data and the OD data.

3 |  PROBLEM FORMULATION AND
PRELIMINARIES

This section devotes to the problem formulation of urban
traffic prediction and the introduction of graph convolutional
networks.

31 | Problem formulation

Definition 1 (Region). Many feasible ways exist to define a
region of a city and in this paper, we consider the following
scenario: The city is evenly partitioned into an / x J grid map
based on the longitude and latitude and a grid (i, /) denotes a
region.

Definition 2 (In-Traffic/Out-Traffic). For each region n, we
consider two types of traffic volume, i.e., in-traffic and out-
traffic. The in-traffic, x(-i) | indicates how many vehicles enter
region n from neighboring regions. Similarly, the out-traffic,
x(ui) indicates how many vehicles drive out of this region.

Bl out-traffic

/ Bl In-traffic

~"— oD out flow

> OD in flow

() Traffic volume of a region and OD flow between regions.
—— Primary road

—— Secondary road

(b) Static road network.
FIGURE 1 Example of the in- and out-traffic, OD in- and
out-flow, and the static road network of New York City.

We denote the traffic volume as X, € R?*™ for the grid map
at time slot 7, where 7 € [1,2,3,--- ,T].

Definition 3 (OD Data). At t-th time slot, some vehicles are
driving from region (i,j) to region (i’,j") and others may drive
from (7, ') to (i, 7). These records are called origin-destination
flow data and we denote the traffic from (i,j) to (¢/,j') as
d' @)@} Thus, we use D, € RM*V (o denote the OD flow
data at the #-th time slot, where N = I x J represents the total
number of regions of the city.

Definition 4 (Static Road Network). All the regions are con-
nected by physical roads, based on which we obtain an adja-
cency matrix S € RV*N, denoting the static road network.

To make the understanding of these definitions easy, a toy
example of the defined region, in- and out-traffic, OD flow, and
the corresponding static road network is displayed in Fig. .

Definition 5 (Definition). Given a series of historical traf-
fic data {X1,Xo, - ,X;}, the corresponding OD flow data
{D1,Dq,---,D,}, and static road network S, predict X, 1.

Mathematically, our problem can be formally defined as

w* = argmin L(f(X,, D;, Sw), X;11), (D

Time slot 7 denotes a time interval (7, 7 + At], where At is the temporal granularity of
the data. At could be 15 minutes or one hour based on the data on-hand.
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Traffic Feature Learning (TFL)

Joint Feature Learning (JFL)
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)

Feature Transfer (FT)

FIGURE 2 STOD-Net framework and the corresponding key component STOD: Convolutional (Conv), hybrid spatial de-
pendence modeling (HSDM), and spatial temporal modeling (STM). ® and Il denote the Hadamard product and concatenation
operation. ¢ is a mapping function that implements the gating mechanism.

where w denotes all the parameters of our model f{-). A, and
D; are the input features extracted from traffic volume data and
OD data, respectively, and their construction will be detailed in
Section IV. Moreover, L(-, -) is a loss function used to measure
the goodness of our prediction model.

3.2 | Graph neural networks

Graph neural networks (GNNs) refer to frameworks for repre-
sentation learning on graphs and their goal is to automatically
learn a low-dimensional representation for the nodes, edges, or
the whole graph, in an end-to-end fashion. Most GNN frame-
works have a unified architecture, which can be described
as

HHY = gHD, 4), )

where [ indexes the layers, and H®) denotes the hidden repre-
sentation in layer /. Note that H®) = X represents the input
feature matrix. A is the adjacency matrix corresponding to the
graph. g is a nonlinear function and different GNN frameworks
have different choices of g.

One of the most popular GNN frameworks is Graph Con-
volutional Networks (GCNs) and the update rule is denoted
as

gH?Y, A) = o(AHOWD), 3)

where A is the symmetrically normalized graph Laplacian of
A with self-loops, W is a parameter matrix of layer , and o is
the rectified linear unit (ReLU) function. Eq. (H) indicates that
when updating the representation for a node in the graph, GCN
performs a weighted average of all neighbor’s representations
of that node.

The attention scheme can also be considered in g and this
yields to graph attention networks?3, or GAT for short. The
update rule in GAT can be described as

gHD, A) = o(AVHOWD), 4)

Eq. (H) is similar with Eq. (H) except that A is the attention
weight matrix for layer / instead of graph Laplacian of A.

In this study, we use GATs to learn representations for each
region, based on which we propose a gating mechanism to
enhance characterizing the hidden spatial dependencies.

