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Abstract—Monte Carlo simulation (MCS) is useful for verify-
ing analytical derivations and studying complex systems on an
empirical basis. Although MCS is straightforward and does not
require a priori knowledge of the sampled probability measures
(PMs), it consumes a tremendous amount of computational
resource and suffers from slow simulation procedures for sophis-
ticated systems. To mitigate this drawback of MCS, we make full
use of the monotone property and the logarithmic presentation
convention of PMs in regard to power related metrics (PRMs)
in communications science and propose an easy-to-implement
interrupt mechanism to accelerate MCS for estimating PMs. To
facilitate the programming on different platforms and provide a
solid theoretical foundation, we present a generic implementation
framework suited for estimating PMs with certain properties by
MCS and analyze the underlying theory of the interrupt mecha-
nism. In particular, we apply the de Moivre-Laplace theorem and
analytic continuation to prove the asymptotic consistency under
the indirect setup of MCS. We also design a hypothesis test for
studying the proposed mechanism on a statistical basis.

Index Terms—Monte Carlo simulation, probability measure,
interrupt mechanism, numerical computing, hypothesis test.

I. INTRODUCTION

MONTE Carlo simulation (MCS) has been widely ap-
plied in almost all science and engineering subjects for

numerical simulation and evaluation [1]. In communications
science, MCS is commonly used to numerically estimat-
ing probability measures (PMs), e.g., outage probability and
(bit/symbol/block) error probability [2], [3]. MCS is able to
verify the correctness of analytical derivations and provide
numerical insights into complex systems when mathematical
analyses become intractable. Although MCS possesses a series
of computing advantages, for example, the easy-to-implement,
robust, and a priori knowledge free peculiarities, it inevitably
demands a tremendous amount of time for processing enor-
mous repeated random trials when approaching the statis-
tical regularity in rare-event sampling by the law of large
numbers [4]. This is in particular the case for complicated
application scenarios in the context of sixth generation (6G)
communications [5], e.g., reconfigurable intelligent surface
(RIS) aided communication networks, artificial intelligence
aided communication networks, space-air-ground integrated
networks, and ultra-dense networks [6]–[10], and therefore
researchers are in dire need of a fast MCS method.

Fortunately, most PMs studied in communications science
for characterizing rare events, e.g., outage and error, are
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monotone non-increasing and presented in the logarithmic
convention in regard to power related metrics (PRMs), in-
cluding signal-to-interference-plus-noise ratio (SINR), signal-
to-noise ratio (SNR), and signal-to-interference ratio (SIR)
[11]. We leverage these unique properties of PMs in commu-
nications science and propose an easy-to-implement interrupt
mechanism in this letter to accelerate MCS for estimating
PMs. In the rest of this letter, we give a generic implemen-
tation framework facilitating the implementations on different
software platforms and analyze the underlying theory of the
interrupt mechanism. By the mathematical analysis given in
this letter, we provide an elementary proof of the asymptotic
consistency of the estimates under the indirect setup of MCS
that specifies a fixed total number of unfavorable events
and counts the total number of repeated independent trials.
Furthermore, a hypothesis test is also designed to rigorously
study the interrupt mechanism and its statistical regularity.

Simulation results presented in this letter demonstrate that
there exists a trade-off between estimation accuracy and sim-
ulation time when applying the interrupt mechanism, and the
trade-off is controllable by several parameters. By properly
setting these parameters, the simulation time yielded by the
MCS with the interrupt mechanism can be reduced by an order
of magnitude compared with that yielded by the naı̈ve MCS
without the interrupt mechanism, while the loss of estimation
accuracy within the effective span of PRM is trivial.

It should be noted that the proposed method is dedicated to
reduce the number of sampling rounds for the entire simulation
procedure, instead of accelerating each round. Therefore,
the proposed method is different from the widely applied
sampling enhancement approaches for expediting each round,
e.g., importance sampling, partial importance sampling, and
probability-based sampling [12]–[14]. Instead, the proposed
method can be applied in conjunction with these classical
approaches in an overlaid manner and yields an additional
performance gain.

II. RUDIMENTS OF PROBABILITY MEASURES AND MONTE
CARLO SIMULATION IN COMMUNICATIONS SCIENCE

Strictly speaking, almost all performance measures of in-
terest in communications science are probabilistic by nature.
For the operational relevance, when talking about the PMs
hereafter, we implicitly refer to the PMs with the following
characteristics:

• A real-valued PM restricted within [0,1] with a finite and
binary support S;
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• A PM capturing the statistical nature of a rare and
unfavorable event1, and more specifically, evaluating the
occurrence likelihood of such a random event;

• A PM that is monotone non-increasing with respect
to PRMs, and by convention, presented in plots by a
logarithmic coordinate with respect to a linear span of
PRMs.

