Assignment 4, Queueing Network

Due Date is: Nov. 9th 2021

Question 1, about series network

Consider a 3-station series queueing network with Poisson arrival (rate λ) and exponential service time (parameters μ_1 , μ_2 , and μ_3). There is no capacity limit on the queue in front of the first two stations, but at the third station there is a limit of K allowed (including the one in service). If already K customers are in the third station, then any subsequent arrivals

to the third station will directly leave the network. Question:

a) Find the expected number of customers in the network (all the 3 stations);

b) Find the expected time spent in the network by a customer who completes all three stages

of service.

1

Question 2, MATLAB Simulation

Use MATLAB to code a discrete-event simulation program for an detecting QoS in a sensor network shown below

Consider a time-driven wireless sensor network, where sensors sample the environment and report their readings to the data sink periodically in a Stop-and-Go routing according to the above Figure where T_i is the total time that a packet spends in a node, τ^k is the propagation delay. Each sensor report is associated with a delay constraint T_{QoS} , which defines the maximum sensor-to-sink delay allowed. There are two types of packets, data and control packets. Control packets have higher priority than Data packets and scheduled to queue high Q_h while Data packets are scheduled to queue low Q_l . In some emergency cases, Data packets are scheduled at Q_h with probability 1- p_{τ} . Sensor nodes are working in two modes: working mode and sleeping mode.

Simulate how to compute the maximum hop-count allowed in the system to meet T_{QoS} requirements. Vary T_{QoS} and compute the dropping probability due to violating T_{QoS} under different loads.

The MATLAB code along with the README file should be submitted electronically in a single zip file.