4 | STOD-NET ARCHITECTURE

In this section, we first give a general introduction to our pro-
posed traffic prediction framework. Then we detail each of
its components to demonstrate how we model the spatial and
temporal dependencies of urban traffic.

41 | Overall architecture

To solve Eq. (E|), we propose a novel traffic prediction frame-
work, i.e., STOD-Net, which can effectively fuse the infor-
mation from both the traffic data and the OD data, thereby
capturing the spatial and temporal correlations among different
regions simultaneously. Fig. g illustrates the detail of STOD-
Net, in which its fundamental component, i.e., spatial-temporal
origin-destination learning (STOD), is also included.

As current literature has shown that traffic volume’s tempo-
ral correlations can be effectively characterized by closeness
dependence, periodicity dependence, and trend dependence?.
Thus in this paper, we embrace this point of view and resort
to three separate subnetworks to learn the hidden representa-
tions for these temporal dependencies to capture their different
impacts on future traffic volume prediction. To reduce com-
plexity, these three subnetworks are designed with shared
architecture. As shown in Fig. E, there are three types of inputs,
i.e., the traffic volume data X; = {X;’,X‘f , X!}, the OD data
D, = {D¢,D?, D!} and the static road network data denoted by
adjacency matrix S. Specifically, {X¢, D¢, S}, {X?, D/, S}, and
{X],D;,S} are used to model the closeness dependence, peri-
odicity dependence, and trend dependence, respectively. The
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constructions of X{ and Df are as follows.

X=X 1 Xl - 11Xy,

' )
DS =D, D1l - D,

where L, is the length of closeness sequence and I denotes the
concatenation operator. Similarly, X7, DY, X/, and D/ can be
obtained as follows.

X‘;’ =X p I X, op Il -1l X,_Lpp,
D] =D, p D opll --- 1D, p, ©)
X, =X g 1 X0 Il -+ 1 Xy p &,
D/ =D, g ID g Il --- I Dy g,

where L, and L, are the lengths of the periodicity sequence and
trend sequence, P and R are the period and trend span corre-
sponding to one day and one week, respectively. The adjacency
matrix S is constructed from physical roads and the details will
be given in the following subsection.

For STOD, as shown in the right of Fig. E, it consists of
four components, i.e., traffic feature learning (TFL), OD and
road feature learning (ORFL), feature transfer (FT), and joint
feature learning (JFL). The TFL’s role is to learn initial repre-
sentations for the traffic data. Like the TFL, the ORFL learns
representations for the OD data and the static road network and
then fuses them with the traffic representations. FT means we
transfer the learned OD and road feature to subsequent layers
for spatial and temporal modeling. As for the JFL, its function
is to perform joint feature learning for the fused representa-
tions, including the traffic information and the OD information.
Once we obtain the final representations for the closeness, pe-
riodicity, and trend data, we fuse them together, as shown in
the left of Fig. Q, followed by a non-linear activation, and we
get the predicted traffic volume X,H for time slot ¢ + 1.

In the next, we first introduce how we construct the adja-
cency matrix for the static road network, then we give technical
details for each of the components of our proposed STOD. For
brevity, we use {X;, D;, S} to denote any of the data sequences
of {X¢, D¢, S}, {X?,D?,S}, and {X!,D/,S} and omit the sub-
scription. This is because the three sub-networks share the
same architecture, which indicates the inputs receive exactly
the same operations, only the outputs are different.

42 | Static road network construction

We adopt an adjacency matrix to represent the static road
network, in which nodes denote regions and edges denote con-
nection weights between regions. The weights are constructed
from physical roads that are crawled from OpenStreetMap. The
detail of weight construction is as follows.

Regions & Roads Weight Calculation

1 2 3 Ly 2
i 5 16 5
| | 6
= wefght
|8 9] v, 9
i 51,6 = 3
T3

Induced Adjacency Matrix

1 0 0 050 033 0 0 0.25]
1 0 0 0 1 050 0 0 033
0 0 0 0 O 1 025 033 0.50
0 0 0 0 O 0 0 0 0
050 1 0 0 0 1 0 0 0.50
033 050 1 0 1 0 033 050 2
0 0 025 0 0 033 O 1 0.50
0 0 033 0 0 050 1 0 1
1025 033 050 0 050 2 050 1 (O

FIGURE 3 A toy example for constructing the adjacency
matrix, i.e., S, representing the static road network.