The outage probability and error probability in commu-
nications science are the representative examples of the
PM with the aforementioned characteristics [11]. Without
loss of generality, we denote such a symbolic PM as
P (γ) = P{unfavorable event occurs} with the support2 S =
{unfavorable event, favorable event}, where γ represents a
certain PRM expressed in decibel (dB) in general and can be
reduced to either SINR, SIR, or SNR, depending on different
contexts. By convention, P (γ) is estimated by P̃ (γ) produced
by MCS linearly with an equal step size spanning from the
lowest γ to the highest γ of interest and presented in plots by
a logarithmic coordinate [11].

Specifically, in most cases, P̃ (γ) is generated by MCS to
estimate P (γ) according to the following relation3: P̃ (γ) =
Nu/Ñtot(γ), where Nu is a preset threshold of the collection of
unfavorable events, and Ñtot(γ) is the total number of repeated
independent trials for collecting Nu unfavorable events, which
is random but statistically associated with γ. That is, we
can repeatedly carry out a series of random and independent
trials, check whether the unfavorable event occurs in each of
these trials, and then terminate the MCS process once Nu

unfavorable events have been observed. In the meantime, we
can count the total number of conducted trials Ñtot(γ) when
terminating the MCS process. With both figures, we are able to
estimate P (γ) by P̃ (γ) = Nu/Ñtot(γ). Because of the law of
large numbers and statistical independence among all repeated
trials, it can be proven that lim

Nu→∞
{P̃ (γ)} = P (γ) [15].

An illustration of a PM and its estimates generated by MCS
with different Nu in the logarithmic scale with respect to SNR
γ is presented in Fig. 1, which corresponds to the outage
probability over a normalized Rayleigh fading environment.
The numerical results presented in this figure give a straight-
forwardly visual impact of Nu on the estimation accuracy.

III. MONTE CARLO SIMULATION WITH AN INTERRUPT
MECHANISM

A. Principle and Implementation Framework

In communications science, researchers are normally inter-
ested in the outage/error performance above a certain threshold
level η, say 10−2, which is prescribed by telecommunications
standards and protocols. As a result, the performance below
such a threshold is out of interest and might not be shown
in plots. As an example shown in Fig. 1, setting η = 10−2

1Here, the rareness is a relative conception rather than a qualitative termi-
nology. For example, in most communication systems functioning normally,
both error and outage events should be rare.

2That is, either a favorable event, e.g., correct detection, or an unfavorable
event, e.g., erroneous detection, will occur for each independent trial.

3This corresponds to the indirect setup of MCS, which is more efficient
and robust than the direct setup specifying a fixed total number of repeated
independent trials and counting a random number of unfavorable events.
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Fig. 1: Illustration of a PM and its estimates generated by MCS with
different Nu in the logarithmic scale with respect to γ.

as the threshold, the PM below this threshold has not been
shown, although we sampled the PRM span up to γ = 30 dB.
That is, the sampling over the sub-span between 20 dB and 30
dB can be omitted. This naturally comes up with an idea that
we can shrink the full span of γ for sampling by terminating
the simulation process at the value close to a critical PRM,
denoted as γc, which leads to P (γc) = η. However, because
of the lack of a priori knowledge4, when sampling over the
full span of γ with an equal step size, denoted as Θ, we do
not know the critical PRM γc beforehand.

Fortunately, given η, we can estimate γc ≈ γb =
arg min
γ∈Θ, γ>γc

{|γ − γc|} ∈ Θ a posteriori by the numbers of

experienced trials and collected unfavorable events. Accord-
ingly, we can stipulate an interrupt mechanism as follows
based on a robust estimation of γc. In particular, when the
number of counted conducted trials Ñtot(γ) is equal to or
larger than εNu/η, where ε ≥ 1 is a control parameter
balancing estimation accuracy and time, the MCS should be
terminated. The corresponding γ simulated at the termination
point is estimated to be γb. Therefore, we do not need to
sample the PMs for the remaining span thereafter, which is
equivalently to shrink Θ = [minΘ{γ}, . . . ,maxΘ{γ}] to a
sub-span Θs = [minΘ{γ}, . . . , γb]. In this way, the overall
simulation process can be accelerated.