e We extract the information on all kinds of road types
and classified them into four categories, i.e., primary, sec-
ondary, tertiary, and others;

e For each road of these four categories, we extract the region
set using a depth-first search strategy. Then for any given
region pair u# and v, the connection weight is defined as

@, =2 ™

u,v d7 ’
u,v

where z € {primary, secondary, tertiary, others} denotes
the road type and d;, , the shortest path between u and v for
the case of road type z.

e We assign a weight p, for road type z since different roads
have different capacities. For example, primary roads nor-
mally have more lanes than secondary roads, thus it has a
greater impact on traffic. For region pair u and v, we sum-
marize the weights of different road types and yield the

final weight
Suy = Z =Sy
i

Fig. H shows a toy example for the construction of the adja-
cency matrix of the static road network. In this example, two
roads belong to different types, connecting nine regions. The
weights of different road types are set to 1 for simplicity.

®)

4.3 | Traffic feature learning

For city-wise urban traffic prediction, convolutional networks
have shown superior performance in capturing the spatial cor-
relation of traffic volume of different regions. Thus, we adopt
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Multi-Head
GAT

Att. Layer

Multi-Head
GAT

FIGURE 4 Design details of HSDM (left) and multi-head GAT (right).

convolutional networks to learn the hidden representations of
traffic volume data. In TFL, the obtained representations at
layer [ are defined as

X = oW « X)), ©)

where * is the convolution operation, and o is the ReLU func-
tion. In TFL, there are in total Lrg layers for traffic feature
learning and the final representation is denoted as Xt(LTFL).

44 | OD and road feature learning

The OD data records the traffic volume interactions from one
region to another and explicitly reflects the connectivity of
different regions. In addition, the traffic dynamics are largely
influenced and constrained by the static road network. Thus,
we use the dynamic OD data and the static road network to en-
hance the spatial dependence modeling of traffic volume. The
challenge herein is how to design an approach that can effec-
tively model these two types of data and fuse them with the
traffic volume representation.

To solve this challenge, we propose a hybrid spatial de-
pendence modeling (HSDM) component by simultaneously
learning the dynamic OD data and the static road network. For
the dynamic graph, we use D, to denote its adjacency matrix
and H; its input feature. In this study, we use the in-traffic and
the out-traffic of each node as the features. Therefore, H, €
RM*2 is obtained from X, € R2X/*/ and they have the same
elements, excluding the dimensions. For the static graph, the
adjacency matrix is S and the input feature is H = ) H,.

As shown in Fig. E, we use Lorpr. HSDM components to
perform representation learning for the dynamic graph and the
static graph. Specifically, each HSDM component includes
two GAT models, in which the multi-head attention scheme
is introduced to stabilize the learning process. Fig. EI illus-
trates the implementation details of our HSDM component and
the multi-head attention scheme. For the /-th component, the
output can be expressed as

M
H" = I oA HIW ),

m=1

(10)

FIGURE 5 Design of joint feature learning module.

where Agzn and W‘(ilzn denote the masked self-attention weights
and learnable parameters of the m-th head in the I-th HSDM,

respectively. For each node pair u and v in Affzm the attention
(0

weight a,,;, is calculated by
exp(eln)
l b
ke, &L
o) = o BIWIHOW Ja ),

) =

(1)

where a!) denotes a learnable parameter vector and Il is the
concatenation operator. The core idea here is to compute the
hidden representations of each node in the graph by attending
to its neighbors, following a self-attention strategy.
The representation learning for the static road network can
be obtained similarly and we describe it as
M
H = iR o(ADHEDWO),

s (12)
where As(l,)n and W% are the masked self-attention weights and
learnable parameters of the m-th head in the /-th component of
HSDM, respectively.

After we obtain the representations of the dynamic graph
and the static graph, we design a gating mechanism by using
a mapping function ¢ : RVM*F — RIX/XF and apply it to
the traffic volume representations, and then these two types
of representations are fused, resulting in the following feature
representation

G = BpH") + (1-B)p(HD), (13)

where [ is a predefined parameter that balances the different
effects of the dynamic and static spatial dependences on the
final representations. Gt(l) denotes the learned representations
for each region and reflects the spatial dependencies of traffic
volume among different regions. Then G,(l) is modulated with
the traffic feature and the learned representation of Eq. (E) can

be updated as follows
X! = oW+ X)) 0 67, (14)

where © is the Hadamard product.
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45 |  Joint feature learning
The spatial and temporal correlations of traffic volume among
different regions are quite challenging to capture as they are af-
fected by many factors, such as geographic distance and urban
layout. Some regions that are far away from each other may
have high spatial correlations when they are similar functional
urban areas. Thus, a deeper network is preferred to learn the
representations of traffic volume and capture the long-distance
spatial correlations. We design a JFL component and perform
joint feature learning for X,(LTFL). As shown in Fig. , we stack
learning blocks sequentially in the JFL component and the
design of each block is detailed in Fig. H The blocks are con-
nected by a convolutional layer, whose purpose is to reduce
the dimension of feature maps, and consequently to reduce the
number of parameters in our STOD-Net.

For each block b € {1,2,---,B}, the input to it can be
written as

Yo = (Yip1 * WipLp) Il Gr(LTFL), (15)

where Wjgp ;, denotes the parameters in the convolutional layer
of block b in the JFL component and Y,o = X,(LTFL). Note
that in Eq. () we transfer (FL component) the hybrid spa-
tial representations from dynamic OD data and static road
network to the JFL module by adding shortcut connections
between the last HSDM block and the JFL component. This
is because shortcut connections among layers of neural net-
works are beneficial for the optimization of deeper models?.
They can alleviate gradient vanishing or exploding problems,
and strengthen feature propagation, thereby improving the
prediction performance of neural networks. We use concatena-
tion instead of summation because concatenation can increase
the variation in the input of subsequent layers and improve
efficiency?.

We then forward Y, , to the STM module for spatial temporal
modeling. STM consists of Lyg layers and each layer performs

Yy =) (Y Wi ). (16)
where 7—[,5[) represents the composite function of layer / in block
b and it implements six consecutive operations: BN-ReLU-
Conv(1x 1)-BN-ReLU-Conv(3x3). Note that Y = Y,
represents the initial input to block b.

To further capture channel-wise importance and make the
learning process flexible, we employ a gating mechanism
with a sigmoid activation on Y,(’[g. Particularly, we parameter-
ize the gating mechanism by forming a bottleneck with two
fully-connected (FC) layers:

C!) = sigmoid(W, o(Wi , YO)). (17)

Then the output Yt(lb) is updated as Yl(’lb) = Yl(’lb) ® Ct(lb) After
B blocks’ representation learning, the final output of the JFL
component is Y, p.

4.6 | Final fusion
The above subsections summarize the detailed implementa-
tions of our STOD. As shown in the left of Fig. E, there exists
three inputs, i.e., {X¢, D¢}, {XF, DV}, and {X!, D/ }. Thus three
outputs can be obtained: Y,(jg), Y,(,’;), and Y,(g) They denote the
learned spatiotemporal representations for the closeness, peri-
odicity, and trend dependencies, respectively. The prediction
can be obtained after performing fusion on the three kinds of
outputs

X1 = sigmoid(Y'y + Y% + Y1), (18)
where sigmoid(-) stands for the sigmoid activation function.
We adopt mean squared error (MSE) as our objective function,
thus the loss function in Eq. () can be detailed as

L= X1 -Xi1l2, (19)

where ||-||3 denotes the square of Frobenius norm. The param-
eters of our STOD-Net, i.e., w, can be obtained by optimizing
Eq. (l@) over all the training dataset.

5 | EXPERIMENTAL RESULTS

In this section, we introduce two real-world datasets used
in the experiments, evaluation metrics, and several baseline
methods we compared to. We also explain the detailed exper-
imental settings, followed by thorough experiment results and
the corresponding analysis.

51 | Datasets and preprocessing

The two real-world datasets come from New York City (NYC),
which are publicly availableP3. They are taxi and bike trip
records and we denote them as NYC-Taxi and NYC-Bike, re-
spectively. NYC-Taxi includes approximately 22.3 million trip
records from Jan. 1st, 2015 to Mar. 1st, 2015. While for the
NYC-Bike dataset, it includes about 2.2 million trip records
from Jul. 1st, 2016 to Aug. 29, 2016.

The NYC is split into 10 x 20 regions, and each region’s
area is approximately 1 km?. We set the time interval as 30
minutes and calculate the traffic volume in each region and the
OD data from one region to another. We use the first 50 days
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TABLE 1 Prediction performance of different methods on the NYC-Taxi and NYC-Bike datasets.