To facilitate the implementation of the interrupt mechanism
based acceleration for MCS, we design a generic implemen-
tation framework, regardless of the software platforms. Such
a generic implementation framework is given by pseudocodes
in Algorithm 1. As shown by the pseudocodes, the sampling
is only carried out over a meaningful subset of γ and will
be terminated once the estimated PM is likely to be below
threshold η with a certain level of confidence controlled by ε.

4Even though sometimes we do have the a priori information, it is
contradictory to the basic principle of MCS and should not be used for
independent cross validation purposes.
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Algorithm 1 Proposed implementation framework of the
interrupt mechanism based MCS acceleration.

1: Input: η, ε, Nu, and Θ; Assign flag← 0;
2: for γ starting from minΘ{γ} to maxΘ{γ} in order do
3: Initialize the simulation settings for the current γ;

Assign nu ← 0; Ñtot(γ)← 0, and P̃ (γ)← 0;
4: while nu < Nu do
5: Carry out an independent trial for the current γ (omit

the details here for keeping generality, and interested
readers might refer to [2]);

6: if an unfavorable event is detected then
7: nu ← nu + 1;
8: end if
9: Ñtot(γ)← Ñtot(γ) + 1;

10: if Ñtot(γ) ≥ εNu/η then
11: Assign flag← 1;
12: Break the while loop;
13: end if
14: end while
15: if flag == 0 then
16: P̃ (γ)← Nu/Ñtot(γ);
17: else
18: P̃ (γ)← nu/(εNu/η);
19: Record the current γ associated with the break point

of the while loop as γb;
20: Break the for loop;
21: end if
22: end for
23: if flag == 0 then
24: Return a set of P̃ (γ) for γ in Θ;
25: else
26: Determine Θs as Θs = [minΘ{γ}, . . . , γb];
27: Return a set of P̃ (γ) for γ in Θs;
28: end if

B. Underlying Mathematical Theory

To rigorously prove the effectiveness and efficiency of the
proposed MCS approach enhanced by the interrupt mech-
anism, we reveal the underlying mathematical theory and
analyze the statistical regularity in this subsection. The oc-
currence of a rare event can be modeled as a Bernoulli
distribution (either occur or not) with the probability mass
function only characterized by P (γ), denoted as B(1, P (γ)).
Therefore, given a fixed number of collected rare events
Nu, the number of experienced repeated independent trials
Ñtot(γ) can be characterized by the following probability
mass function (PMF): φÑtot(γ)(α) = P{Ñtot(γ) = α} =(
α−1
Nu−1

)
(P (γ))Nu(1 − P (γ))α−Nu , where α ≥ Nu is un-

bounded. By this PMF, the expectation and variance of Ñtot(γ)
can be easily derived to be E{Ñtot(γ)} = Nu/P (γ) and
D{Ñtot(γ)} = Nu(1 − P (γ))/(P (γ))2. Accordingly, we can
derive the PMF of P̃ (γ) = Nu/Ñtot(γ) to be

%P̃ (γ)(β) = P{P̃ (γ) = β} = P{Ñtot(γ) = Nu/β}

=

(
Nu/β − 1

Nu − 1

)
(P (γ))Nu(1− P (γ))Nu/β−Nu ,

(1)

where β ∈ B =
{

Nu

Nu+0 ,
Nu

Nu+1 ,
Nu

Nu+2 , . . .
}

, which is a

countably infinite set. The expectation of P̃ (γ) can also be
determined as E{P̃ (γ)} = P (γ) 2F1(1, 1; Nu + 1; 1− P (γ)),
where pFq(·; ·; ·) is the generalized hypergeometric function.
Because E{P̃ (γ)} 6= P (γ), P̃ (γ) is a biased estimate of P (γ).

Meanwhile, we can prove the asymptotic consistency
(a.k.a. the convergence in probability) of estimate P̃ (γ)
by constructing λ(Nu) = P{|P̃ (γ) − P (γ)| < ε} =
P{P (γ) − ε < P̃ (γ) < P (γ) + ε} ≥ λ(Nu) =

P{zl ≤ P̃ (γ) ≤ zu} =
zu∑

β=zl, β∈B
{%P̃ (γ)(β)}, where

ε > 0 is an arbitrarily small value; zl and zu are the
lower and upper bounds on P̃ (γ) determined by zl =

arg min
z∈B,z>P (γ)−ε

{|z − (P (γ)− ε)|} = Nu

Nu+b Nu
P (γ)−ε−Nuc and

zu = arg min
z∈B,z<P (γ)+ε

{|z − (P (γ) + ε)|} = Nu

Nu+d Nu
P (γ)+ε

−Nue ,

where b·c and d·e represent the floor and ceiling functions,
returning the nearest integers in the directions of negative and
positive infinity, respectively.

However, when Nu is large, it is cumbersome to analyze
%P̃ (γ)(β) because of the involvement of the binomial co-
efficient. To facilitate the following analysis, we apply the
following approximation derived from the de Moivre-Laplace
theorem for large Nu [15]:

%P̃ (γ)(β) ≈ %̂P̃ (γ)(β) =

P (γ)exp

(
− [Nu−1−( Nu

β −1)P (γ)]
2

2( Nu
β −1)P (γ)(1−P (γ))

)
√

2π
(

Nu

β − 1
)
P (γ)(1− P (γ))

.

(2)
That is, because the interval between two consecutive values
in B, i.e., ∆(β) = β2/(Nu − β), will become infinitesimal
when Nu → ∞, we can utilize a continuous distribution,
a.k.a. the limiting distribution, characterized by probability
density function (PDF) %̂P̃ (γ)(β)/∆(β) to approximate the
original discrete distribution characterized by PMF %P̃ (γ)(β).
Accordingly, we apply the techniques of analytic continuation
and extend the domain of definition for P̃ (γ) from B to [0, 1].
Consequently, we can approximate the cumulative distribution
function (CDF) of P̃ (γ) for large Nu by

P{P̃ (γ) ≤ β} ≈ Ξ̂P̃ (γ)(β) =

∫ β

0

%̂P̃ (γ)(t)/∆(t)dt

≈ 1

2
erfc


√

NuP (γ)
1−P (γ) − β

√
Nu

P (γ)(1−P (γ))√
2β


+

1

2
exp

(
2Nu

1− P (γ)

)
erfc


√

NuP (γ)
1−P (γ) + β

√
Nu

P (γ)(1−P (γ))√
2β

 ,

(3)

where erfc(·) is the complementary error function. This
approximate result leads to λ(Nu) ≈

∫ zu
zl
%̂P̃ (γ)(t)/∆(t)dt =

Ξ̂P̃ (γ)(zu)− Ξ̂P̃ (γ)(zl) for large Nu. It can be calculated that
limNu→∞{λ(Nu)} ≈ limNu→∞{

∫ zu
zl
%̂P̃ (γ)(t)/∆(t)dt} = 1,

and, by the squeeze theorem, because 1 ≥
limNu→∞{λ(Nu)} ≥ limNu→∞{λ(Nu)} ≈ 1, we have
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Fig. 2: Relation among λ(Nu), Nu, and ε, given P (γ) = 10−2.

limNu→∞{λ(Nu)} = 1. Therefore, the asymptotic consistency
has been proven by ∀ ε > 0, ∃ limNu→∞{λ(Nu)} = 1,
leading to P̃ (γ)

P−→ P (γ). To verify this verdict, we plot
λ(Nu) represented by its continuous approximation versus
Nu and ε, given P (γ) = 10−2, in Fig. 2. As shown in this
figure, ∀ ε > 0, we can always have a large value of Nu

ensuring that λ(Nu) is sufficiently close to 1.

C. Hypothesis Test Design

To rigorously investigate the nature of the proposed inter-
rupt mechanism and quantify its effectiveness, we design the
following hypothesis test when the interrupt mechanism is
triggered, given Ñtot(γ) = εNu/η and the number of observed
unfavorable events nu ≤ Nu:

H0 : P (γ) ≤ η, H1 : P (γ) > η (4)

To facilitate the analysis of the hypothesis test, we introduce
an auxiliary Bernoulli distributed random variable indicating
whether an unfavorable event independently occurs in the
nth trial or not: An ∼ B(1, P (γ)). Then, for simplicity, we
approximate nu as nu ≈

∑εNu/η
n=1 An. Now, with large Nu, we

can apply the Lyapunov theorem and approximately have

nu/(εNu/η) ∼ N
(
P (γ),

P (γ)(1− P (γ))

εNu/η

)
. (5)

By this approximation, the statistic analysis can be greatly
facilitated, and the hypothesis test formulated in (4) becomes
a hypothesis test for the expectation of a Gaussian distributed
random variable. Therefore, by normalizing the Gaussian
random variable, we can construct a test statistic