Data ‘ Method ‘ In Traffic ‘ Out Traffic

| | RMSE MAE MAPE | RMSE MAE MAPE

HA 71.02 41.10 38.06% 59.90 32.55 36.23%

Naive 36.96 22.72 22.94% 31.78 18.32 22.96%

ARIMA 34.92 21.97 24.85% 29.99 18.12 25.26%

LR 30.55 18.93 19.83% 25.66 15.12 19.66%
NYC-Taxi MLP 30.09 4 0.21 1857 +0.13 19.97 4+ 0.18% 24.69 + 0.24 14.31 +0.12 19.06 +0.16%
ST-ResNet 23.89£0.16 15.25 £ 0.07 17.16 £ 0.07% 19.47 £ 0.09 12.14 £ 0.06 16.67 £ 0.07%
STGCN 22.78 £ 0.20 14.29 +0.15 16.67 +0.31% 1852 40.15 11.54 +0.13 16.56 4 0.31%
STDN 22.32£0.22 14.09 £0.18 16.15 + 0.62% 18.08 £ 0.27 11.38 £ 0.20 16.13 £ 0.52%
STOD-Net 21.44 £ 0.08 13.37 + 0.04 1528 £0.09% |  17.61+0.08 10.87 + 0.05 15.33 £ 0.10%

HA 17.46 11.02 37.31% 16.72 10.69 35.54%

Naive 14.03 9.48 31.25% 13.43 9.28 30.62%

ARIMA 12.92 8.81 28.59% 12.38 8.60 27.84%

LR 11.89 8.07 26.76% 11.21 7.74 25.69%
NYC-Bike MLP 9.4140.04 6.54 4 0.02 23.05 +0.10% 8.54 +0.06 6.124+0.03 21.71 £ 0.15%
ST-ResNet 8.96 £ 0.03 6.46 4 0.02 22.72 + 0.06% 8.19 + 0.04 6.08 +0.03 21.49 +0.09%
STGCN 8.83+0.18 6.35+0.12 22.42 +0.45% 7.89£0.14 5.86 +0.10 20.76 + 0.37%
STDN 8.61+0.18 6.14+0.13 21.42 £ 0.22% 7.78 £0.18 5.73+0.12 20.15 £ 0.31%
| STOD-Net | 818 +0.03 5.87 £ 0.02 20.63+0.05% |  7.39+0.03 5.48 +0.02 19.39 + 0.03%

of data to train our model and the last ten days of data to test
the model’s performance. Before training our model, both the
traffic volume data and the OD data are scaled into [0, 1] by
using Min-Max normalization and rescaled back to their origi-
nal scale during evaluation. Besides, traffic values that are less
than a certain threshold are ignored when evaluating perfor-
mance since low traffic is of little interest, and this assumption
is also commonly adopted in industry and academia?!. We
follow the same settings in?3! and set the threshold to 10.

5.2 | Baselines and evaluation etrics
We compare our model, STOD-Net, with the following several
baselines:

e Historical Average (HA) method. The next time slot’s
prediction is set to the average of all historical traffic values.

e Naive method. This method treats the last observation as
the prediction of the next time slot.

o Auto-Regressive Integrated Moving Average (ARIMA)
model. ARIMA is one of the most frequently used time
series prediction approaches and can model the autocorre-
lations in traffic data.

e Linear Regression (LR). LR denotes a linear approach to
traffic prediction.

e Multilayer Perceptron (MLP). MLP represents a class of
feedforward artificial neural networks. MLP can be used to
model the nonlinear relationships hidden in the traffic data.

e Spatio-Temporal Residual Network (ST-ResNet)?4. ST-
ResNet is a deep learning framework for solving city-wise

traffic prediction and has become a seminal work since its
publication. It can model the spatial and temporal dynamics
of traffic volume simultaneously.

e Spatial-Temporal Graph  Convolutional — Networks
(STGCN)H. Instead of applying regular convolutional
units, STGCN formulates the traffic prediction on graphs
and builds the model with complete convolutional struc-
tures, which enables a much faster training speed with
fewer parameters.

e Spatio-Temporal Dynamic Network (STDN)2!. STDN can
model the different spatial dynamics among different loca-
tions and the temporal shifting in traffic data. It achieves
state-of-the-art performance on both the NYC-Taxi and the
NYC-Bike datasets.

We adopt three metrics to evaluate the prediction perfor-
mance of different approaches. The metrics are root-mean-
square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE), respectively.