T =

(
nu

εNu
− 1

)√
εNu

1− η
∼ N (0, 1), (6)

which gives the approximate region of rejection for the hy-
pothesis formulated test in (4) to be T ≥ u(ω) [15], where
ω is the level of statistical significance, and u(ω) is the
upper quantile function for the standard Gaussian distribution
N (0, 1) determined by

∫∞
u(ω)

exp(−t2/2)/(
√

2π)dt = ω.
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Fig. 3: Experimental results of average Kullback-Leibler divergence
and simulation time vs. the number of observed outage events Nu.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In general, the performance of MCS is characterized by
the estimation accuracy, measuring how close the numerical
results are to the analytical results, and the simulation time,
measuring how long the simulation process takes. Although it
is easy to identify the estimation accuracy from a qualitative
perspective from Fig. 1, it is relatively cumbersome to quantify
the estimation accuracy by MCS. Classical studies resort to the
goodness-of-fit for the quantifying purposes, while it has been
shown to be inadequate for rare-event PM that is in general a
very small value. In this letter, we utilize the Kullback-Leibler
divergence (a.k.a. relative entropy) as the estimation accuracy
measure to get rid of the effect of the small value of PM per
se [16]. The occurrence of a favorable or unfavorable event is
essentially Bernoulli distributed, and thus the distance measure
between P (γ) and P̃ (γ) can be explicitly written as

KLD(γ) = P̃ (γ) log2

(
P̃ (γ)

P (γ)

)
+(1−P̃ (γ)) log2

(
1− P̃ (γ)

1− P (γ)

)
.

(7)
To take the interrupt mechanism into consideration, we can
further average KLD(γ) over the effective span Θs of γ to
obtain

KLD = E
γ∈Θs

{KLD(γ)} =
1

|Θs|
∑
γ∈Θs

KLD(γ). (8)

Apart from the estimation accuracy, simulation time
Time(γ) is another crucial indicator of the performance of the
proposed method, which signifies the computational complex-
ity in a practical context. We set up the simulation environment
with the following specifications: Processor: Intel(R) Xeon(R)
Gold 6130 CPU @ 2.10 GHz-2.10 GHz (two processors);
installed memory (RAM): 128 GB; operating system: 64-
bit Windows 10, and count the simulation time Time(γ) by
tic/toc function embedded on MATLAB R2018a.

To reveal the computing generality, we adopt the outage
probability over a normalized Rayleigh fading environment
with SNR γ ∈ {−10,−9, . . . , 30} (dB) and η = 10−2 as
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a simplistic example to investigate. For such a simplistic
case, it can be mathematically derived that γc = −(log(1 −
η))−1 ≈ 19.9782 dB for the normalized channel setup [3]. The
experimental results regarding the average Kullback-Leibler
divergence and simulation time are presented in Fig. 3. To
reveal the statistical regularity, we repeat the experiments for
104 times and average the results over all runs.

The naı̈ve MCS method is taken as the comparison bench-
mark in these measurements. From Fig. 3, it can be verified
that the estimation accuracy loss caused by the interrupt
mechanism is acceptable over the entire region of Nu. In fact,
the procedures of naı̈ve MCS and the proposed MCS are the
same before reaching γb, and the difference is only caused by
the incomplete simulation procedure for the remaining span
after γb. On the other hand, as also shown in Fig. 3, with such
an interrupt mechanism, the simulation time corresponding
to the proposed MCS method has been significantly reduced,
since the simulation procedure can be terminated earlier. Based
on the above observations, the effectiveness and efficiency of
the MCS enhanced by the interrupt mechanism have been
validated. Furthermore, letting ω = 0.05, most test statistics
T of the above experiments are smaller than u(ω) when the
interrupt mechanism is triggered. Therefore, the null hypothe-
sis in (4) cannot be rejected, which supports that the PMs are
smaller than threshold η in all experiments when the interrupt
mechanism is triggered.

V. CONCLUSION

To meet the ever-increasing demands on fast simulations
for complex communication systems, we proposed an easy-
to-implement interrupt mechanism in this letter to accelerate
the MCS procedure for PMs with certain characteristics. To be
general and rigorous, we also presented a generic implemen-
tation framework described in pseudocodes and analyzed its
underlying mathematical theory. As validated by experimental
results and hypothesis tests, the MCS method enhanced by the
interrupt mechanism is capable of achieving a similar level of
estimation accuracy compared to the benchmark but requires
much less simulation time. It is anticipated that the methods
presented in this letter will help to expedite the research
progress of complex 6G communication systems.
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