1 J
RMSE — ;422 X g2 20)
=1 i=1 j=1
1 r 1 J y y
MAE = 33" % ) i) @1)
=1 i=1 j=1
1 T 1 J xt(,d _xt(z,/)
MAPE = MZZE} § | (22)

t=1 i=1 j=1
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FIGURE 6 Histograms of absolute prediction errors.

where 7" denotes the times slots in test dataset and M = T x
Ix J.In addition, x,"”’ ) (fc,(l” )) denotes the real (predicted) in/out
traffic value at time slot 7 for region (i, ).

53 | Experimental settings

The experiment results are obtained with the following settings.
For the lengths of closeness, periodicity, and trend sequences,
we set them to 5, 4, 1, and these values are obtained based on
a grid search over L., L,,L, € {1,2,3,4,5}. When construct-
ing the static road network, we set p, = {0.4,0.3,0.2,0.1}.
In the TFL component, we use two convolutional layers for
preliminary traffic representation learning, and the hidden rep-
resentations in each layer are 24. In the ORFL component,
there are two HSDM blocks, and each block has two M-heads
GAT for the static and dynamic spatial dependencies modeling
and M equals to 2. The parameter, (3, that balances the differ-
ent effects of the static and dynamic spatial dependences, is set
to 0.5. In the JFL component, there are 3 blocks. Each block
has Lyjp. = 8 layers, and each layer outputs K = 12 hidden
representations.

We use Adam to optimize our STOD-Net with a learning
rate of 0.0001, and the learning rate is adjusted via the one-
cycle policy. In addition, STOD-Net is trained using batch 128
for 500 epochs on the NYC-Taxi dataset and 100 epochs on the
NYC-Bike dataset.

54 | City-wise prediction results

Table [I| summarizes the city-wise prediction performance com-
parisons of different methods on the NYC-Taxi and NYC-Bike

datasets. To obtain Table , we carry out 10 independent exper-
iments and report the mean and standard deviation (+£) results
of three evaluation metrics. The best results are marked in bold
for clearness.

From this table we can clearly observe that 1) deep neural
network-based models can normally achieve better prediction
performance than linear models (LR and ARIMA), followed
by simple forecasting methods (HA and Naive). For instance,
the RMSE result on the in-traffic of the NYC-Taxi dataset im-
proves from 36.96 (Naive) to 30.09 (MLP) to 22.32 (STDN),
which validates the advantages of deep neural networks in
modeling spatiotemporal dependencies of traffic volume. 2)
Our proposed method, i.e., STOD-Net, achieves the best pre-
diction performance in terms of RMSE, MAE, and MAPE,
on both datasets. We take the MAPE metric on the NYC-
Taxi dataset as an example to illustrate the effectiveness of
STOD-Net. Specifically, the obtained MAPE results of STOD-
Net for the in-traffic (out-traffic) are about 15.28% (15.33%),
while the best baseline’s (STDN) MAPE results are about
16.15% (16.13%). These numbers indicate approximately a
5.4% (5.0%) performance gain can be acquired by STOD-Net.
For the other two metrics, that is, RMSE and MAE, similar per-
formance gains can be obtained as well if we do the calculation,
but we omit their specific values here for brevity.

Aside from lower prediction errors, STOD-Net remains
stable for different experiments as it yields lower standard
deviations than baselines on these three metrics. Consider
STDN as an example, the standard deviations of MAPE on the
NYC-Taxi dataset are 0.62 (in-traffic) and 0.52 (out-traffic), re-
spectively. In comparison, STOD-Net’s standard deviations of
MAPE on the same dataset are approximately 0.09 (in-traffic)
and 0.10 (out-traffic), respectively, which is much lower than
STDN.

We also analyze the prediction errors in Fig. H, which shows
the histograms of the absolute prediction errors (APEs) of
three methods, i.e., ST-ResNet, STDN, and STOD-Net. Fig.
E left/right shows the results on the NYC-Taxi/NYC-Bike
dataset. From this figure, we can see that for STOD-Net, a
larger portion of prediction errors tend to be zero compared
with ST-RseNet and STDN. The results of Fig. H demonstrate
STOD-Net has lower prediction errors than its competitive
counterparts.

The prediction results of Table |ll and Fig. H confirm the
effectiveness of STOD-Net. Thus, we claim it yields better pre-
diction performance than baselines. The reasons behind the
success of STOD-Net can be attributed into twofold: 1) The
introduced ORFL component models the hidden relationships
of different regions, leading to an accurate characterization of
their spatial dependencies. 2) The complex spatial and tempo-
ral dependencies among regions are simultaneously captured
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FIGURE 7 Predictions versus ground truth and the corresponding prediction error analysis for three randomly selected
regions, i.e., (3,4), (5,12), and (6, 10), on the NYC-Taxi dataset.
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FIGURE 8 Predictions versus ground truth and the corresponding prediction error analysis for three randomly selected
regions, i.e., (3,4), (5,12), and (6, 10), on the NYC-Bike dataset.

and learned by the JFL component, thus more effective repre-
sentations can be obtained to enhance STOD-Net’s prediction
ability.

55 | Region-wise prediction results
The above subsection reports the overall quantitative predic-

tion results for all regions. In this subsection, we compare the
region-wise prediction performance of different methods. To

be specific, we randomly select several regions and plot the
ground truth values and the achieved predictions by different
methods for these regions. In the following, we only compare
STOD-Net with ST-ResNet and STDN as they generally ob-
tain better performance than other baselines. Fig. ﬁ and Fig.
E show the results of three randomly selected regions on the
NYC-Taxi and NYC-Bike datasets, respectively. In Fig. ﬁ and
Fig. E, the left three subfigures compare the predictions ver-
sus ground truth values, the middle three subfigures show the
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TABLE 2 Effectiveness of OD learning on prediction performance.

Dataset |  Method |  MSE MAE MAPE
Basic 19.57 12.10 15.28%
NYC-Taxi Basic+ORFL 19.33 11.92 15.09%
Basic+ORFL+FT 19.22 11.90 15.08%
Basic 8.16 5.93 20.79%
NYC-Bike Basic+ORFL 8.01 5.83 20.48%
Basic+ORFL+FT 7.88 5.73 19.97%
NYC-Taxi NYC-Taxi
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FIGURE 9 The number of HSDM blocks versus the pre-
diction performance.

distributions of APEs, and the right three subfigures illustrate
the cumulative distribution functions (CDFs) of APEs and the
mean prediction errors.

From these two figures, we can observe that 1) The predic-
tions of STOD-Net and STDN as well as ST-ResNet all match
the ground truth values fairly well, though distinct traffic pat-
terns exist in different regions or datasets. For instance, on the
NYC-Taxi dataset, the traffic pattern of the region (6,10) is
different from that of the region (5, 12), whose peak traffic has
a clear delay. Besides, region (6,10) has multiple peak peri-
ods, while region (5, 12) tends to have a single peak period for
most of the days.

Nevertheless, all three methods achieve competitive predic-
tion results, and this validates the superiority of convolutional
neural networks for urban traffic prediction. 2) STOD-Net
method achieves better region-wise prediction results than its
two counterparts, which can be verified by the histograms
and CDFs of APEs. Take the region (6,10) on the NYC-
Taxi dataset as an example. From the histograms of APEs,
we can perceive that STOD-Net has more prediction errors
tending to zero compared with STDN and ST-ResNet. This
can be more quantitatively reflected by the CDFs of APEs.

More specifically, about 72% of APEs are less than 20 for
the STOD-Net, while they are 66% and 64% for the STDN
and ST-ResNet, respectively. The mean values of APEs for the
STOD-Net, STDN, and ST-ResNet are 14.91, 18.35, and 18.50,
respectively.

Similar results can be obtained for the other regions on
the NYC-Taxi and NYC-Bike datasets. Thus, we can con-
clude that our proposed STOD-Net achieves better region-wise
prediction results than baselines.

5.6 | TImpacts of OD and road feature learn-
ing

In this subsection, we go one step further and analyze the
impacts of OD and road feature learning on the prediction
performance of STOD-Net. In particular, we report the predic-
tion results with and without OD and road feature learning to
demonstrate the advantages of introducing OD feature learning
for urban traffic prediction. Table E summarizes the obtained
overall results on the NYC-Taxi and NYC-Bike dataset, with-
out distinguishing the in-traffic and out-traffic. In this table,
there are three versions of STOD-Net, i.e., Basic version,
Basic+ORFL version, and Basic+ORFL+FT version. The
‘Basic’ denotes we only use the TFL and JFL components
for traffic prediction without OD feature. The ‘Basic+ORFL’
means the ORFL component is further introduced into traffic
prediction. The ‘Basic+ORFL+FT’ denotes both the ORFL
and the FT components introduced into traffic prediction.

From Table H we know that the ‘Basic’ version of STOD-
Net performs the worst among all the three versions. With the
introduction of ORFL, the prediction errors on both datasets
become lower. Besides, the ORFL component further im-
proves prediction performance. The results in Table E indicate
that the OD data can indeed provide additional performance
gains and servers as a new direction to consider for urban traffic
prediction.

57 | TImpacts of hyper parameters

In this subsection, we explore the impacts of several related
hyper-parameters on the prediction performance of STOD-Net.
For example, the number of HSDM blocks and the parameter
[ that balances the different effects of the dynamic and static
spatial dependencies.

57.1 | The number of HSDM blocks

We vary the number of HSDM blocks Lorpr € {0, 1, 2,3} and
present the obtained RMSE and MAE results on the NYC-Taxi
and NYC-Bike datasets in Fig. H Note that when Logrpr, = 0,
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FIGURE 10 The influence of gate mechanism on predic-
tion performance.

STOD-Net degenerates into the ‘Basic’ version of it, which is
explained in the last subsection. We can observe from Fig. E
that with the increase of Loggr, the performances regarding the
RMSE and MAE improve gradually till to their corresponding
minimums, after which the performances decrease. The results
of Fig. E are consistent with the results of Table Q and demon-
strate again the usefulness of OD feature learning. Besides,
based on the results we can conclude that the number of HSDM
blocks should not be too large, as larger Lorpr may break
the TFL component’s representation learning, thus leading to
performance degradation.

57.2 | The parameter 3

The parameter 3 in Eq. () is a predefined value, which affects
the gating mechanism. Actually, it balances the contribution
of the dynamic and static spatial dependences to the final rep-
resentations. We set 3 € {0,0.5,1} and report the obtained
results in Fig. . Be noted that when 5 = 0, it means we
only consider the static spatial dependence. Similarly, when
B = 1, it means we only consider the dynamic spatial de-
pendence. When 8 = 0.5, we consider both the static and
dynamic spatial dependencies, and they contribute to the final
representations equally. We can see that the prediction perfor-
mances vary when the value of 3 changes. Nonetheless, the
gating mechanism is beneficial to predictions regardless of
its values, as it achieves better performance than the ‘Basic’
version of STOD-Net. Additionally, we also observe that con-
sidering both the static and dynamic spatial dependencies, that
is, 8 = 0.5, can generally obtain lower prediction errors than
only considering the static or dynamic spatial dependence. Be-
cause the static and dynamic OD data contain complementary
information for capturing spatial dependencies, thus modeling
them together enhances the prediction performance.
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FIGURE 11 The influence of hyper-parameters on predic-
tion performance.

573 | Others

There are several other hyper-parameters that will influence the
prediction performance of STOD-Net, and we give the experi-
ment results here. Six hyper-parameters are considered, that is,
the length of closeness dependence L., the length of periodicity
dependence L,, the length of trend dependence L,, the number
of layers in each dense block Ljr, the output representations
in each convolutional layer of dense block K, and the number
of heads in GAT M. Their influence on prediction results is il-
lustrated in Fig. . Note that we only report the RMSE results
on one dataset (NYC-Bike) as other metrics have similar re-
sults to Fig. . It can be observed from Fig. [1 1] that with the
increase of L. and L,, the prediction performance tends to be
improved because more data are used to model temporal depen-
dence. But for L,, as its increases, the performance degrades
gradually. This is because the increase of L, will greatly reduce
the number of training samples, thus under-fitting may occur.
For the number of layers in each dense block Ly, STOD-
Net has a large capacity as its increases, leading to perfor-
mance improvement. But too large Ly, will make our model
too strong to over-fitting the data, thus performance becomes
worse. This phenomenon holds for the hyper-parameters K and
M. These hyper-parameters control the capacity of STOD-Net.
Larger values indicate large capacity and strong representation
ability. But too large values can easily cause over-fitting and
reduce the generalization of STOD-Net. Thus the best hyper-
parameters can be obtained based on a grid search strategy.

6 | CONCLUSION

In this paper, we proposed STOD-Net, a spatial temporal
origin-destination feature enhanced deep neural network, to
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solve urban traffic prediction. Beyond modeling the histori-
cal traffic itself, we introduced OD data into the prediction
and adopted graph neural networks to model them to cap-
ture the inter-regional spatial interaction patterns. We consider
two types of OD data, namely, static and dynamic OD data,
in STOD-Net and fused them in a weighted fashion to cap-
ture different regional spatial dependences. Extensive exper-
iments were conducted on two real-world datasets, and the
results demonstrated that STOD-Net achieves superior predic-
tion performance than state-of-the-art methods. Possible future
directions include considering more fine-grained road network
information and exploring the trade-off between the number of
parameters and the prediction performance.
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